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ABSTRACT:

In this paper, by using Leggett-Williams fixed point theorem in cones, sufficient conditions for the existence of at
least three positive periodic solutions for a class of discrete dynamic equations with delays and feedback
controls are obtained.
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I. INTRODUCTION

In the last two decades, the existence of positive periodic solutions for different types of functional
differential equations with delays and feedback controls have been studied extensively; see, for example [1-5].
On the other hand, discrete dynamic equations also played an important role in applications, for example, in the
nature world, the discrete time models governed by difference equations are more appropriate than the
continuous ones when the populations have nonoverlapping generations. Owing to its theoretical and practical
significance, the existence of positive periodic solutions for difference equations received much attention; see,
for example, [6-9]. However, the existence of positive periodic solutions for some special types of difference
equations need to be explored further.

Motivated by the above works, in this paper, we use the Krasnoselskii’s fixed point theorem in cones to
study the existence of positive periodic solutions for a class of discrete differential equations with delays and
feedback controls

y(n+2) =(y,(n)*” exp{r.(n)—a,(n)y(n)

=3 8, m K Wy, (- - mu - Y bi,-(n)ui(n—ﬂ,-(n))},
joTj#i k=0 joLj#i (L.1)
U; (n+1)—u; (n) =—e (nu; (n) + f.(n)y,(n)

+ > g,(n)y,(n-n,(n),i=L2,---,mneN,

j=Lj#i

where

(H1) r,(n),hi(n),a;(n),a;(n),a;(n),b;(n),e(n), f,(n),g;(N):N —>R,i, j=12,---,m;i = jare all
positive and @ -periodic functions, and 0<e (n)<1,0<h (n) <1.

(H2) B;(n):N —N,n;(n):N — N, are all positive and @ -periodic functions ,0< ;(n) <w -1,
0<n;(N<w-LneN.

w-1 w-1

(H3) K;(K):l, >[0,00), I,={01-,0-1}, and D K;(k)=1D_r(n)>0, i,j=12,--,m,
k=0 k=0

1#].

For convenience, we first introduce the related definition and the fixed point theorem applied in the paper.
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Definition 1.1 Let X be a Banach space and K be a closed nonempty sunset of X , K isa cone if

(1) au+pveK forall u,veKandal «,f2=0;

(2 u,—ueKimply u=0.

Theorem 1.1 (Leggett-Williams [10]) Let K be a cone of the real Banach space X , and A:K, - K, bea
completely continuous operator, and suppose that there exist a concave positive functional ¢ with
a(x) < ||X|| (x e K) and numbers a,b,d with 0<d <a<b<c following conditions:

1) {xeK(a,a,b):a(x)>a}#¢pand a(AX)>aif xe K(a,a,b);
@ |Ax|<dif xeKy;
(3) a(Ax)>aforall xeK(a,ab)with |Ax|>b.

Then A has at least three fixed pointsin X € K .
In this paper, we always assume that
(H4) Forany ne N, 1=12,---,m,

1) -8, el (]~ Y. a3 K,K)explx (1K)

o (N)(@; exp[x1)(N) — D by (N)(@; exp[x )(n - B; () > 0.

JL

Il. SOME PREPARATION
Let @ be apositive constant. We define two sets
X ={x:C(R,R"),x(t+ w) = x(t),t e R}

endow with the usual linear structure as well as the norm
m

” X ”: Z|Xi (t)|0 1|Xi|0 = ter[roli)_(1]|xi (t)|:
i-1 '
and
K={xeX,x®)>0x|,,te[0,o],x=(%,%,x,)'}.
Obviously, X isa Banachspaceand K isa cone.

Lemma 2.1. Each T -periodic solution of second equation of (1.1) is equivalent to that of the following
equation

x(m=3 Gi<n,l)(n(n)—an<n)exp[xi<n)]— 3 a, (MK, (K)explx, (1-K)]

~a, (0@, expx (M)~ Y] b, (@, exp[x](n- 4, (n))j, @
i=12,---,m,
TIh®
where G(n,1)=———i=12-.-. m;n<lI<n+w-1,y,(n)=exp[x (n)], and @ is defined
1_Hhi(k)

in (2.2).

