Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 1 (2021) pp: 14-16 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Some Results On e* - Closed sets

D.Sobana

Department of Mathematics, Kandaswamikandar's college, Velur 638182, India.

ABSTRACT :

*In this paper ,weintroduce and discuss about the strongly e * - closed sets and strongly e * - open sets. Some characterizations and several properties ofstrongly e * - closed sets and strongly e * - open sets are obtained. 54 A05, 2020 Mathematics subject classification.*

*KEY WORDS: strongly e * - closed sets, strongly e * - open sets, generalized e-closed set, e – Normal.*

Received 23 Jan, 2021; Revised: 04 Feb, 2021; Accepted 07 Feb © The author(s) 2021. Published with open access at www.questjournals.org

Definion:1.1

 $λ$ is called strongly e^{*} - closed set(Se^{*} - closed) if cl(int($λ$))⊆ V, whenever $λ ⊆ V$ and V is e- open set inX. The complement of Se*- closed set is Se*- open set.

I. STRONGLY E* - CLOSED SET

Definion:1.2

A function $h: Y \to Z$ is said to be Strongly e^{*} - closed if for each closed set β of Y, $h(\beta)$ is a Strongly e^{*} - closed set in Z.

Theorem;1.1

 $h(\lambda)$ is called Strongly e^{*} - closed, if a function $h: Y \to Z$ is continuous and strongly e^{*} - closed and λ is e- closed of Y.

Proof:

Consider $h(\lambda) \subseteq W$, where W is an open set of Z. Since his Continuous, $h^{-1}(W)$ is an open set in Y. Therefore, $\lambda \subseteq h^{-1}(W)$. Since λ is e – open, $\lambda \subseteq \text{clint}_{\delta}(\lambda) \cup \text{intcl}_{\delta}(\lambda)$

And clint_{$\delta(\lambda)$} \cup intcl $_{\delta}(\lambda) \subseteq h^{-1}(W)$. $h(\text{clint}_{\delta}(\lambda) \cup \text{intcl}_{\delta}(\lambda)) \subseteq W$

Since, his Strongly e^{*}- open set. h (clint_δ(λ) \cup intcl_δ(λ)) is also Strongly e^{*}- open set.

clint(h (clint_{δ}(λ) \cup intcl_{δ}(λ))) \subseteq W

and $h(\lambda) \subseteq h$ (clint_{$\delta(\lambda)$} \cup intcl_{$\delta(\lambda)$})

clinth $(\lambda) \subseteq \text{clint} h(\text{clint}_{\delta}(\lambda) \cup \text{intcl}_{\delta}(\lambda)) \subseteq W$

clinth $(\lambda) \subseteq W$

Hence, $h(\lambda)$ is Strongly e^{*} - closed set.

Example:1.1

Let $X = \{a,b,c,d\}$ and let $\sigma = \{0, x, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c, d\}\}$ is topological Space. Here ${a} \subseteq \{a,b,d\}$, where ${a,b,d}$ is an e-open set, Then the set ${a}$ is Strongly e*- closed set in (X, σ) **Definion:1.3**

U iscalled generalized e - closed set if $cl(U) \subseteq V$, whenever $U \subseteq V$ and V is e- open set in X.

Theorem:1.2

If M&N are two subsets of Yand if M is Strongly e^* - closed, N is generalized e-closed set, then MON is generalized e-closed set.

Proof:

Since $int(Y) = Y$. Then M becomes generalized e-closed set & Since Intersection of two generalized eclosed set is generalized e-closed set. Hence MON is generalized e-closed set.

Definion:1.3

 $cl_{Se*}(\lambda) = \bigcap \{ \lambda \subseteq V \mid \text{where } \lambda \text{ is Se*-closed sets } \}$ int_{Se}*(λ) = \cup { λ⊇ V /where λ is Se^{*}- openset}

Definion:1.4

If for each Strongly e^* - open set V containing v, $\lambda \cap (V - \{v\}) \neq \emptyset$ then that point v of a space Y is said to be Se*- limit point of λ of Y.

Theorem:1.3

The arbitrary union of Se*- neighbourhood of a point is also Se*- neighbourhood of that point.

Proof:

Obvious

Theorem:1.4

If a subset R of Q contained in another subset S of Q then Se*- derived set of R contained in Se* derived set of S.

