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I. INTRODUCTION 
In the last two decades, the existence of positive periodic solutions for different types of functional 

differential equations with delays and feedback controls have been studied extensively; see, for example [1-5]. 
On the other hand, discrete dynamic equations also played an important role in applications, for example, in the 
nature world, the discrete time models governed by difference equations are more appropriate than the 
continuous ones when the populations have nonoverlapping generations. Owing to its theoretical and practical 
significance, the existence of positive periodic solutions for difference equations received much attention; see, 
for example, [6-9]. However, the existence of positive periodic solutions for some special types of difference 
equations need to be explored further. 

Motivated by the above works, in this paper, we use the Krasnoselskii’s fixed point theorem in cones to 
study the existence of positive periodic solutions for a class of discrete differential equations with delays and 
feedback controls 
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where   

(H1) ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ) :i i ii ij i ij i i jr n h n a n a n n b n e n f n g n N Ra ® , , 1, 2, , ;i j m i j= ¹L are all 

positive andw -periodic functions, and 0 ( ) 1ie n£ < , 0 ( ) 1ih n£ < . 

(H2) ( ) : , ( ) : ,j jn N N n N Nb h® ®  are all positive andw -periodic functions , 0 ( ) 1j nb w£ £ - , 

0 ( ) 1,j n n Nh w£ £ - Î . 

(H3) ( ) : [0, ),ijK k Iw ® ¥ {0,1, , 1}Iw w= -L , and 
1 1

0 0

( ) 1, ( ) 0ij i
k k

K k r n
w w- -

= =

= >å å , , 1, 2, ,i j m= L , 

i j¹ . 
For convenience, we first introduce the related definition and the fixed point theorem applied in the paper. 
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Definition 1.1 Let X  be a Banach space and K  be a closed nonempty sunset of X , K  is a cone if   
(1) u v Ka b+ Î  for all ,u v KÎ and all , 0a b ³ ; 

(2) ,u u K- Î imply 0u = . 

Theorem 1.1 (Leggett-Williams [10]) Let K  be a cone of the real Banach space X , and : c cA K K®  be a 

completely continuous operator, and suppose that there exist a concave positive functional a  with 

( )x xa £ ( )x KÎ  and numbers , ,a b d  with 0 d a b c< < < <  following conditions: 

(1) { ( , , ) : ( ) }x K a b x aa a fÎ > ¹ and ( )Ax aa > if ( , , )x K a baÎ ; 

(2) Ax d< if dx KÎ ; 

(3) ( )Ax aa > for all ( , , )x K a baÎ with Ax b> . 

Then A  has at least three fixed points in cx KÎ . 

In this paper, we always assume that  
(H4) For any ,n NÎ  1, 2, , ,i m= L  
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II. SOME PREPARATION 

Let w  be a positive constant. We define two sets  

{ : ( , ), ( ) ( ), }mX x C R R x t x t t Rw= + = Î  
endow with the usual linear structure as well as the norm  
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Obviously, X  is a Banach space and K  is a cone. 
Lemma 2.1. Each T -periodic solution of second equation of (1.1) is equivalent to that of the following 
equation  
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Proof. Let 
1,

( ) ( ) ( ) ( ) ( ( ))
m

i i i j i j
j j i

H n f n y n g n y n nh
= ¹

= + -å , so the second equation of (1.1) is equivalent 

to that of the following equation  

( )( 1) 1 ( ) ( ) ( )i i i iu n e n u n H n+ - - = , 



Positive periodic solutions for a class of discrete dynamic equations with delays .. 

*Corresponding Author: Lili Wang                                                      13 | Page 

then we have  
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sum the left and right of above formulates, we obtain that  
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This completes the proof.  
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So we proceed from (2.3) and obtain 
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III. MAIN RESULTS 
Notice solving (2.3) is equivalent to solving  
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where iF  is defined as (2.1). 

Lemma 3.1. :T K K® is well-defined. 
Proof.  For each x XÎ , in view of (2.4), we obtain  
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Therefore, Tx KÎ , this completes the proof. 
   Similar to the proof in [8], we can obtain the following lemma. 
Lemma 3.2. :T K K®  is completely continuous. 
For convenience, we introduce the following notations: 
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where 1( , ( ), , ( ))i mF n x n x nL  is defined in (2.3). 

Theorem 3.1. Suppose that (H1)-(H4) hold, and there exist a number 0b >  such that the following 
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hold. Then (1.1) has at least three positive w -periodic solutions.  
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Proof: By the condition 
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Hence condition (1) of Theorem 1.1 holds. 

Secondly, by the condition 0 1
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that is, condition (2) of Theorem 1.1 holds.  
Finally, if ( , , )x K a caÎ  with Tx b>P P , by the definition of the cone K , we have 
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( ) ,Tx Tx b aa s s³ > =P P  
which implies that condition (3) of Theorem 1.1 holds. 
To sum up, all conditions in Theorem 1.1 hold. By Theorem 1.1, the operator T  has at least three fixed point 

in cK . Therefore, (2.3) has at least three positive w -periodic solutions, and 

1 2 3, { ( , , ), ( ) }, ( ( , , ) ).d c dx K x x K a c x a x K K a c Ka a a aÎ Î Î > Î È•  

Then (1.1) has at least three positive w -periodic solutions. This completes the proof. 
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