Proof. Let H,(n)= f.(n)y,(n)+ Z g;(n)y;(n—n;(n)), so the second equation of (1.1) is equivalent
j=L, j=i
to that of the following equation

0, (n+1)—(1-e,(n)u, () = H,(n),
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then we have

u(n+o)-(1-g(h+o-1))u(h+o-1)=H Nh+0-1),
(I-e(n+o-D)u(n+o-1)-(1-e(h+o-1))u(h+w-2)=(1-¢(n+w-1))H,(n+0-2),

(I-e(n+o-1))(1-g(h+w-2))-(1-g(n+D))u(n+)-(1-g(h+w-1))(1-&(N+w®-2))
- (1-g(M)u;(nN)=(1-e(n+w-1))(1-g(N+w-2))---(1-e(n+1)) H,(n),
sum the left and right of above formulates, we obtain that
u(n+w)-(1-g(n+o-1))(1-e(+w-2))---(1-e(n))u,(n)
=H (n+o-D+(1-e¢(n+o-1))H (n+0-2)++(1-e(h+w-1))(1-g(h+w-2))

n+o-1n+o-1

~(L-g(n+))H ()= > [T @-e&k)H; D),

I=n  k=I+1

because of U, (N+ @) =u.(n), so we have

(1‘nﬁ (1—ei(k))]ui(n) = Zw: H (1-e (K)H, (1),

where 1—nﬁ1(l—ei(k))¢0,and e.(n) isa @ -periodic function, so
MZW ”ﬁ (L-e)H O .,
Uy (n) = e = > G (DH,()
(1— I (1—ei(k))j =
-3 Gi(n,l)(fi(l)yi(m_ig,—(l)yi(l—n,-(l))j,
R 0
and G;(n,l) ==L =12 mn<l<n+o-1.

1-T]@-e k)
k=0
This completes the proof.
Itis clear that G;(n,1)=G,(n+w,l+®) and u,(t+T)=u,(t), when X isa @ -periodic function. We
denote
n+w+1 m ~ R
TOED [fi(l)yi M+ 9,0y 0-n,0) BN =@y)m, i=12--m. @2
I=n jo1, j#i
Set y;(n) =exp[x;(n)], then the first M equations is equivalent to that of the following equations

% (1+2)~h ()% (M) = 1 (M) ~a, Mexply M]- Y. 3, (MY K, (K)explx, (1 -K)]
— ()@, expx DM~ Y. b, ()(®, exp[x (- 5, () 23)

j=L =i
=F(n,x(n),---,x,(n),1=12,---,m,
So we proceed from (2.3) and obtain
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K=Y 6 I)[n (1) -, Mexplx (- > 3,3 K, (Kexplx, (1K

[

—a;()(®; exp[x])(n) - Zm: by (N)(®; exp[x 1)(n - ; (n))}

j=1, j=i
i1=12,---,m.
n+o-1
[ h)
where G;(n, 1) =———i=12,--- min<I<n+w-1, and @ isdefinedin (2.2).
1_Hhi(k)
k=0

By (H1), we know that the denominator in G, (n, I) is not zero for n € [0, —1]. Note that due to (H1), we
have
O0<N, =G, (nn)<G(nN<G(Nn+w-1)=G0,0-1) =M
forall 1 e[n,n+w-1],and
G (n,1) S G/(n,n) N

> > =—L>0, i=12,-,m.
G(nn+w-1) G(n+w-1) M

i=12,--,m,

cr:min{Ni , i:1,2,---,m},
Mi

M

1<i<m i

Let

and we denotes

N =min N;,M =max

1<i<m

I1. MAIN RESULTS
Notice solving (2.3) is equivalent to solving

X =TX,
where T : K — K is define by,
(M)(n) = ((TX)(n), () (), -+, (T, X) (M),

and

Tx)m="3 60 I)(n(l) ~a,explx (01— 3 3,003 K, (explx, (1K)

j=1, j=i k=0

—a; (1)(®; expx ))(1) - i by (D(D; explx (I - B; (D)J,

j=Lj#i
i=12---,m,
where @, is defined as (2.1).

Lemma3.l. T:K — K iswell-defined.
Proof. Foreach X e X ,inview of (2.4), we obtain

Tx)n+e)= 3. Gn+o, I)[ri(l)—an(l)exp[xi O1- Y 8,03 K, Kyexplx, (1))

I=n+w j=1, j=i

—o; (1)(®; exp[x ])(I) - i by (N(®; expx; 1)(1 - B; (D)j

j=Lj=i
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_ nfei(n+a>,v+w)£ri(v+a))—a"(vm)exp[xi(v+a))]— i a, v+ 0)S K, (K)explx, (v+ w—K)]
0, (), XD+ @)~ D by (v+ @)@, expIX IV + 0 B (v+ a)))J
=% (n,v)(ri ()-8, MepIX W]~ 3 303 K, ()explx, (-]
)@, 0V - D b, ()@, expIx D5, (v))]
=(T.x)(n),i=12,---,m,
So Txe X ,foreach X e K, we find
X, <3 M [n(l)—a"(l)exp[xi(l)]— 3 8,003 K, (0emlx, (1 k)]

