Quest Journals Journal of Research in Applied Mathematics Volume 6 ~ Issue 5 (2020) pp: 42-51 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Quarter Symmetric Non-metric Connection on Lorentzian *α-***Sasakian Manifolds**

Somashekhara P 1a, Praveena M M *b* and Venkatesha *c*

a Department of Mathematics, Govt First Grade College Kadur-577548, Chikkamagaluru, Karnataka, INDIA. b Department of Mathematics, Ramaiah Institute of Technology, Bengaluru-560054, Karnataka, INDIA.

c Department of Mathematics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, INDIA.

ABSTRACT: The object of the present paper is to study a quarter symmetric non-metric connection on a Lorentzian α-Sasakian manifold. We study the concircular curvature tensor, projective curvature tensor, and conformal curvature tensor on a Lorentzian -Sasakian manifold with respect to quarter symmetric non-metric connection and also we studied the Second-order parallel tensor with respect to the quartersymmetric non-metric connection.

2010 Mathematics Subject Classiftcation: 53C15, 53C25.

KEY WORDS: Lorentzian α *-Sasakian manifold, concircular curvature tensor, pro-**jective curvature tensor, conformal curvature tensor, Second-order parallel tensor.*

Received 08 December, 2020; Accepted 24 December, 2020 © The author(s) 2020. Published with open access at www.questjournals.org

I. I. I. INTRODUCTION
As a generalization of semisymmetric connection[6]. Golab introduced the notion of quarter sym-

metric linear connection, and is defined as follows: A linear connection $\tilde{\nabla}$ on a n-dimensional Riemannian manifold is said to be quarter symmetric connection [6], if its torsion tensor T satisfies

 $T(W, Y) = \nabla WY - \nabla YW - [W, Y]$ (1.1)

(1.2)
$$
T(W, Y) = \eta(Y)\varphi W - \eta(W)\varphi Y.
$$

In the above equation η stands for 1-form and φ is a (1, 1) tensor field. On the other hand, Hayden [7] introduced the notion of metric connection on a Riemannian manifold. A connection ∇ on a

Riemannian manifold is said to be metric connection if

 (1.3) $(\nabla_{W}g)(Y, Z) = 0$,

other wise it is non-metric.

for all W, Y, $Z \in T_pM$, where T(M) is the lie algebra of the vector field on M, then $\tilde{\nabla}$ is said to be a quarter symmetric metric connection. In particular if $\varphi W = W$, then the quarter symmetric metric connection reduces to a Semi-symmetric connection [5], otherwise it is said to be a quartersymmetric nonmetric connection..

Later Rastogi [11, 12] continued to the study of quarter symmetric metric connection on the same way in 1980, [8] studied the quarter symmetric metric connection on Riemannian, sasakian and Kaehlerian manifolds on the same way so many authors [1, 2, 9, 14, 17] studied various types of quarter symmetric metric connection and their properties.

Motivated by the above studies, in the present paper we study quarter symmetric non-metric connections on Lorentzian α -Sasakian manifold and is organized as follows: The followed section is preliminary in nature. In section 3, we exhibit a relation between Riemannian connection and quarter symmetric non-metric connection. Section 4 is devoted to the study of curvature tensor, Ricci tensor, scalar curvature and the first Binachi identity with respect to quarter symmetric non- metric connection. Sections 5 and 6 deal with the study of concircular, conformal and projective curvature tensors on a Lorentzian a-Sasakian manifold admitting quarter symmetric non-metric connection. Ultimately, in last section we study second-order symmetric parallel tensor with respect to quarter symmetric non-metric connection on a Lorentzian α -Sasakian manifold.

