Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 1 (2021) pp: 14-16 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Some Results On e^{*} - Closed sets

D.Sobana

Department of Mathematics, Kandaswamikandar's college, Velur 638182, India.

ABSTRACT :

In this paper ,weintroduce and discuss about the strongly e^* - closed sets and strongly e^* - open sets. Some characterizations and several properties of strongly e^* - closed sets and strongly e^* - open sets are obtained. **54 A05**, 2020 Mathematics subject classification.

KEY WORDS: strongly e^* - closed sets, strongly e^* - open sets, generalized e-closed set, e – Normal.

Received 23 Jan, 2021; Revised: 04 Feb, 2021; Accepted 07 Feb © *The author(s) 2021. Published with open access at <u>www.questjournals.org</u>*

I.

Definion:1.1

 λ is called strongly e^{*} - closed set(Se^{*} - closed) if cl(int(λ)) \subseteq V, whenever $\lambda \subseteq$ V and V is e- open set inX. The complement of Se^{*}- closed set is Se^{*}- open set.

STRONGLY E* - CLOSED SET

Definion:1.2

A function $h: Y \to Z$ is said to be Strongly e^* - closed if for each closed set β of Y, $h(\beta)$ is a Strongly e^* - closed set in Z.

Theorem;1.1

 $h(\lambda)$ is called Strongly e^{*} - closed, if a function $h: Y \to Z$ is continuous and strongly e^{*} - closed and λ is e- closed of Y.

Proof:

Consider $h(\lambda) \subseteq W$, where W is an open set of Z. Since *h* is Continuous, $h^{-1}(W)$ is an open set in Y. Therefore, $\lambda \subseteq h^{-1}(W)$. Since λ is e - open, $\lambda \subseteq clint_{\delta}(\lambda) \cup intcl_{\delta}(\lambda)$

And $\operatorname{clint}_{\delta}(\lambda) \cup \operatorname{intcl}_{\delta}(\lambda) \subseteq h^{-1}$ (W). $h(\operatorname{clint}_{\delta}(\lambda) \cup \operatorname{intcl}_{\delta}(\lambda)) \subseteq W$

Since, *h* is Strongly e*- open set.*h* (clint_{δ}(λ) \cup intcl_{δ}(λ)) is also Strongly e*- open set.

 $\operatorname{clint}(h (\operatorname{clint}_{\delta}(\lambda) \cup \operatorname{intcl}_{\delta}(\lambda))) \subseteq W$

and $h(\lambda) \subseteq h(\operatorname{clint}_{\delta}(\lambda) \cup \operatorname{intcl}_{\delta}(\lambda))$

clinth (λ) \subseteq clinth(clint $_{\delta}(\lambda) \cup$ intcl $_{\delta}(\lambda)$) \subseteq W

clint
$$h(\lambda) \subseteq V$$

Hence, $h(\lambda)$ is Strongly e^{*} - closed set.

Example:1.1

Let X={a,b,c,d} and let $\sigma = \{\emptyset, x, \{a\}, \{c\}, \{a, b\}\{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ is topological Space. Here $\{a\}\subseteq\{a,b,d\}$, where $\{a,b,d\}$ is an e-open set ,Then the set $\{a\}$ is Strongly e*- closed set in (X, σ)

Definion:1.3

U is called generalized e - closed set if $cl(U) \subseteq V$, whenever $U \subseteq V$ and V is e- open set in X.

Theorem:1.2

If M&N are two subsets of Y and if M is Strongly e^* - closed, N is generalized e-closed set, then M \cap N is generalized e-closed set.

Proof:

Since int(Y) = Y. Then M becomes generalized e-closed set & Since Intersection of two generalized e-closed set is generalized e-closed set. Hence M \cap N is generalized e-closed set.

Definion:1.3

$$\begin{split} cl_{Se^*}(\lambda) &= \cap \{ \ \lambda \subseteq V \ / where \ \lambda \ is \ Se^* \text{- closed sets} \ \} \\ int_{Se^*}(\lambda) &= \cup \{ \ \lambda \supseteq V \ / where \ \lambda \ is \ Se^* \text{- openset} \} \end{split}$$

Definion:1.4

If for each Strongly e^{*} - open set V containing v, $\lambda \cap (V - \{v\}) \neq \emptyset$ then that point v of a space Y is said to be Se^{*}- limit point of λ of Y.

