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ABSTRACT 
In this paper, exponentiated Gamma distribution is considered for Bayesian analysis. The expressions for Bayes 

estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-

Bayyati’s loss functions by using quasi and gamma priors. 

KEYWORDS: Bayesian method, exponentiated Gamma distribution, quasi and gamma priors, squared error, 
precautionary, entropy, K-loss, and Al-Bayyati’s loss functions. 

 

Received 23 Jan, 2021; Revised: 04 Feb, 2021; Accepted 07 Feb © The author(s) 2021.  

Published with open access at www.questjournals.org 
 

I. INTRODUCTION 
The exponentiated Gamma distribution was introduced by Gupta et al.[1]. This model is flexible 

enough to accommodate both monotonic as well as monotonic failure rates. The probability density function of 

exponentiated Gamma distribution is given by 
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(1) 

The joint density function or likelihood function of (1) is given by 
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(2) 

The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ which 

is given as 
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(4) 

 

II. BAYESIAN METHOD OF ESTIMATION 
The Bayesian inference procedures have been developed generally under squared error loss function 
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(5) The Bayes estimator under the above loss function, say, s



 is the posterior mean, i.e, 
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(6)  

Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using symmetric loss function. 
Norstrom [4] introduced precautionary loss function is given as 
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(7) The Bayes estimator under this loss function is denoted by P



 and is obtained as  
1
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Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss 

     1
p

e
L p  lo g     

 
 

where  ,







  and whose minimum occurs at . 




 
Also, the loss function  L   has been used in Dey et 

al. [6] and Dey and Liu [7], in the original form having 1p .  Thus  L   can written be as 

    1
e
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               (9) 

The Bayes estimator under entropy loss function is denoted by E



 and is obtained by solving the following 

equation 
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(10) 

Wasan [8] proposed the K-loss function which is given as 
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(11) Under K-loss function the Bayes estimator of θ is denoted by K



 and is obtained as 
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(12) 

Al-Bayyati [9] introduced a new loss function which is given as 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by A l



 and is obtained as 
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(14) 

 

Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may use the 

quasi density as given by 
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(15) where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 

(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter θ given by 
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III. POSTERIOR DENSITY UNDER 
 1

g 
 

The posterior density of θ under  1
g  , on using (2), is given by 
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(17) 

 

Theorem 1. On using (17), we have 
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(18) 
Proof.  By definition, 
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From equation (18), for 1c  , we have 
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(19) 

From equation (18), for 2c  , we have 
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(20) 

From equation (18), for 1c   , we have 
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(21) 

From equation (18), for 1c c  , we have 
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(22) 

 

IV. BAYES ESTIMATORS UNDER 
 1

g 
 

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 
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(23) 

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained as 
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(24) 

From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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(25) 

From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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(26) 

From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function comes out 

to be 
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(27) 

 

V. POSTERIOR DENSITY UNDER 
 2

g 
 

Under  2
g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2. On using (28), we have 
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(29) 

Proof.  By definition, 
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From equation (29), for 1c  , we have 
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(30) 

From equation (29), for 2c  , we have 
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(31) 

From equation (29), for 1c   , we have 
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(32) 

From equation (29), for 1c c  , we have 
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(33) 

 

VI. BAYES ESTIMATORS UNDER 
 2

g 
 

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 
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(34) 

From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained as 
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(35) 

From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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(36) 

From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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(37) 

From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function comes out 

to be 
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(38) 
 

VII. CONCLUSION 
In this paper, we have obtained a number of estimators of parameter of exponentiated Gamma 

distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In equation 

(23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss functions using quasi 

prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes estimators under different loss 

functions using gamma prior. In the above equation, it is clear that the Bayes estimators depend upon the 

parameters of the prior distribution. We therefore recommend that the estimator’s choice lies according to the 

value of the prior distribution which in turn depends on the situation at hand. 
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