II. Preliminaries

An $n (= 2m + 1)$ -dimensional differentiable manifold M is said to be an Lorentzian α -Sasakian manifold, if it admits a (1, 1) tensor field φ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric g which satisfies

(2.2)
$$
g(\varphi W, \varphi Y) = g(W, Y) + \eta(W) \eta(Y), \nabla_W \xi = -\alpha \varphi W,
$$

$$
(2.3) \t\t (\nabla_W \varphi)(Y) = \alpha g(W, Y) \xi + \eta(Y) W,
$$

for any W, $Y \in T_pM$, and for a smooth function a on M, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. Further on a Lorentzian a-Sasakian manifold the following relations hold [19]:

Let(M, g) be an n-dimensional Riemannian manifold. Then the concircular curvature tensor C^* [18], the Weyl conformal curvature tensor C [16] and projective curvature tensor $P[3]$ are defined by

$$
(2.13)C^*(W, Y)Z = R(W, Y)Z - \frac{r}{n(n-1)} \{g(Y, Z)W - g(W, Z)Y\},
$$

\n
$$
(2.14) C(W, Y)Z = R(W, Y)Z - \frac{1}{n-2} \{S(Y, Z)W - S(W, Z)Y + g(Y, Z)QW - g(W, Z)QY\} + \frac{r}{(n-1)(n-2)} \{g(Y, Z)W - g(W, Z)Y\},
$$

\n
$$
(2.15) P(W, Y)Z = R(W, Y)Z - \frac{1}{n-1} \{S(Y, Z)W - S(W, Z)Y\}.
$$

Ш. Relation between the Riemannian connection and the quarter symmetric non-metric connection

Let $\tilde{\nabla}\;$ be a linear connection and ∇ be a Riemannian connection of a Lorentzian α -Sasakian manifold M is given by

$$
\nabla_W Y = \nabla_W Y + H(W, Y),
$$

where *H* is a tensor of type (1, 2). For $\tilde{\nabla}$ to be a quarter symmetric connection in *M*, we have [6]

(3.2)
$$
H(W, Y) = \frac{1}{2}[T(W, Y) + T^{1}(W, Y) + T^{1}(Y, W)],
$$

where

(3.3)
$$
g(T^1(W, Y)Z) = g(T(W, Y), Z) = g(T(Z, W), Y).
$$

From (1.2) and (3.3) , we get

$$
(3.4) \tT1(W, Y) = g(\varphi Y, W)\xi - \eta(W)\varphi Y.
$$

By using (1.2) and (3.4) in (3.2) , we obtain

$$
(3.5) \t\t H(W, Y) = -\eta(W)\varphi Y,
$$

thus a quarter symmetric connection ∇ in a Lorentzian a-Sasakian manifold is given by

$$
\nabla_W Y = \nabla_W Y - \eta(W)\varphi Y.
$$

By using (3.6) in (1.1) , we obtain

(3.7)
$$
T^{1}(W, Y) = \nabla_{W} Y - \nabla_{Y} W - [W, Y],
$$

$$
= \eta(Y)\varphi W - \eta(W)\varphi Y.
$$

The equation (3.7) shows that the connection $\tilde{\nabla}$ is a quarter symmetric linear connection [6], we have

$$
(3.8) \qquad (\tilde{\nabla} \psi g(Y,Z)) = \eta(Y) g(\varphi W,Z) - \eta(Z) g(Y,\varphi W).
$$

In view of (3.7) and (3.8), we conclude that $\bar{\nabla}$ is a quarter symmetric non-metric connection and (3.6) is the relation between the Riemannian connection and the quarter symmetric connection on a Lorentzian α -Sasakian manifold.

IV. Curvature tensor of a Lorentzian α -Sasakian manifold with respect to a quarter symmetric non-metric connection

The curvature tensor of a Lorentzian α -Sasakian manifold with respect to a quarter

symmetric

non-metric connection $\tilde{\nabla}$ is given by

(4.1)
$$
\widetilde{R}(W, Y)Z = \nabla_W \nabla_Y Z - \nabla_Y \nabla_W Z - \nabla_{[W,Y]} Z.
$$

Using (3.6) in (4.1) , we get

(4.2)
$$
\widetilde{R}(W, Y)Z = R(W, Y)Z - \eta(Y)(\nabla_W \varphi)Z + \eta(W)(\nabla_Y \varphi)Z
$$

$$
- (\nabla_W \eta)(Y) \varphi Z + (\nabla_Y \eta)(W) \varphi Z,
$$

and in view of (2.2) and (2.3) , we obtain

(4.3)
$$
\tilde{R}(W, Y)Z = R(W, Y)Z + \{g(Y, Z)\eta(W) - \eta(Y)g(W, Z)\}\xi + a \eta(Z)\{\eta(W)Y - \eta(Y)W\}.
$$