Proof:

Consider y is in Se^{*}- derived set of O.Since, definition of Se^{*}- limit point of R, y \in Se^{*}- limit point of S.

Hence y∈ Se^{*}- derived set of R \subseteq Se^{*}- derived set of Q.

Se*- derived set of R is contained in Se*- derived set of S.

Theorem:1.5

The union of Strongly e*- derived set of two subsets of Q is equal to Strongly e*- derived set of union of two subsets of Q.

Proof:

Consider R & S are two subsets of O. Since R⊆ R∪S & S⊆ R∪S. From the theorem(1.2), Se*- derived set of $R \subseteq Se^*$ - derived set of Q.

& Se*- derived set of $R \subseteq Se^*$ - derived set of (RUS).

Se^{*}- derived set of $S \subseteq$ Se^{*}- derived set of (RUS).

 v_x of x such that $y \in v_x \subseteq \lambda$. By the definition of Se* neighbourhood of x, there exists a Se* open set μ_x such that y $\in v_x \subseteq \mu_x \subseteq \lambda$. set of (RUS).

Se*- derived set of R∪ Se*- derived set of $S \subseteq Se^*$ - derived set of (R∪S). ------ (1)

On the otherhand,

We take $x \notin (Se^*$ - derived set of R $) \cup (Se^*$ - derived set of S).

 $x \notin \mathbb{S}e^*$ - derived set of (RUS).

By the definition of Se*- limit point of a subset,

Se^{*}- derived set of $(R \cup S) \subseteq (Se^*$ - derived set of R $) \cup (Se^*$ - derived set of S) ------(2)

 $By (1) & (2),$

Se*- derived set of $(RUS) = (Se^*$ - derived set of R) \cup (Se*- derived set of S).

Remark: 1.1

Se*- derived set of $(RUS) = (Se^*$ - derived set of $R) \cap (Se^*$ - derived set of S).

Theorem:1.6

If $h: Y \to Z$ is a Strongly e^* - closed function, then Se^{*} - closure of λ contained in $h(cl(\lambda))$, for every λ of Y. **Proof:**

Consider $\lambda \subseteq Y$. Since h is Se^{*} - closed function,then h(cl(λ)) is Strongly e^{*} - closed containing h(λ), hence Se^{*} - closure of $h(\lambda)$ contained in $h(cl(\lambda))$. Therefore Se^{*} - closure of λ contained in $h(cl(\lambda))$. **Theorem:1.7**

λ is Se*- open iff λ contains a Se*- open neighbourhood of each of its points where Y be a Topological Space and λ be a subset of X.

Proof:

Take λ is a Se^{*}- open sets. Consider $s \in \lambda$. λ is a Se^{*} neighbourhood of Y. λ contains a Se^{*} neighbourhood of each of its points.

On the Otherhand, Consider s $\in \lambda$, there exists a neighbourhoody, of x such that $y \in y$, $\subseteq \lambda$. By the definition of Se* neighbourhood of x,thereexists a Se* open set μ_xsuchthat $y \in v_x \subseteq \mu_x \subseteq \lambda$. Since, $x \in \lambda$, therefore Se*- open set such that $x \in \mu_x$, $x \in \cup \{\mu_x : x \in \lambda\}$

 $\lambda \subseteq U$ { $\mu_x : x \in \lambda$ }----(1)

 $z \in \mu_{\nu}$ for some, $x \in \lambda$ this implies $z \in \lambda$, $\lambda \supseteq U$ { $\mu_{x} : x \in \lambda$ } -----(2)

From (1) $\&(2)$, $\lambda = \cup \{\mu_x : x \in \lambda\}$.

Since the arbitrary union of Se*- open sets is also Se*- open sets. λ is a Se*- open sets.

Theorem:1.8

If λ is Se^{*} - closed subset of Y and y \in Y – λ then there exists a Se^{*} neighbourhood μ of Y suchthat $μ∩λ = ∅.$

Proof:

Consider λ is a Se^{*} - closed. Y – λ is Se^{*}- open set. Therefore μ be a neighbourhood of y suchthatY – $λ ⊇ μ.$ μ $nλ = ∅$.

