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ABSTRACT: Fault detection and diagnosis (FDD) is very important for making sure that electric cars (EVs) 

are safe and reliable. The electric motor drive and battery system, which store energy, are important parts of 

the EV's power train that can go wrong in a number of ways. If you don't find and fix these problems right away, 

they could cause EVs to stop working and even very bad crashes. Permanent Magnet Synchronous Motors 

(PMSMs) and lithium-ion battery packs have gotten a lot of notice for their use in electric vehicles. Because of 

this, finding faults in PMSMs, their drives, and lithium-ion battery packs has become an important area of 

study. An accurate, quick, sensitive, and cost-effective FDD method is what it takes to be successful. Model-

based and signal-based methods are two types of traditional FDD techniques. However, data-driven techniques, 

such as methods based on machine learning, have recently become popular because they seem to be good at 

finding faults. The goal of this paper is to give a full picture of all the possible problems that can happen in EV 

motor drives and battery systems. It will also look at the newest, most advanced study in finding EV faults. As a 

useful guide for future work in this area, the knowledge given here can be used. 
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I. INTRODUCTION 
The introduction of electric vehicle (EV) technology represents a groundbreaking advancement in the 

progression of transportation, providing a sustainable alternative to conventional internal combustion engine 

vehicles. Electric cars, characterized by their dependence on electric motors for propulsion, utilize energy stored 

in rechargeable batteries, which are essential to their functioning. The advancement of this technology has seen 

tremendous development in recent decades, resulting in enhancements in terms of range, performance, and 

affordability. 

Electric motors are used in a lot of different fields, but they are most often found in electric vehicles. 

For the transportation sector, how safe and reliable EVs are is very important. However, because they work in 

harsh conditions, the motor and its drive system can develop different problems that affect how well they work 

and make EVs less reliable and safe. The IPMSM motor, which has a high power density and good economy, is 

the most common type used in EVs[1]. On the other hand, designers have to make their designs more 

complicated as the need for PMSMs grows and the cost of their materials stays high. This makes the PMSM 

more likely to have different kinds of faults. At the same time, the transportation business needs to keep 

running, even though EV motors work in different environments. Faults in an electrical motor drive system can 

happen in the motor itself or in the inverter. These faults can be broken down into three main groups: electrical 

faults, mechanical faults, and sensor faults [2]. There are different types of electrical faults, such as open or 

short phase faults, demagnetization faults, and open or short circuits of the switches in the inverter. These are 

technical faults that have to do with the rotor, like bearing faults, bent shafts, and airgap eccentricity. Sensor 

faults are problems with each of the different instruments. If these flaws are found quickly, the right steps can be 

taken to avoid expensive damage and catastrophic fails. 

Due to its exceptional qualities, which include high power and energy density, extended lifespan, and 

environmental considerations, the lithium-ion battery system has emerged as the front-runner in EV applications 

for energy storage [3]. Hundreds of cells coupled in parallel and series often make up a battery pack. However, a 
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variety of defects, including as battery misuse and actuator and sensor errors, can arise in battery systems, 

leading to rapid aging and degradation of the battery, EV failure, and hazardous accidents. Battery issues are 

said to be the cause of 30% of electric vehicle accidents [4]. 

Therefore, to provide safe and continuous EV operation, fault tolerant control and reliable online defect 

detection must be developed. However, early failure identification is difficult due to complicated procedures and 

other uncontrollable factors. An electric motor's operational state can be monitored and ascertained using the 

fault detection and diagnostic (FDD) technique, which enables early failure identification and prediction. 

Various defects can be found and diagnosed using FDD, and by taking the appropriate action, EV safety and 

dependability enhance [5]. 

In order to reduce the possibility of possible problems with battery systems and electric motor drives, 

numerous FDD techniques have previously been created. Model-based, signal-based, data-driven (knowledge-

based), and hybrid approaches are the main categories into which FDD techniques can be divided. The model-

based approaches rely on the discrepancy between the values that the system model and observers estimate and 

measure. Various model-based techniques exist, including but not limited to state observer, parameter 

estimation, finite element analysis (FEA), linear parameter varying, extended Kalman filter (EKF), and 

others[6]. Signal-based techniques do not require an accurate system model because the failure symptoms are 

retrieved from the output signals. The spectrum, phase, magnitude, deviations, and other aspects can be 

analyzed in order to extract the features using the time domain, frequency domain, or time-frequency domain 