The equation (4.3) is the relation between the curvature tensor of M with respect to a quarter symmetric non-metric connection $\bar{\nabla}$ and the Riemannian connection ∇ . By using (4.3) and (2.2), we get

(4.4)
$$
\tilde{R}(W,\xi)Y = R(W,\xi)Y + a\{\eta(Y)\eta(W) + g(W,Y)\}\xi + \alpha \eta(Y)\{\eta(W)\xi + W\},
$$

(4.5)
$$
\widetilde{R}(W,\xi)Y = \alpha (\alpha + 1)\{\eta(Y)W - \eta(W)Y\}.
$$

Taking inner product of (4.3) with respect to U , we have

(4.6)
$$
\tilde{R}(W, Y, Z, U) = R(W, Y, Z, U) + \alpha \{g(Y, Z)\eta(W) - \eta(Y)g(W, Z)\}\eta(U) + \alpha \eta(Z)\{\eta(W)g(Y, U) - \eta(Y)g(W, U)\}.
$$

In view of (4.6) , we can state the following:

Proposition 4.1. A Lorentzian α -Sasakian manifold with respect to quarter symmetric non-metric connection is a quasi constant curvature if the manifold is of constant curvature with respect to the Levi-Civita connection.

Also from (4.6), we have

(4.7)
$$
\widetilde{R}(W, Y, Z, U) = -\widetilde{R}(Y, W, Z, U).
$$

But

(4.8)
$$
\widetilde{R}(W, Y, Z, U) \neq -\widetilde{R}(W, Y, Z, U).
$$

From (4.3) it is obvious that

(4.9)
$$
\widetilde{R}(W, Y)Z + \widetilde{R}(Y, Z)W + \widetilde{R}(Z, W)Y = 0.
$$

Hence the curvature tensor with respect to quarter symmetric non-metric connection satisfies first Bianchi identity.

Contracting (4.6) with U , W we get

 (4.10) $\widetilde{S}(Y, Z) = S(Y, Z) - \alpha g(Y, Z) - n \alpha \eta(Y) \eta(Z).$

Again contracting (4.10), yields

$$
\qquad \qquad (*) \qquad \qquad \gamma = r,
$$

where \tilde{S} and S , \tilde{r} and r are the Ricci tensor and Scalar curvature of the connections $\tilde{\nabla}$ and ∇ respectively.

Hence we can state the following:

Proposition 4.2. If M is a Lorentzian α -Sasakian manifold with respect to a quarter symmetric

non-metric connection $\tilde{\nabla}$, then

- (1) The curvature tensor \tilde{R} is given by (4.6)
- (2) The Ricci tensor \tilde{S} is given by (4.10)
- (3) The first Bianachi identity is given by (4.9)
- (4) $\tilde{r} = r$
- (5) The Ricci tensor \tilde{S} is symmetric
- (6) If M is Einstein or η -Einstein with respect to Riemannian connection, then M is η -Einstein with respect to quarter symmetric non-metric connection.

V. CONCIRCULAR AND CONFORMAL CURVATURE TENSOR ON A LORENTZIAN α -SASAKIAN MANIFOLD WITH RESPECT TO THE OUARTER SYMMETRIC **NON-METRIC CONNECTION**

We define the Concircular curvature tensor \tilde{C}^* and Conformal curvature tensor \tilde{C} on a Lorentzian α -Sasakian manifold with respect to a quarter symmetric non-metric connection $\bar{\nabla}$ by

(5.1)
$$
\tilde{C}^*(U, Y)Z = \tilde{R}(U, Y)Z - \frac{r}{n(n-1)} \{g(Y, Z)U - g(U, Z)Y\},
$$

(5.2) $\tilde{C}(U, Y)Z = \tilde{R}(U, Y)Z - \frac{1}{n} \{g(Y, Z)U - \tilde{S}(U, Z)Y + \tilde{S}(Y, Z)U - \tilde{S}(U, Z)Y\}$

5.2)
$$
\tilde{C}(U, Y)Z = \tilde{R}(U, Y)Z - \frac{1}{n-2} \{ \tilde{S}(Y, Z)U - \tilde{S}(U, Z)Y + \tilde{g}(Y, Z)QU - \tilde{g}(U, Z)QY \}
$$

+ $\frac{r}{(n-1)(n-2)} \{ \tilde{g}(Y, Z)U - \tilde{g}(U, Z)Y \},$

for any U, Y, $Z \in T_{\rho}M$, where \tilde{Q} is the symmetric endomorphism of the tangent space at each point corresponds to \tilde{S} and \tilde{r} are the Ricci tensor and the scalar curvature with respect to quarter symmetric non-metric connection.