Theorem:1.3

The arbitrary union of Se*- neighbourhood of a point is also Se*- neighbourhood of that point.

Proof:

Obvious

Theorem:1.4

If a subset R of Q contained in another subset S of Q then Se*- derived set of R contained in Se*-derived set of S.

Proof:

Consider y is in Se^{*-} derived set of Q.Since, definition of Se^{*-} limit point of R, $y \in Se^{*-}$ limit point of S.

Hence $y \in Se^*$ - derived set of $R \subseteq Se^*$ - derived set of Q.

Se*- derived set of R is contained in Se*- derived set of S.

Theorem:1.5

The union of Strongly e^* - derived set of two subsets of Q is equal to Strongly e^* - derived set of union of two subsets of Q.

Proof:

Consider R & S are two subsets of Q. Since $R \subseteq R \cup S$ & $S \subseteq R \cup S$. From the theorem(1.2), Se*- derived set of $R \subseteq$ Se*- derived set of Q.

& Se*- derived set of $R \subseteq$ Se*- derived set of (RUS).

Se*- derived set of $S \subseteq$ Se*- derived set of (RUS).

 v_x of x such that $y \in v_x \subseteq \lambda$. By the definition of Se* neighbourhood of x,there exists a Se* open set μ_x such that $y \in v_x \subseteq \mu_x \subseteq \lambda$. set of (RUS).

Se*- derived set of $R \cup Se^*$ - derived set of $S \subseteq Se^*$ - derived set of $(R \cup S)$. ----- (1)

On the otherhand,

We take $x \notin (Se^*$ - derived set of R) $\cup (Se^*$ - derived set of S).

 $x \notin Se^*$ - derived set of (RUS).

By the definition of Se*- limit point of a subset,

Se*- derived set of $(R \cup S) \subseteq (Se^*$ - derived set of R) $\cup (Se^*$ - derived set of S) -----(2)

By (1) & (2),

Se*- derived set of $(R \cup S) = (Se^*- derived set of R) \cup (Se^*- derived set of S).$

Remark: 1.1

Se*- derived set of $(R \cup S) = (Se^*- \text{ derived set of } R) \cap (Se^*- \text{ derived set of } S)$.

Theorem:1.6

If $h: Y \to Z$ is a Strongly e^{*} - closed function, then Se^{*} - closure of λ contained in $h(cl(\lambda))$, for every λ of Y. **Proof:**

Consider $\lambda \subseteq Y$. Since *h* is Se^{*} - closed function, then $h(cl(\lambda))$ is Strongly e^{*} - closed containing $h(\lambda)$, hence Se^{*} - closure of $h(\lambda)$ contained in $h(cl(\lambda))$. Therefore Se^{*} - closure of λ contained in $h(cl(\lambda))$. **Theorem:1.7**

 λ is Se*- open iff λ contains a Se*- open neighbourhood of each of its points where Y be a Topological Space and λ be a subset of X.

Proof:

Take λ is a Se^{*}- open sets. Consider $s \in \lambda$. λ is a Se^{*} neighbourhood of Y. λ contains a Se^{*} neighbourhood of each of its points.

On the Otherhand, Consider $s \in \lambda$, there exists a neighbourhood v_x of x such that $y \in v_x \subseteq \lambda$. By the definition of Se* neighbourhood of x,there exists a Se* open set μ_x such that $y \in v_x \subseteq \mu_x \subseteq \lambda$. Since $x \in \lambda$, therefore Se*- open set such that $x \in \mu_x$, $x \in U \{\mu_x : x \in \lambda\}$

 $\lambda \subseteq \cup \{\mu_x : x \in \lambda \}$ ----(1)

 $z \in \mu_y$ for some, $x \in \lambda$ this implies $z \in \lambda$, $\lambda \supseteq \cup \{\mu_x : x \in \lambda\}$ -----(2)

From (1) &(2), $\lambda = \cup \{\mu_x : x \in \lambda \}.$

Since the arbitrary union of Se^{*-} open sets is also Se^{*-} open sets. λ is a Se^{*-} open sets.

Theorem:1.8

If λ is Se^{*} - closed subset of Y and $y \in Y - \lambda$ then there exists a Se^{*} neighbourhood μ of Y such that $\mu \cap \lambda = \emptyset$.

Proof:

Consider λ is a Se^{*} - closed. Y - λ is Se^{*}- open set. Therefore μ be a neighbourhood of y such that Y - $\lambda \supseteq \mu \therefore \mu \cap \lambda = \emptyset$.