[7]. Fast Fourier transform (FFT), Hilbert Huang transform (HHT), Wavelet transform (WT), and Winger Ville 

are a few feature extraction techniques[6]. Model-based and signal-based approaches are slow in fault 

identification, sensitive to load, and require prior motor expertise. The fundamental advantage of data-driven 

approaches is that, unlike model-based and signal-based methods, they may be applied without requiring prior 

knowledge of the model or signal pattern of traction systems. To implement the data-driven method efficiently, 

a significant amount of historical data under both healthy and problematic situations is needed; this is not 

regarded as an impossible obstacle. This method can also be applied to multiphase motors with more complex 

models and uncertainties; furthermore, it does not require the system model. The hypothesis test and test 

statistics, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Canonical 

Correlation Analysis (CCA), Neural Networks (NN), Support Vector Machine (SVM), Bayesian Network (BN), 

Deep learning, and other machine learning techniques are some of the main and most popular approaches in 

data-driven methods. 

In order to comprehend the causes and consequences of various electric motor drive types and battery 

system malfunctions, this study surveys them. Various FDD approaches are shown, and the benefits and 

drawbacks of current research as well as cutting-edge strategies are examined. 

 

II. ELECTRIC MOTOR DRIVE FAULTS   
 Electricity, mechanics, and sensors are the three main types of problems that can happen in PMSM 

motor drives. These problems could happen in either the motor or the generator. A diagram of different electric 

motor drive problems can be seen in Figure 1. 

 

 
Figure 1: Various electric motor drive faults[38]. 

2.1 Electrical Faults 

We already talked about the main electrical faults: open- or short-phase faults, demagnetization faults, 

winding interturn short-circuit faults (ITSF), and faults with the motor. There are also open or short circuits in 

switches and failures of DC-link capacitors that are linked to the inverter. 
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2.1.1 Interturn Short-Circuit Fault 

A power surge, water, or mechanical, electrical, or thermal stresses can cause the stator turn-to-turn 

windings insulation to break down and degrade, which can lead to a short circuit in the windings [8]. It's called 

the fault (ITSF), and it fails more often than any other motor fault[9] . 

Figure 2 shows that the shorted turns add another circuit loop that is linked to flux linkages made by 

the rotor magnet and other motor windings. Due to the low impedance and high coupled flux linkage voltage, 

the ITSF windings create a high-fault current. This causes the stator to overheat and carry too much current [10], 

[11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Interturn short-circuit fault in one phase winding of PMSM [8]. 

 

2.1.2 Demagnetization Fault  

Demagnetization is the process of lowering the strength of the permanent magnet (PM) inside the 

IPMSM and can be brought on by physical damage, high-temperature operation, aging, or an inverse magnetic 

field. Additionally, an ITSF can cause partial demagnetization because of the induced reverse magnetitic field if 

it is not discovered and tolerated in a timely manner [12]. There are two types of demagnetization: reversible 

and irreversible. In the former, a field weakens control, while in the latter, demagnetization is permanent. One of 

the main causes of irreversible demagnetization is an improper operating point of the IPMSM due to the 

combined effects of temperature and a shift in the permeance curve[13]. Because there is less PM flux linkage 

when demagnetization occurs, the torque of the PMSM is decreased. As such, it adversely affects the efficiency 

and properties of the motor [14]. The current in demagnetized PMSMs must increase to compensate for the 

effect of a weakened PM and provide the same torque as a healthy state [15]; unfortunately, this entails 

increasing copper losses and temperature [16]. However, extreme heat can cause irreversible demagnetization 

that is significantly more severe [17]. As a result, the system's dependability and security would decline. It is 

essential to use defect detection and diagnosis technology in order to prevent such outcomes. Demagnetization 

fault can result in additional frequency components in stator current and the vibration and result in pulsation in 

torque and speed. Demagnetization fault detection can be accomplished with these signals [18], [19]. 

 

2.1.3 Open or Short Switches in the Inverter 

An essential part of electric motor drive systems is an inverter, as Figure 3 illustrates. Switching 

devices account for approximately 38% of driver faults [20] and are most likely to fail during operation due to 

high-frequency operation, high power stresses, aging, and other factors. These faults typically manifest as open-

circuit or short-circuit failures. Open-circuit faults are typically caused by a disconnected wire or a failed gate 

signal. The drive system continues to function in spite of such a fault [21]. Phase-locking mode is used by the 

system when an open-circuit fault interrupts the defective phase winding stimulation in a switching device. 