Using (2.13) and (4.2) in (5.1), yields

(5.3)
$$
\tilde{C}^{*}(U, Y)Z = C^{*}(U, Y)Z + \alpha \{g(Y, Z)\eta(U) - g(U, Z)\eta(Y)\}\xi + \alpha \eta(Z)\{\eta(U)Y - \eta(Y)U\}.
$$

If we consider $\tilde{C}^* = C$, then (5.3) reduces to

$$
g(U, W) = -n\eta(U)\eta(W)
$$

In view of (5.4) in (4.10) , we get

$$
\widetilde{S}(Y,Z) = S(Y,Z).
$$

Hence we can state the following:

Theorem 5.3. If in a Lorentzian α -Sasakian manifold the concircular curvature tensor is invariant under quarter symmetric non-metric connection, then the Ricci tensors are equal with respect to Levi-Civita and quarter symmetric non-metric connections.

Let us consider a Lorentzian α -Sasakian manifold with respect to quarter symmetric non-metric connection satisfying the condition $\widetilde{C}^*(\xi,\;U)\cdot\,\widetilde{S}=0$, then we get

 $\widetilde{S}(\widetilde{C}^*(\xi, U)Y, Z) + \widetilde{S}(Y, \widetilde{C}^*(\xi, U))Z = 0.$ (5.6)

By virtue of (5.3), we get

 (5.7)

 $\tilde{S}(C^*(\xi,U)Y,Z) - \alpha g(U,Y)\tilde{S}(\xi,Z) - 2\alpha \eta(U)\eta(Y)\tilde{S}(\xi,Z) - \alpha \eta(Y)\tilde{S}(U,Z) +$ $\tilde{S}(Y,C^*(\xi,U)Z) - \alpha g(U,Z)\tilde{S}(Y,\xi) - 2 \alpha \eta(U)\eta(Z)\tilde{S}(Y,\xi) - \alpha \eta(Z)\tilde{S}(Y,U) = 0.$

In view of (2.8) and (2.13), (5.7) gives

(5.8) $\tilde{S}(U,Y) = A g(U,Y) + B \eta(U) \eta(Y)$

By virtue of (5.5) in (5.8) yields $S(U,Y) = A g(U,Y) + B \eta(U) \eta(Y)$ (5.9) Where
 $A = \frac{\alpha[n\alpha(n-1)(1+\alpha)-r] - n\alpha(n-1)(1+\alpha)[n\alpha(n-1)(1-\alpha)+r]}{n\alpha(n-1)(1+\alpha)-r}$ $\overline{A} =$ and

$$
B=\frac{n\alpha[n\alpha(n-1)(1+\alpha)-r]-2n(n-1)\alpha^2[n\alpha(n-1)(1-\alpha)+r]}{n\alpha(n-1)(1+\alpha)-r}
$$

Hence

Theorem 5.4. A Lorentzian α - Sasakian manifold with respect to quarter symmetric nonmetric connection satisfying the condition $\tilde{C}^*(\xi, U) \cdot \tilde{S} = 0$ is a η -Einstein manifold. Also use of (4.3) and (4.10) in (5.2) , reduces to **(5.10)**
 $\widetilde{C}(U, Y, Z, W) = R(U, Y, Z, W) + \alpha \{g(Y, Z)\eta(U)\eta(W) - \eta(Y)\eta(W)g(U, Z)\} + \alpha \{\eta(Y)\eta(Z)\{g(Y, W)\} + \alpha \{\eta(Y)\eta(Z)\}g(U, W)\}$ $-g(U,W)-\frac{1}{n-2}\left\{S(Y,Z)g(U,W)-\alpha g(Y,Z)g(U,W)-n\alpha\eta(Y)\eta(Z)g(U,W)\right\}$ $-S(U, Z)g(Y, W) + \alpha g(U, Z)g(Y, W) + n\alpha \eta(U)\eta(Z)g(Y, W) + g(Y, Z)S(U, W)$
 $-\alpha g(Y, Z)g(U, W) - n\alpha g(Y, Z)\eta(U)\eta(W) - g(U, Z)S(Y, W) + \alpha g(U, Z)g(Y, W)$ + $n\alpha g(U, Z)\eta(Y)\eta(W)$ } + $\frac{\tilde{r}}{(n-1)(n-2)}$ { $\tilde{g}(Y, Z)g(U, W) - \tilde{g}(U, Z)g(Y, W)$ }.

