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I. INTRODUCTION  

Meyer-Konig introduces so called S
method of summability which is one of the family of transformation 

including the Euler, Borel and Taylor (circle method) methods. Later Jakimovski introduced  d n
F ,   

transformation which methods the Euler method (E,q) Karmata method  K


 and Lotosky method as 

particular cases. 

 For the first time Meir and Sharma introduced generalization of the S
method and called it   n

S,  method. 

They obtained sufficient condition for the regularity of this method. They also examined the behaviour of its 

Lebesgue constant. 

Let a j
 be a given sequence of real complex numbers. We shall say that a j

 f is the  an
S,  

transformations of S j
; i.e. the sequence of partial sums of the series an

 if  
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The sequence S j
 is said to be  an

S,  summable to  if 

 


Lim
n

 

Let f(x)  L (0, 2) and be periodic with period 2 outside this range. Let the Fourier series associated with the 

function be 
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and as usual we denote 
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and  
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 Meir and Sharma
5

 while studying constant established that when V n
andT n

are bounded the  an
S,  

method sums only convergent Fourier series and so here after we assume T n
 and V n

with n. 

A function fLip if 
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A function fLip ((t), p) class for p1 if  
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Where (t) is positive increasing function and fLip ((t), p) if  
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We observe that 

Lip Lip (, p)  Lip ((t), p), for 01, p1 

To prove the theorem we need following auxiliary result: 

Lemma 1: The following estimates hold: 

If  
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exp   for t to be very small. 
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These are due to Meir and Sharma 

Lemma 2: If h(x, t) is a function of two variables defined for t, then  

   pdttxhpdttxh   ,, ; (p1) 

This is due to Hardy, Littlewood and Poly
3

. 

The series  𝐴𝑘
∞
𝑘=0 is said to be  𝐶, 1 summable to s if  

 𝐶, 1 =
1

𝑛 + 1
 𝑠𝑘 → 𝑠 𝑎𝑠 𝑛 → ∞

𝑛

𝑘=0

 

Then  𝐶, 1  transform of the   n
S,  transform defines to  𝐶, 1  𝑆, 𝛼𝑛  transform of sn    of the series  𝐴𝑘

∞
𝑘=0                   

 Thus if  𝐶𝑆 𝑛
𝛼 =

1

𝑛+1
 𝑆𝑛

𝛼𝑛
𝑘=0 → 𝑠 𝑎𝑠 𝑠 → ∞ 

Where 𝑆𝑛
𝛼  denotes  𝑆, 𝛼𝑛 , then the series  𝐴𝑘

∞
𝑘=0  is said to be summable to  𝐶, 1  𝑆, 𝛼𝑛 means. 

In the present chapter we have extended the above result to obtained the degree of approximation in the Lipschiz 

class by
  𝐶, 1  𝑆, 𝛼𝑛 . The theorem is as follows: 

Theorem- If 𝑓: 𝑅 → 𝑅 is 2𝜋periodic, Lebesgue integrable on  – 𝜋, 𝜋  and belonging to Lipschiz class then the 

degree of approximation of f by the  𝐶, 1  𝑆, 𝛼𝑛  product means of Fourier series satisfies for n=0,1,2,…  

  𝐶𝑆 𝑛
𝛼 − 𝑓 𝑥  = 𝑜 1   

Proof of theorem : The  nas,  transform of partial sums of Fourier series is given by 
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Therefore  𝐶, 1  𝑆, 𝛼𝑛  means of the series are  

                                  𝐶𝑆 𝑛
𝛼 =

1

𝑛+1
 𝑆𝑛
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 𝐶𝑆 𝑛
𝛼 − 𝑓 𝑥 =

1

𝑛 + 1
𝑜 𝑛 + 1  

  𝐶𝑆 𝑛
𝛼 − 𝑓 𝑥  = 0 1  

This completes the theorem. 

 

II. CONCLUSION 

If 𝑓: 𝑅 → 𝑅 is 2𝜋periodic, Lebesgue integrable on  – 𝜋, 𝜋  and belonging to Lipschiz class then the degree of 

approximation of f by the  𝐶, 1  𝑆, 𝛼𝑛  product means of Fourier series satisfies for n=0,1,2,…  

  𝐶𝑆 𝑛
𝛼 − 𝑓 𝑥  = 𝑜 1   
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