Because of this, the drive system becomes unbalanced, the rotor experiences an uneven force, which lowers 

system performance significantly[2], causes audible vibrations, and may lead to secondary motor faults because 

there is no fault finding detector (FDD). The most common causes of short-circuit faults are overvoltage, 

overheating, malfunctioning protection components, or incorrect gate signals[21]. Moreover, instantaneous 

overcurrent results from a power switch short circuit, which continuously stimulates the faulty phase winding 

regardless of the rotor position. As a result, during the demagnetization phase, the defective phase produces a 

large amount of reversed braking torque, seriously impairing the stability of the drive system and ultimately 

leading to the system's failure [22]. The protective circuits activate in this instance because an overcurrent is 



Fault Diagnosis of the Electric Motor Drive and Battery System for Electric Vehicles 

DOI: 10.35629/5941-10120116                                  www.questjournals.org                                           4 | Page 

generated right away, forcing the inverter to shut down and necessitating repairs before it can resume operation. 

Therefore, the safe operation of a PMSM drive depends on precisely and promptly locating power transistor 

faults and isolating them[23]. 

 
Figure 3: m-phase inverter of an electric motor [23]. 

 

2.2 Mechanical Faults 

Just like electrical faults, mechanical faults also require prompt detection. Air-gap eccentricity and 

bearing defects are the two primary mechanical flaws. A bent shaft, a broken magnet, and loosening bolts are a 

few more mechanical issues [24]. 

 

2.2.1 Bearing Faults 

Out of all potential motor faults, a bearing fault accounts for 40–50% of all faults and is the most 

common [25]. Inner raceways, outer raceways, cages, and ball bearings can all have bearing defects. Even in 

normal circumstances, inadequate lubrication, mechanical vibrations, misaligned shafts, overload, corrosion, 

and finally fatigue are the main causes of bearing faults. It is anticipated that additional faults, including air-gap 

eccentricity, ITSF, and even total motor failure, will arise if the bearing defect is not identified and fixed 

promptly [26]. In [27], Figure 1 shows the rolling bearing structure. 

 

2.2.2 Air–Gap Eccentricity Faults 

A rotor eccentricity fault within the motor is caused by a number of mechanical issues, including 

unbalanced loads, shaft misalignments, rotor imbalance, missing bolts, and bearing problems[24]. Static 

eccentricity (SE), dynamic eccentricity (DE), and mixed eccentricity (ME) are the three types of eccentricity, 

which is actually the uneven air gap between the stator and rotor. SE is the term used to describe the state in 

which the minimum air gap is fixed and rarely changes over time, primarily as a result of manufacturing. DE is 

caused by bent shafts, worn bearings, and rotor flaws where the minimum air gap location rotates with the rotor. 

The ME concurrently exhibits both SE and DE defects [28]. 

 

2.2.3 Sensor Faults 

Various kinds of sensors, such as position, speed, voltage, or current sensors, are required to supply 

distinct feedback signals to a motor drive control system. Any flaw or malfunction in these sensors, which can 

result from vibration, temperature changes, moisture, etc., is referred to as a sensor fault [29]. Open circuits, 

gain deviation, and excessive noise are examples of sensor faults[30]. The motor's monitoring and controller 

system receives erroneous data if one of these sensors malfunctions, which can result in reduced performance or 

even total motor failure. Consequently, in order to prevent this kind of failure and decreased reliability, fault 

detection and diagnosis are crucial [31]. 

 

2.2.4 Current Sensor Faults 

A three-phase PMSM's phase currents are measured using a minimum of two current sensors. Three 

types of current sensor faults exist: zero output, incorrect gain, and dc offset. While none of these require 

immediate attention, they can result in decreased efficiency and overheating [2]. 

 

2.2.5 Voltage Sensor Faults 

System failure may occur quickly if the voltage sensor fault results in a sharp rise in the measured DC-

link voltage. Quick fault identification and repair are essential in this case. Occasionally a malfunction may 

result in minute variations and aberrations in the recorded value, enabling the motor to run at a lower efficiency 

for a while. Any voltage sensor malfunction must eventually be found and accepted[2]. 

 

2.2.6 Speed or Position Sensor Faults 

The position and speed sensors in the motor drive provide the control system with information about 

the rotor's position and speed. For this object, photoelectric incremental encoders are the most common type. 

Any issue with this sensor could impact the operation of the motor. The motor may stop, rotate in the wrong 
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direction, decrease from the desired speed to zero, or—and this is the most dangerous—increase from the 

desired speed to the maximum speed at which the motor can operate. The final scenario leads to ongoing 

overload and potentially disastrous mishaps. FDD is therefore essential in averting these circumstances [2]. 

 

2.3 Battery System Faults 

Three primary categories can be used to categorize the potential problems with the battery pack: sensor 

faults, connection problems, and battery abuse. Each of these faults has the potential to generate heat; if they are 

not identified or accepted in a timely manner, they may accelerate aging and even cause a thermal runaway or 

explosion [32]. A diagram of battery system malfunctions is shown in Figure 4. 