—o; (1)(®; expDx; (1) - i 0 (1)(D; explx (1 - 5; (l))],
i=12,-,m,
and

m w-1
j=L,j#i

(Tx)(n) = Z N (ﬁ (1) -a; (Nexplx (D= 2 a (DZ K;; (k) exp[x; (1 - k)]

—a; (1)(®; exp[x ])(1) - Zm: by (N(@; explx 1)(I - B, (U)J

[

% ”’_1 M [ri () —a, (1) exp[x (1)]- Zm: K (|)wz_i K (k) explx; (1= k)]

—a; (1)(@; expx 1)(1) - i by ((D; exp[x (I - B; (D)j

[

>o[Tx],.i=12,-,m.

Therefore, TX € K, this completes the proof.

Similar to the proof in [8], we can obtain the following lemma.

Lemma3.2. T:K — K iscompletely continuous.
For convenience, we introduce the following notations:

Fis ::Iimsup sup Fi(nixi(n)!""xm(n))
IXI->9 ne[0,0-1] Il x1|
where F(n, X (n), -+, X, (n)) is defined in (2.3).

Theorem 3.1. Suppose that (H1)-(H4) hold, and there exist a number b >0 such that the following
conditions:

1 .
mM,@

1 m m
xn)| f b<)» Ix(n)|<b,neN;
N 25O for ob <D fx )|<bine

() F'< L , F7<
mM, @

i R, x(n),-- x,(n) >

hold. Then (1.1) has at least three positive @ -periodic solutions.
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Proof: By the condition F” < of (i), one can find that for
m

Q0
©
i

O<e<

mM, @
there existsa C, > b such that

Fi(n,x,(n),---, %, (M) < (R™ +&) [ 1,
where || X||>¢,.

C
Let ¢, =—2,if xeK, || x|[>c,, then || X|[>c,,and we have
c

w-1

T, <2 Gi(0,0=D)F (N, x,(n), -+, %, (N) < Mo (F” + &) || X |I<%|I X1,

then
[Tl X1, (31)

Take kcl ={x|x e K,|| x||£c}, then the set kCl is a bounded set. According to that T is completely
continuous, then T maps bounded sets into bounded sets and there exists a number C, such that

IITX|I<cC,, VX e kcl.

If ¢, <cC,, we deduce that T :kcl - kCl is completely continuous. If C, <C,, then from (3.1), we know
that for any Xxek, \k  and [[TX][|<[[X][<C, hold. Thus we have T:k,  —Kk_ is completely
continuous. Now, take C=max{c,,C,},then ¢>b,so T :k, — kK, iscompletely continuous.

Denote the positive continuous concave functional a(X) as «a(X)= ig]f 1]|Xi(n)|. Firstly, let
Nors

i el
a+b L
a=ob and take XET,XE K(a,a,b),a(x)>a, then the set {x e K(a,a,b)}= . By (i), if
x e K(a,a,b), then a(Xx)>a, and we have
L 1
a(Tx) = ;negg);j_” | T | >mNo—

Hence condition (1) of Theorem 1.1 holds.

a(x) =a.

1
Secondly, by the condition F° < of (i), one can find that for
m

0

0
i

O<ex<

mMia)_
there existsa d (0 <d <a) such that
R (0% (M), X, (M) < (F + &) 1 X,
where 0<|| x||<d.
If xe K, ={xX|l| x||<d}, we have

-1

[Tixi|, < ZGi 0.0-DF (n,x(n), %, (n) <M (F° +&)|| x IIS%II X1,

then

I Tx|I<d, 3.2)
that is, condition (2) of Theorem 1.1 holds.

Finally, if X € K(a,a,¢) with || TX|[> b, by the definition of the cone K, we have
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a(TX)>o || TX|>ob=a,
which implies that condition (3) of Theorem 1.1 holds.
To sum up, all conditions in Theorem 1.1 hold. By Theorem 1.1, the operator T has at least three fixed point

in IZC . Therefore, (2.3) has at least three positive @ -periodic solutions, and

x € K,, x, e{xeK(a,a,c),a(x)>a}, x, € K\ a(K(a,a,c)UK,).
Then (1.1) has at least three positive @ -periodic solutions. This completes the proof.
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