*Corresponding Author: Somashekhara P 47 | Page

Using (2.14) in (5.10) , it follows that

(5.11)
$$
\tilde{C}(U, Y, Z, W) = C(U, Y, Z, W) + \frac{2}{n-2} \{g(Y, Z)g(U, W) - g(U, Z)g(Y, W)\} + (\alpha + \frac{na}{n-2}) \{g(Y, Z)\eta(U)\eta(W) - g(U, Z)\eta(Y)\eta(W)\} + (\alpha - \frac{na}{n-2}) \{g(Y, W)\eta(U)\eta(Z) - g(U, W)\eta(Y)\eta(Z)\}.
$$

This is the relation between conformal curvature tensor C and \tilde{C} with respect to the Riemannian connection and quarter symmetric non-metric connection respectively.

Let us consider the Lorentzian α -Sasakian manifold is to be conformally flat with respect to quarter symmetric non-metric connection i.e, $\tilde{C}(U, Y, Z, W) = 0$. Now by virtue of (5.2), we obtain

(5.12)
$$
\tilde{R}(U, Y, Z, W) = \frac{1}{n-2} \{ \tilde{S}(Y, Z)g(U, W) - \tilde{S}(U, Z)g(Y, W) + \tilde{S}(U, W)g(Y, Z) - \tilde{S}(Y, W)g(U, Z) \} + \frac{r}{(n-1)(n-2)} \{ \tilde{g}(Y, Z)g(U, W) - \tilde{g}(U, Z)g(Y, W) \}.
$$

On plugging $Y = W = \xi$ in (5.12), we get

(5.13)
$$
\check{S}(U,Z) = \left\{ \frac{\alpha(\alpha+1)(n-1)^2(n-2)-r}{(n-1)(n-2)} \right\} g(U,Z) + \left\{ \frac{2\alpha(\alpha+1)(n-1)^2-r}{(n-1)(n-2)} \right\} \eta(U)\eta(Z).
$$

Substituting (5.13) in (5.12), obtain

(5.14)
$$
\tilde{R}(U, Y, Z, W) = A[g(Y, Z)g(U, W) - g(U, Z)g(U, Z)g(Y, W)] + B\{g(U, W)\eta(Y)\eta(Z) - g(Y, W)\eta(U)\eta(Z) + g(Y, Z)\eta(U)\eta(W) - g(U, Z)\eta(Y)\eta(W)\}.
$$

\nWhere
$$
A = \frac{2\alpha(\alpha+1)(n-1)^2(n-2)-r-r(n-3)}{(n-1)(n-2)(n-3)} \text{ and } B = \frac{2\alpha(\alpha+1)(n+1)^2(n-2)-r}{(n-1)(n-2)(n-3)}
$$

Hence we can state the following:

Theorem 5.5. If a Lorentzian α -Sasakian manifold is conformally flat with respect to quarter symmetric non-metric connection, then the manifold is of quasi constant curvature with respect to Levi-Civita connection.

VI. PROJECTIVE CURVATURE TENSOR ON A LORENTZIAN *Α***-SASAKIAN MANIFOLDWITH RESPECTTO QUARTER SYMMETRIC NON-METRIC CONNECTION**

The projective curvature tensor \tilde{P} on a Lorentzian α -Sasakian manifold with respect to the quarter

symmetric non-metric connection is given by

(6.1)
$$
\tilde{P}(U, Y)Z = \tilde{R}(U, Y)Z - \frac{1}{n-1} \{ \tilde{S}(Y, Z)U - \tilde{S}(U, Z)Y \},
$$

for any U, Y, $Z \in T_pM$, where \widetilde{S} is the Ricci tensor of the manifold with respect to quarter symmetric non-metric connection.