 
Figure 4: Battery system malfunctions 

 

2.3.1 Battery Abuse Faults 

This category of defects includes internal battery short circuits, external short circuits, thermal 

runaway, overcharge, and overdischarge. Faults related to overcharge and overdischarge can be caused by 

mistakes in the battery management systems and cell capacity degradation. These flaws may cause the battery to 

sustain physical or chemical damage, which would reduce its capacity and compromise its safety[33]. An 

external short circuit detects the shorted positive and negative terminals, whereas an internal short circuit is 

caused by a breakdown in the insulation between the battery's layers[34]. Compared to an internal short circuit, 

which is insignificant in the early stages, an external short circuit is a more dangerous and obvious defect. 

Nevertheless, after some time, the internal short circuit may develop into a severe fault [35]. When a short 

circuit happens, rapid voltage drop and thermal runaway are to be expected. 

 

2.3.2 Actuator Faults 
This category includes faults with connections, cooling systems, controller area network buses, etc. 

Owing to the high energy requirements of EV applications, the battery system typically consists of numerous 

battery cells connected in parallel or series. The connection may break down as a result of aging, temperature 

fluctuations, vibration, and the working environment of EVs. Unsecured connections have the potential to 

decrease power availability, which could lead to mishaps. The performance of the battery may be impacted and 

heat produced by increasing the connection's resistance [36]. One of the major battery faults is that if the cooling 

system fails, the battery temperature may rise above the permitted temperature range and possibly cause thermal 

runaway. 

III. FAULT DETECTION AND DIAGNOSIS OF ELECTRIC MOTOR DRIVE 
Safety and dependability are always top priorities in any application, but in transportation systems, they 

are even more important since, EV motors notwithstanding, transportation requires both continuity and safety. 

As was previously mentioned, various faults of various kinds are always possible with an electric motor and its 

drive system[38] [39]. Faults that go unnoticed can cause severe accidents, poor performance, and expensive 

repairs. In numerous systems with various applications, FDD is taken into consideration in order to reduce these 

risks, boost safety, prevent unplanned EV stops and expensive repairs, and increase reliability. FDD is a 

technique for monitoring motor performance in order to find, recognize, and locate errors as soon as feasible. 

FDD offers the chance to accept faults and take appropriate action as soon as they arise. To be deemed effective, 

an FDD technique must meet specific criteria, including: (i) quick detection times; (ii) resilience to changing 

operating environments; (iii) sufficient sensitivity without producing false alarms; and (iv) lack of need for extra 
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hardware (because of its expense and complexity). The most important factor in fault detection is choosing the 

appropriate fault index. Using multiparameter fault indicators can increase the robustness and accuracy of the 

detection process because a fault can change a motor's parameters [40]. The overall schematic of the fault-

tolerant control and FDD-equipped EV motor drive system is shown in Figure 5. 

 

Figure 5: PMSM motor drive schematic with FDD and fault-tolerant contro[38]. 

The three primary classes of FDD methods used in PMSM motor drives are model-based, signal-based 

(also known as signal processing), and data-driven, as shown in Figure 6[41], [42]. . In certain applications, 

hybrid FDD methods—which combine multiple approaches to benefit from multiple approaches at once—are 

also employed. An overview of FDD categories can be found in Table 1. 

Figure 6: Different classes of FDD methods[38]. 
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Table 1: Summary of FDD categories [38]. 

Type Basis Features 

Model-based Using the system model and the estimated 

parameters for fault detection 

Immensely effective in simple systems with 

reliability and lower cost 
Sensitivity on occasion of varying parameters 

and load 

Prior model with knowledge needed 

Signal-based Using output signal and signal-processing 

methods for fault detection 

Easy implimentation process 

Compatible for complex systems 
Usually slower detection speed, higher cost 

caused for faster detection 

Data-driven Using historical data for training the 
sysytem and fault detection 

No prior knowledge needed 
No system model or signal pattern needed 

Compatible for complex systems 

Accuracy is high 
Quality and quantity are factors of affecting 

performance of FDD 

 

3.1 Model-Based FDD Methods 

By contrasting the measured values with the estimated values generated by the system model, model-

based techniques are developed. The expected signal values in a healthy state are estimated in the first stage 

using the motor's mathematical model. The residual signals are then produced by comparing these estimated 

values with the actual measured signals. Depending on the intended fault type and fault detection methodology, 

different signals may be taken into consideration for fault detection. The residual signals indicate whether the 

motor is in good working order or has a fault in the second stage of model-based FDD[43], [44]. Model-based 

techniques are quick and efficient, but they require a precise system model, which has drawbacks and lowers the 

FDD method's effectiveness for complicated systems with lots of unknowns. Expert knowledge is also required 

[45]. Several model-based techniques exist[46], including linear parameter varying, finite element analysis 

(FEA), state observer[47] , parameter estimation[48], parity space equations[49], extended Kalman filter (EKF), 

and model predictive control (MPC), to mention a few. Numerous model-based FDD approaches have been 

presented; the following are some of the ones that have been examined. The general schematic of the model-

based method is depicted in Figure 7[50], with the fault detection unit being the green cycle.  