Definion:1.5

If for each pair of non empty disjoint e- closedsets λ and μ there exists a disjoint e-open sets S & T, such that $\lambda \subseteq S \& \mu \subseteq T$, $S \cap T = \emptyset$, then the topological Space X satisfies this condition is called e – Normal. **Definion:1.6**

If for each pair of non empty disjoint e- closed sets λ and μ there exists a disjoint Se^{*}-open sets S & T, such that $\lambda \subseteq S \& \mu \subseteq T$, $S \cap T = \emptyset$, then the topological Space X satisfies this condition is called Se^{*}- Normal. **Theorem:1.9**

If h: $Y \rightarrow Z$ is continuous, Se^{*} - closed function from a Normal Space Y onto a Space Z, then Z is e - Normal.

Proof:

Consider M and W be disjoint closed sets of a Space Y. $h^{-1}(\lambda)$ and $h^{-1}(\mu)$ are disjoint closed sets of Y,Sinceh is continuous. As Y is Normal , there exists disjoint opensets S and T of Y suchthat $h^{-1}(\lambda) \subseteq S$ and $h^{-1}(\mu) \subseteq T$,Since h is Se^{*} - closed then there exists Se^{*}- open sets λ and μ in Z suchthat $M \subseteq \lambda$, $W \subseteq \mu$, $h^{-1}(\lambda) \subseteq S$ and $h^{-1}(\mu) \subseteq T$,Since S & T are disjoint, then λ and μ are also disjoint $\mu \cap \lambda = \emptyset$, $\therefore Z$ is e – Normal.

Theorem:1.10

Every Se^{*} - Normal is e - Normal. **Proof:**

Consider Y is Strongly e^* - Normal Space.Let λ and μ be two disjoint

e- closed sts. There exists disjoint e open sets S and T such that $\lambda \subseteq S \& \mu \subseteq T$. Since Y is Strongly e^{*} - Normal and e- closed set is closed, therefore λ and μ are closed sets. Hence Y is e- Normal.

Definion:1.7

If for each Strongly e^* - closed set γ and a point y not belongs to γ there exists disjointopen sets S and T such that y belongs to γ and γ contained in T then the topological space Y satisfies this condition is called Strongly e^* - regular.

Theorem:1.11

A function g: $Y \rightarrow Z$ is continuous and Y is Strongly e^{*} - regular, then g is Se^{*}- continuous. **Proof:**

Consider $y \in Y$, since Z is Strongly e^{*} - regular vthere exists a Se^{*}closed set λ . Hence $y \notin \lambda$ there exists an open set S in Z containing g(y) and T in Z containing g(y). $\lambda \subseteq T$ and $y \in S$ in Z. Hence cl((int(λ)) \subseteq T.Since g is continuous, g⁻¹ (λ) is Se^{*}closed set in Y.Hence g is Se^{*}- continuous.

1.Hence g is Se - continuou

Theorem:1.12

Let bijective f:Y \rightarrow Z where g is any bijective function and if g⁻¹ is Strongly e^{*} - continuous function then g is e^{*} - open.

Proof:

Consider M be an open set in Y, then Y/M is closed in Y & g^{-1} is Se^{*}- continuous,

 $(g^{-1})^{-1}(Y/M)$ is Stronglye^{*}-closed inZ. Hence g(Y/M) = Y/g(M) is Strongly e^{*}-closed in Z. Hence g is Strongly e^{*}- open.

REFERENCES

- [1]. E. Ekici, On e open sets, \mathcal{DP}^* sets and \mathcal{DPE}^* sets and decomposition of continuity, Arabian J. For Sci. And Eng.33(2A) (2008), 269 282.
- [2]. E.Ekichi, On e-open sets and (D.S)* Sets, Mathematica MoravicaVol. 13 -1 (2009), 29-36
- [3]. E.Ekichi, A note on a- open sets and e^{*} open sets, Faculty of Sciences and Mathematics University of Nits, Serbia, Filomat 22 (1) (2008), 89-96.
- [4]. N.levine, A decomposition of continuity in topological spaces, Amer. Math. monthly, 68(1961), 44 46.
- [5]. A.SMashour, M.E. Abd El- Monsef and S.N. El- Deeb, On precontinuous and weak precontinuous mappings, Proc.Math. Phys. Soc. Egypt, 53 (1982), 47-53.