Let Lorentzian α -Sasakian manifold with respect to the quarter symmetric non-metric connection satisfies the condition $\widetilde{P}(\xi, U) \cdot \widetilde{S} = 0$. Then we get

(6.2)
$$
\widetilde{S}(\widetilde{P}(\xi,U)Y,Z)+\widetilde{S}(Y,\widetilde{P}(\xi,U)Z)=0.
$$

By virtue of (6.1) , (6.2) yields

(6.3)
\n
$$
\tilde{S}(\tilde{R}(\xi, U)Y, Z) + \tilde{S}(Y, \tilde{R}(\xi, U)Z) - \frac{1}{n-1} \{\tilde{S}(U, Y)\tilde{S}(\xi, Z)\}
$$
\n
$$
-\tilde{S}(\xi, Y)\tilde{S}(U, Z) + \tilde{S}(U, Z)\tilde{S}(Y, \xi) - \tilde{S}(\xi, Z)\tilde{S}(Y, U)\} = 0.
$$

On plugging $Z = \xi$ in (6.3), we get

(6.4)
$$
(\alpha^2 + \alpha)\tilde{S}(U, Y) = \{2 \alpha \eta(U)\eta(Y) - (\alpha^2 - \alpha)g(U, Y)\}\tilde{S}(\xi, \xi)
$$

$$
+ (\alpha^2 + \alpha)\eta(Y)\tilde{S}(U, \xi) - (\alpha^2 + \alpha)\eta(U)\tilde{S}(Y, \xi).
$$

By virtue of (4.10), we have

(6.5)
$$
S(U, Y) = [\alpha^{2}(n-1)^{2} - (n-2) \alpha]g(U, Y) + (2-n)(\alpha^{2} + 2 \alpha)\eta(U)\eta(Y).
$$

Hence we can state the following:

Theorem 6.6. If a Lorentzian α -Sasakian manifold with respect to quarter symmetric non-metric connection satisfies the condition $\tilde{P}(\xi, U) \cdot \tilde{S} = 0$, then it is η -Einstein manifold.

7. Second-order parallel tensor on a Lorentzian α -Sasakian manifold with respect to quarter symmetric non-metric connection

Deftnition 7.1. A covariant σ of second order is said to be second-order parallel tensor if $\nabla \sigma = 0$, where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g .

Letus consider a second order parallel tensor with respect to quarter symmetric non-metric connection on a Lorentzian α -Sasakian manifold, such that $\nabla \sigma = 0$, then it follows that

(7.1)
$$
\sigma(\widetilde{R}(W, U)Y, Z) + \sigma(Y, \widetilde{R}(W, U\sigma)Z) = 0,
$$

for any U, Y, Z, $W \in T_pM$. Substituting $Y = Z = W = \xi$ in (7.1), we get

$$
\sigma(\widetilde{R}(\xi, U)\xi, \xi) = 0.
$$

In view of (4.3) , we have

$$
\sigma(U,\,\xi) = -g(U,\,\xi)\sigma(\xi,\,\xi).
$$

Differentiating (7.3) along the arbitrary vector field Y , we get

(7.4)
$$
\sigma(\nabla \times U, \, \xi) + \sigma(U, \, \nabla \times \xi) = -g(\nabla \times U, \, \xi) \sigma(\xi, \, \xi)
$$

$$
-g(U, \nabla_Y \delta) \sigma(\xi, \xi) - 2g(U, \delta) \sigma(\nabla_Y \xi, \xi).
$$

Now replace U by $\nabla \nu$ U in (7.3), we get

$$
\sigma(\nabla \times U, \, \xi) = -g(\nabla \times U, \, \xi) \sigma(\xi, \, \xi).
$$

By using (7.5) in (7.4) , we have

(7.6)
$$
\sigma(U, \nabla \times \mathcal{S}) = -g(U, \nabla \times \mathcal{S})\sigma(\mathcal{S}, \mathcal{S}) - 2g(U, \mathcal{S})\sigma(\nabla \times \mathcal{S}, \mathcal{S}).
$$

Use of (2.3) in (7.4) , gives

(7.7)
$$
\sigma(U, \varphi Y) = -g(U, \varphi Y)\sigma(\xi, \xi) - 2g(U, \xi)\sigma(\varphi Y, \xi).
$$

Replacing Y by φ Y in (7.7) and then using (7.3), we get

$$
\sigma(U, Y) = -g(U, Y)\sigma(\xi, \xi).
$$

Hence we can state the following:

Theorem 7.7. If a Lorentzian α -Sasakian manifold, M admits a second order symmetric parallel tensor, then the second order parallel tensor is a constant multiple of associated metric tensor.