Figure 7: General diagram of model-based FDD workflow [50] 

The state-observer method, as one of the most-used techniques with the general diagram shown in 

Figure 8[51], is usually divided into two main subgroups: voltage-based observer[52] and current-based 

observer[53]. The voltage-based methods are fast diagnosis techniques and can be used to increase the fault 

detection speed, but usually, extra voltage sensors are needed. Consequently, adding voltage sensors increases 

the system’s cost, volume and complexity, which is regarded as a drawback for FDD techniques[54]. 
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 Figure 8: General diagram of state-observer FDD configuration[51] 

The theory of interval observer has brought new ideas for fault detection and control integration. The 

interval observer scheme reduces computational load over the traditional observer-based fault detection scheme 

by doing away with the requirement to design a threshold selector and residual evaluator. In[55], an enhanced 

interval observer that makes use of the well-established mathematical model of the motor was employed. This 

observer exhibits greater resilience to electromagnetic disturbance and permits the detection of ITSF faults at an 

early stage. 

Another useful residual observer that is gaining popularity and enhancing observer-based FDD 

methods is the Luenberger observer. The Luenberger observer is used for very low-to high-speed range encoder 

fault detection in[56]. The Luenberger observer's sensitivity to changes in motor parameters is a disadvantage, 

though. Sliding mode control systems are commonly used to address the nonlinearity of complex systems, and 

they exhibit greater robustness when compared to methods based on Luenberger observers. 

The other model-based fault detection method is parameter estimation. Several motor and inverter 

parameters, including speed, resistance, back-EMF, voltage, and current, are estimated using system models in 

this technique and are regarded as the expected healthy values or references. These numbers are then contrasted 

with the actual parameter values that were obtained from the system online. The fault occurrence is revealed by 

deviations from the reference values. In order to identify and differentiate between single and multiple sensor as 

well as nonsensor faults, [57] uses the estimated DC-link current as the reference value and compares it with the 

actual measured value. In addition, the identified faults are isolated using the phase signal residual. 

Another potent mathematical technique for estimating motor parameters in the event of a fault 

detection is the Extended Kalman filter (EKF), which is based on minimizing the variance of estimation error 

and applicable in nonlinear systems. They have a low false alarm rate, strong estimation against noise, and quick 

detection. To estimate the parameters for the next step, they require the measured signals and the most recent 

estimated values. The Kalman filter has a variety of uses; in[58], [59], it is employed for the purpose of 

estimating the state of autonomous driving vehicles and eliminating noise and anomalies. Because of its 

significance for state estimation, residual generation, and signal innovation, comprehensive information about 

the Kalman filter is supplied. The process for the Kalman filter is shown in Figure 9. 



Fault Diagnosis of the Electric Motor Drive and Battery System for Electric Vehicles 

DOI: 10.35629/5941-10120116                                  www.questjournals.org                                           9 | Page 

 

Figure 9: Kalman filter flowchart [59]. 

For computing parameters of electromagnetic devices, like motors, such as torque, flux density and 

linkage, and inductance, the Finite element method (FEM) is a very efficient method. It has been used for 

PMSM fault detection, particularly eccentricity, demagnetization, and ITSF faults, and yields accurate results by 

breaking down a large electromagnetic device into smaller elements and applying intricate mathematical 

equations[60]. 

Model predictive control is a motor drive control method that is becoming more and more popular 

because of its ease of use and excellent results. Recently, fault detection has made use of cost functions and 

MPC. Based on the control objective, MPC for PMSM motor drives can be split into two categories: model 

predictive torque control (MPTC) and model predictive current control (MPCC). MPCC takes precedence over 

MPTC because it requires less computational work and has a cost function that is simpler and more effective 

than MPTC[61]. Open-phase fault (OPF) in a PMSM motor drive with MPCC is identified in [62] using a cost 

function. Fault detection is carried out by the DC component and second harmonic component in the cost 

function intended for the current to track the references; the fault phase is located by using the phase angle 

difference of the stator current. This is a straightforward method whose performance is independent of 

parameter variations and operating conditions. 