Definion:1.5

If for each pair of non empty disjoint e- closedsets λ and μ there exists a disjoint e-open sets S & T, such that $\lambda \subseteq S \& \mu \subseteq T$, Sn T = \emptyset , then the topological Space X satisfies this condition is called e – Normal. **Definion:1.6**

If for each pair of non empty disjoint e-closed sets λ and μ there exists a disjoint Se*-open sets S & T, such that $\lambda \subseteq S$ & $\mu \subseteq T$, $S \cap T = \emptyset$, then the topological Space X satisfies this condition is called Se^{*}- Normal. **Theorem:1.9**

If h: $Y \rightarrow Z$ is continuous, Se^{*} - closed function from a Normal Space Y onto a Space Z, then Z is e -Normal.

Proof:

Consider M and W be disjoint closed sets of a Space Y. $h^{-1}(\lambda)$ and $h^{-1}(\mu)$ are disjoint closed sets of Y, Sinceh is continuous. As Y is Normal, there exists disjoint opensets S and T of Y such that $h^{-1}(\lambda) \subseteq S$ and h μ ¹(μ) \subseteq T,Since h is Se^{*} - closed then there exists Se^{*}- open sets λ and μ in Z suchthat M \subseteq λ , W \subseteq μ , h⁻¹(λ) \subseteq S and h⁻¹(μ) \subseteq T, Since S & T are disjoint, then λ and μ are also disjoint $\mu \cap \lambda = \emptyset$, \therefore Z is e – Normal. **Theorem:1.10**

Every Se * - Normal is e - Normal.

Proof:

Consider Y is Strongly e^* - Normal Space. Let λ and μ be two disjoint

e- closed sts. There exists disjoint e open sets S and T such that $\lambda \subseteq S \& \mu \subseteq T$. Since Y is Strongly e^{*} - Normal and e- closed set is closed,thereforeλ and μ are closed sets. Hence Y is e- Normal.

Definion:1.7

If for each Strongly e^* - closed set γ and a point y not belongs to γ there exists disjointopen sets S and T such that y belongs to γ and γ contained in T then the topological space Y satisfies this condition is called Strongly e^* - regular.

Theorem:1.11

A function $g: Y \rightarrow Z$ is continuous and Y is Strongly e^* - regular, then g is Se^* - continuous. **Proof:**

Consider $y \in Y$, since Z is Strongly e^{*} - regular vthere exists a Se^{*}closed set λ .

Hence $y \notin \lambda$ there exists an open set S in Z containing g(y) and T in Z containing g(y).

 $\lambda \subseteq T$ and y \in S in Z. Hence cl((int(λ)) $\subseteq T$. Since g is continuous, $g^{-1}(\lambda)$ is Se^{*}closed set in

Y. Hence g is Se^{*}- continuous.

Theorem:1.12

Let bijective f: Y \rightarrow Z where g is any bijective function and if g⁻¹ is Strongly e^{*} - continuous function then g is e^* - open.

Proof:

Consider M be an open set in Y, then Y/M is closed in Y & g^{-1} is Se^{*}- continuous,

 $(g^{-1})^{-1}(Y/M)$ is Stronglye^{*}-closed inZ. Hence $g(Y/M) = Y/g(M)$ is Strongly e^{*}-closed in Z. Hence g is Strongly e * - open.

REFERENCES

- [1]. E. Ekici, On e open sets, $\mathcal{D}P^*$ sets and $\mathcal{D}P\mathcal{E}^*$ sets and decomposition of continuity, Arabian J. For Sci. And Eng.33(2A) (2008), $269 - 282.$
- [2]. E.Ekichi, On e-open sets and (*D,S*)* Sets, Mathematica MoravicaVol. 13 -1 (2009), 29–36
- [3]. E.Ekichi, A note on a- open sets and e^{*} open sets, Faculty of Sciences and Mathematics University of Nits, Serbia, Filomat 22 (1) (2008), 89-96.
- [4]. N.levine, A decomposition of continuity in topological spaces,Amer.Math. monthly , 68(1961), 44 46.
- [5]. A.SMashour, M.E. Abd El- Monsef and S.N. El- Deeb, On precontinuous and weak precontinuous mappings, Proc.Math. Phys. Soc. Egypt, 53 (1982), 47-53.