References

*Corresponding Author: Somashekhara P 50 | Page

^[1] S. Ali and R. Nivas, *On submanifolds immersed in a manifold with quarter symmetric connection,* Rivista di Matem- atica della Universita di Parma, 6 (3) (2000), 11-23.

^[2] S. C. Biswas and U. C. De, *Quarter-symmetric metric connection in an SP -Sasakian maniflod,* Communications, Faculty of Science. University of Ankara Series A, 46 (1-2) (1997), 49-56.

^[3] U. C. De and A. Sarkar, *On projective curvature tensor of generalized Sasakian space forms,* Quaestiones Mathe- maticae 33 (2010), 245-252.

^[4] S. Dey and A. Bhattacharyya, *Some properties of Lorentzian* α -Sasakian manifolds with respect to quarter- symmetric metric *connection,* ActaUniversitatisPalackianaeOlomucensis.FacultasRerumNaturalium.Mathe- matica, 54(2)(2015), 21-40.

- [5] A. Friedmann and J. A. Schouten, *Uber die geometric der halbsymmetrischen Uber-tragung,* Math. Zeitschr. 21 (1924), 211-223.
- [6] S. Golab, *On semisymmetric and quarter symmetric linear connections,* Tensor, N. S. 29 (1975), 249-254.
- [7] H. A. Hayden, *Subspaces of a space with torsion,* Proc. London Math. Soc., 34 (1932), 27-50.
- [8] R. S.Mishra and S. N. Pandey, *On quarter symmetric metric F-connection ,* Tensor, N. S. 34 (1980), 1-7.
- [9] S. Mukhopadhyay, A. K. Roy and B. Barua, *Some properties of a quarter-symmetric metric connection on a Riemannian manifold,* Soochow Journal of Mathematics, 17 (2) (1991),205-211.
- [10] D. G. Prakasha, C. S. Bagewadi and N. S. Basavarajappa, On pseudosymmetric Lorentzian α -Sasakian manifolds, UPAM, 48 (1) (2008), 57-65.
- [11] S. C. Rastogi, *On quarter symmetric connection,* C. R. Acad. Sci. Bulgar 31 (1978),811-814.
- [12] S. C. Rastogi, *On quarter symmetric metric connection,* Tensor 44 (1987), 133-141.
- [13] Santu Dey, Buddhadev Pal and Arindam Bhattacharyya, Some classes of Lorentzian a-Sasakian manifolds with respect to quarter *symmetric metric connection,* Tbilisi Mathematical Journal 10 (4) (2017), 1-16.
- [14] S. Sular, C. *^O*¨ zgur, and U. C. De,*Quarter-symmetric metric connection in a Kenmotsu manifold,* SUT Journal of Mathematics, 44 (2) (2008), 297-306.
- [15] S. Yadav and D. L. Suthar, *Certain derivation on Lorentzian* α -Sasakian manifolds, Mathematics and Decision Science 12 (2012).
[16] K. Yano, *Concircular geometry*, Proc. Imp. Acad., Tokyo, 16 (1940), 195-200.
- [16] K. Yano, *Concircular geometry,* Proc. Imp. Acad., Tokyo, 16 (1940),195-200.
- [17] K.YanoandT.Imai, *Quarter-symmetric metric connections and their curvature tensors ,* Tensor,N.S.38(1982), 13-18.
-
- [18] K. Yano and M. Kon, *Structures of manifolds,* World Scientific Publishing, Singapore 1984. A. Yildiz and C. Murathan, *On Lorentzian a-Sasakian manifolds*, *Kyungpook Math. J.* 45 (2005), 95-103.