3.2 Signal-Based FDD Methods 

A precise system model is not required for signal-based techniques, in contrast to model-based strategies. 

Consequently, signal-based FDD techniques perform better in complex systems with imprecise models and 

uncertainty in the parameters. These techniques work on the basis of extracting fault features, such as vibration, 

torque, current, voltage, and magnetic flux density[63], [64], from the motor output signals. Variations in output 

signals from the expected values under healthy conditions can be attributed to various types of faults. Based on 

the fault symptoms, one or more signals can be selected as fault indicators. After the fault features have been 

extracted from the measured values using signal feature extraction techniques, the fault occurrence and type can 

be determined by comparing the extracted features to a reference or threshold. The overall workflow for signal-

based methods is summarized in Figure 10. 
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Figure 10: General signal-based FDD methods workflow[38]. 

Current signal-based fault detection is popular because current is cheap and easy to measure and 

available for motor drive control. MCSA-based diagnosis, dq-frame current analysis, negative- and zero-

sequence current, and Park's vector approach are some methods. Phase current-based methods are easy to 

implement and require no extra hardware, but they have a slow detection rate (at least one fundamental period). 

In [65], MSCA-based partial demagnetization fault detection was proposed. The additional even harmonics in 

the stator current caused by partial demagnetization were used as fault indicators. In a dual inverter five-phase 

PMSM motor drive, the ZSC is analyzed for open-switch fault detection [66]. ZSC is zero when healthy, but it 

deviates from zero during open-switch faults and indicates fault. The open-switch fault indicator in[67]  is the 

ratio of phase current positive sequence to negative sequence analyzed using Fourier series. Setting this fault 

indicator's threshold detects various open-switch faults. The DC current component shows the fault location. 

[68] proposes a simple normalized average current method for open circuit and current sensor fault detection 

and identification. This paper proposes a faster FDD fault detection method than current-based methods. In [69], 

the mean value of the secondary subspace harmonic and current magnitude were used to detect open-phase 

faults. This method is unaffected by motor parameters and operating conditions. Detecting the fault takes less 

than half the fundamental period. 

Voltage signal-based methods directly measure motor phase, line, and other voltages and detect faults 

by comparing them to reference voltages. FDDs are fast, reliable, and less prone to false alarms, but the voltage 

sensor adds cost and complexity. Common voltage base methods include symmetrical component analysis (zero 

and negative sequence) and dq-frame voltage analysis. Two-line voltages are analyzed and features extracted to 

detect one or two PMSM motor drive inverter open-switch faults[70]. It requires extra voltage sensors, but FDD 

is cheaper and simpler with fewer sensors. The detection time is 1/20 of the fundamental period, and it is fast. 

The fault indicator in [71] is the change in the d and q axis voltage angle due to demagnetization and the ITSF 

effect on magnetic flux. The demagnetization fault increases this angle, while the ITFS decreases it. Also, this 

paper analyzes dq-voltage to detect eccentricity faults. The zero-sequence voltage component (ZSVC) is used to 

detect and identify incipient ITSF in[72]. A high-frequency signal is injected to identify the type of fault 

detected by the ZSVC. The system costs more because the circuit to reach the neural point for symmetrical 

component analysis is needed. 

The vibration signal spectrum from vibration sensors is analyzed to find fault symptoms. Most useful 

for mechanical fault detection. FDD cost and complexity increase when vibration sensors are mounted on the 

stator's exterior. External vibrations and environmental disturbances can also affect FDD performance and 

efficiency. Besides mechanical faults, demagnetization faults can be detected by analyzing electromagnetic 

vibration signals. Air gap demagnetization can cause low-frequency vibrations proportional to the motor's 

physical properties. This feature is the fault indicator extracted from the vibration signal by FFT in[73]. The 

demagnetization fault is found by comparing this index to Chebyshev's inequality thresholds. An orthogonal 

DWT was applied to vibration signals to obtain energy signals for rolling bearing fault detection, which is fast 

and accurate for early-stage faults[74]. 

Search coils are reliable for detecting motor faults, especially ITSF, demagnetization, and air–gap 

eccentricity. This method analyzes faults' electromagnetic signatures. Search coils wrapped around stator teeth 

are measured and analyzed for induced voltage to find the fault[75]. Faults are detected by adding harmonics to 

the air–gap magnetic field[76]. This method is reliable, but special installation during manufacturing increases 

FDD complexity and cost. A new ITSF detection structure using search coils is proposed in[77]. The cost is 

significantly reduced by reducing the number of search coils to twice the phases. ITSF is identified by analyzing 

the negative sequence of search coil voltages' second harmonic. This FDD method is transformed into a DC 

frame to improve its performance and allow stationary and non-stationary operations. Another flux variation-

based eccentricity and demagnetization fault detection method is the hall-effect field sensor[28]. 
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3.3 Data-Driven FDD Methods for Electric Motor Drive 

                  Previous performance and features have made data-driven FDD methods popular in recent years. It 

trains the system to detect and classify faults using a lot of historical data in healthy and faulty conditions. 

Complex and ill-defined systems benefit from data-driven methods because they don't require mathematical 

model knowledge. They use historical data to evaluate the system or represent human expertise in rules as 

expert systems to analyze, learn, and solve complex problems. The model and trained system can extract hidden 

signal features and detect fault type and severity in early stages using historical data. The robustness and 

generalization ability of data-driven methods in different system operating conditions is due to their 

independence from system model, signal, and load [78]. This technique is statistical and AI-based. It uses 

probabilities, while the other uses classification[79]. Since artificial intelligence (AI) is the main component of 

data-driven methods, they are gaining popularity due to the rapid progress in AI and machine learning tools and 

the increasing complexity of systems. Three main machine learning methods are supervised, unsupervised, and 

semi-supervised[80]. To find the correlation between input and output, supervised learning requires labelled 

data for training and learning. In unsupervised learning algorithms, common data features are used to learn and 

classify large amounts of unlabeled data. The semi-supervised algorithm combines the two older algorithms. 

The system is trained to label unlabeled data using labelled data. For learning, all labelled data are used. Some 

data-driven and machine-learning methods for fault detection and diagnosis include artificial neural networks 

(ANN), fuzzy logic (FL), support vector machine (SVM), deep learning (DL), and others. Regardless of method, 

most data-driven FDDs follow these steps in Figure 11. 

 

Figure 11: Data-driven FDD workflow[38]. 

3.4 EVs’ Battery Fault Detection 

As mentioned, EV safety and reliability are key factors in transportation electrification. One major 

part, the EV battery, can have many limitations. It always has faults, some of which can be fatal. Battery fault 

detection and diagnosis are as important as EV motor drive fault detection to solve these issues. Many types of 

research have been done in this field recently. Battery fault FDD methods are model-based, signal processing, 

and data-driven, following the same principles as electric motor drive FDD methods. Standard battery fault 

detection parameters are voltage, current, and temperature. Several FDD methods for battery faults are briefly 

introduced and reviewed in this section. 

3.4.1 Model-Based FDD Methods for Battery Faults 

Model-driven energy The foundation of FDD techniques is the generation of residuals using battery 

models, filters, and observers. An electrochemical, electrical, thermal, or a combination of these models can be 

used to model a battery[81]. Structural analysis, parity space equation, parameter estimation, and state 

estimation are the primary model-based FDD techniques for battery fault detection. The following is a brief 

introduction to some suggested model-based techniques. 



Fault Diagnosis of the Electric Motor Drive and Battery System for Electric Vehicles 

DOI: 10.35629/5941-10120116                                  www.questjournals.org                                           12 | Page 

The Leunberger observer and the battery's thermal model were used to find thermal flaws[82]. In [83], 

a method based on partial differential equations (PDEs) was presented for the detection of thermal failures in 

lithium-ion batteries. In order to make the fault detection robust to uncertainties, two PDE observers were used 

for both estimation and fault diagnostic.When it comes to fault detection, voltage signals are typically more 

precise and effective than temperature readings. 

3.4.2 Signal-Based FDD Methods for Battery Faults 

With this kind of FDD, signals are obtained straight from the sensors, processed, and examined to 

identify the flaws, typically by means of a threshold comparison. WT and FFT are the most often utilized signal-

processing methods for examining the frequencies at which electrochemical reactions occur[84]. 

In [85], sample entropy analysis and the EMD of the voltage signal are used to identify different 

battery faults. Because sample entropy can identify unexpected voltage drops, this method can identify various 

fault types. This technique has a high accuracy because it makes use of EMD's noise cancellation. 

Gas and force sensors were employed in [86]to identify the internal short-circuit problem. This 

technique is predicated on the detection of gas generated by chemical reactions resulting from internal short 

circuits and cell swelling. On the other hand, adding more sensors makes the system more expensive and 

complex. 

3.4.3Data-Driven FDD Methods for Battery Faults 

In the case of battery fault detection, data-driven methods and machine learning-based FDDs are 

growing rapidly recently due to the same limitations of the model-based and signal-based methods, such as the 

inaccurate model and very nonlinear characteristic of the lithium-ion batteries, to reach higher accuracies and 

reliabilities. In the event of battery malfunctions, there is a significant gap in FDD techniques based on machine-

learning tools. 

Here are a few of the most recent data-driven techniques. 

A general regression neural network (NN)-based approach for battery voltage fault detection was 

presented in[87]. The voltage was denoised using DWT, and the GRNN was trained using a number of 

parameters to achieve the maximum accuracy of more than 99%. This plan is able to identify, locate, and gauge 

the degree of the fault. Battery voltage faults were detected and their severity was estimated using SVM in[88]. 

Initially, the voltage data are denoised in order to improve precision and dependability. Afterwards, a modified 

covariance matrix—which was optimized via the grid search technique—was added as the SVM's condition 

indicator in an effort to shorten the detection time. 

The long short-term memory CNN (LSTM-CNN) model and aberrant heat generation are the 

foundations for the battery thermal runaway detection proposed in[89]. In order to predict the temperature, 

LSTM-CNN is trained using actual EV data, and PCA is utilized to enhance the input feature. This approach is 

precise and capable of anticipating the thermal runaway fault. 

An online hybrid FDD method based on the combination of LSTM-RNN and the equivalent circuit 

model (ECM) was proposed [90] in an effort to improve the accuracy and efficiency of FDD. The prejudgment 

module is used to lower the computational cost of the model, which is trained using real-world data. 

There is a deficiency of thorough fault detection techniques, so some FDD schemes have been 

suggested. A battery pack was injected with various battery faults, such as voltage, discharge current, and 

temperature, in [152]. The data gathered from this process was used to train an enhanced radial basis function 

neural network (RBF-NN) to identify the faults. The suggested approach might achieve 100% accuracy in fault 

detection. In [91], a different multi-fault detection technique based on multi-classification SVM (MC-SVM) was 

presented. Undervoltage, overvoltage, overheating, and low-capacity faults were identified with this technique 
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by employing MC-SVM, which achieved extremely high accuracy even with limited training data. The cost of 

producing inaccurate data is decreased by training using a small data set. 

IV. CONCLUSION 
EVs are the way of the future for transportation because of the increased focus in recent years on the 

necessity of electrifying transportation. In this sense, EV safety and dependability are crucial if EVs are to 

capture the largest possible market share. Two of an EV's primary components are the energy storage system 

and the electric motor drive. Lithium-ion batteries serve as the primary energy storage system in electric 

vehicles (EVs), and PMSM motor drives are becoming the preferred option for the power train due to their 

exceptional features. However, fault occurrence is unavoidable given the working environment and nature of 

EVs. As a result, fault diagnosis and detection have become essential tasks. A lot of research has been done in 

this area, but there is still room for improvement and filling in the gaps. The goal of this review paper is to 

provide an overview of various fault types that can occur in the PMSM motor drive and battery pack of electric 

vehicles (EVs), as well as FDD methods and recent developments in this field. This information will be useful 

for future research aimed at achieving fully safe and reliable electric transportation. 

The motor side and inverter side faults are the two main areas of focus for the PMSM motor drive's 

FDD. As a result, this paper thoroughly examines several FDD techniques, such as model-based, signal-based, 

and data-driven approaches. The use of different machine-learning tools for PMSM motor drive fault detection 

has gained attention due to the complexity of the models involved, parameter uncertainties, and other limitations 

of model-based and signal-based methods, as well as the rapid advancement in machine-learning tools and their 

superior features. Up until now, numerous works utilizing deep learning tools—particularly CNN—have been 

presented, and notable advancements have been demonstrated. 

The majority of FDD techniques that have been proposed thus far for battery fault detection are 

model-based in nature, with a particular emphasis on KF. But given the unknowns surrounding lithium-ion 

batteries and their nonlinear behavior, data-driven approaches may represent the way forward for battery FDD 

techniques. In the case of battery state estimation, numerous data-driven techniques, such as machine learning 

tools, have been applied thus far. However, only a few techniques based on neural networks, SVM, and deep 

learning are studied for fault detection. 

The two main traditional approaches for EV fault detection are model-based and signal-based. The 

robustness and precision of the FDD are diminished due to the non-accuracy of the motor and battery models, 

particularly over time. Furthermore, signal-based techniques are slow and inappropriate for early fault detection 

due to measurement noise. Nonetheless, newer approaches—particularly the data-driven techniques discussed in 

this work—have the potential to overcome certain drawbacks and shape fault detection going forward. The 

methods presented have made significant progress in detecting early faults, handling uncertainty in parameters, 

taking lifespan into account, improving fault detection speed and accuracy, allowing for generalization, and 

detecting faults in non-stationary conditions. 
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