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ABSTRACT 

An isotropic linearly elastic cylindrical material under anti-plane deformation, modeled by a traction-

displacement boundary value problem, with the only non-vanishing displacement component 𝑤(𝑟, 𝜃) satisfying 

𝑤(𝑎, 𝜃) ≠ 0, is considered. Fracture detection along the axis of symmetry with respect to loading is investigated. 

The original circular plane of the study, which is of radius 𝑎, is conformally transformed onto an upper half 

plane. A solution for the displacement is derived and analyzed for fracture detection. The results obtained extend 

those known for cylinders of the same geometry, but subject the condition 𝑤 𝑎, 𝜃 = 0. We showed that the 

displacement is singular at the origin, and the non-zero stresses 𝜍𝑟𝑧  𝑟, 𝜋 , 𝜍𝜃𝑧  𝑟, 𝜋 , 𝜍𝑟𝑧 (𝑟, 0)  tend to tear the 

material as 𝑟 → 𝑎 and become singular as 𝑟 → 0  
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I. INTRODUCTION 
A long homogenous isotropic solid cylinder is described in cylindrical coordinates (𝑟, 𝜃, 𝑧) by −∞ < 𝑧 < ∞, 0 ≤
𝜃 ≤ 𝑎  ,   0 ≤ 𝜃 ≤ 2𝜋.  It is subjected to prescribed displacement, 

  𝑎, 𝜃 =
1

2
 1 − 𝑐𝑜𝑠𝜃 𝑤0 ,   𝜋 < 𝜃 < 2𝜋 , on the boundary, where 𝑤0 is an arbitrary constant and to out-of-plane 

stress of magnitude 𝑄 when 𝑟 = 𝑎 , 0 ≤ 𝜃 ≤ 𝜋 (see figure 1). 

 

 
Figure 1: Geometry and loading of the problem. 

 

The loading sets up a boundary value problem for Laplace equation in two dimensions of the type 

studied in [1], but with 𝑤0 ≠ 0 has not been addresses (see for example [2]).Elastic stress analyses have been 

carried out by several authors. In [3], the investigation involves cracked circular cylinders under anti-plane 

traction. In [4] the cracked circular cylinder is subjected to tensile load and studied for stress intensity factor. The 
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motivation here is to obtain the displacement field everywhere in the body under the displacement boundary 

condition 𝑤(𝑎, 𝜃) ≠ 0, since there are works that involve such general boundary conditions (see for example 

[5,6,7]) and to investigate the fields along𝜃 = 0 and 𝜃 = 𝜋 , 0 < 𝑟 ≤ 𝑎 for fracture.    

 

II. FORMULATION AND TRANSFORMATION OF GOVERNING EQUATIONS 
The loading puts the solid in a state of antiplane shear for which the resultingcomponents of displacement are all 

zero except 𝑤(𝑟, 𝜃), the one in the 𝑧 −direction, which equilibrium conditions require that it satisfies the Laplace 

equation: 

 
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2 𝑤 𝑟, 𝜃 = 0 ,   0 ≤ 𝑟 ≤ 𝑎 ,   0 ≤ 𝜃 ≤ 2𝜋      (1) 

 

Equation (1) must be solved together with the mixed boundary conditions:            

 𝑤 𝑎, 𝜃 =
1

2
 1 − 𝑐𝑜𝑠𝜃 𝑤0 ,   0 ≤ 𝜃 ≤ 2𝜋       (2) 

and   
𝜕𝑤

𝜕𝑟
 𝑎, 𝜃 =

𝑄

𝜇
  ,    0 < 𝜃 < 𝜋        (3) 

where 𝜇 is the scalar modulus. 

 

The nonzero polar stresses are 𝜍𝑟𝑧 𝑟, 𝜃 = 𝜇
𝜕𝑤

𝜕𝑟
 𝑟, 𝜃    𝑎𝑛𝑑   𝜍𝜃𝑧  𝑟, 𝜃 =

𝜇

𝑟

𝜕𝑤

𝜕𝜃
(𝑟, 𝜃) 

The original region is then transformed onto the upper half plane  (see  figure 2) with the assistance of the 

conformal mapping function: 

𝜁 𝑧 =
𝑖(𝑎+𝑧)

𝑎−𝑧
  ,   𝑧 = 𝑟𝑒𝑖𝜃 . 

           =𝑢 + 𝑖𝑣 = 𝜌𝑒𝑖𝜃           (4) 

 Then ,  𝑢 𝑟, 𝜃 = −
2𝑎𝑟𝑠𝑖𝑛𝜃

𝑎2−2𝑎𝑟𝑐𝑜𝑠𝜃 +𝑟2   ,     𝑣 𝑟, 𝜃 =
𝑎2−𝑟2

𝑎2−2𝑎𝑟𝑐𝑜𝑠𝜃 +𝑟2   ,    

 𝑡𝑎𝑛𝜙 𝑟, 𝜃 =
𝑎2−𝑟2

−2𝑎𝑟𝑠𝑖𝑛𝜃
  ,    𝜌2 𝑟, 𝜃 = 𝑢2 𝑟, 𝜃 + 𝑣2(𝑟, 𝜃).      (5) 

 

 
 

Figure 2. Sketch of The Upper Half 𝜌𝜙- plane and Corresponding Quadrants 

 

The conformity condition, 𝑊 𝜌, 𝜙 = 𝑤(𝑟, 𝜃),  chain rule and the boundary conditions are   

transformed to get 

  
𝜕2

𝜕𝜌2 +
1

𝜌

𝜕

𝜕𝜌
+

1

𝜌2

𝜕2

𝜕𝜙2 𝑤 𝜌, 𝜙 = 0 ,   0 ≤ 𝜌 < ∞ ,   0 ≤ 𝜙 ≤ 𝜋    (6) 

 𝑊 𝜌, 0 =
𝑤0

1+𝜌2         (7a) 

 
𝜕𝑊

𝜕𝜙
 𝜌, 𝜋 =

2𝑎𝑄

𝜇

𝜌

1+𝜌2          (7b) 

where 𝑊(𝜌, 𝜙) is the upper half plane displacement. 

     

III. SOLUTION OF THE TRANSFORMED PROBLEM 
When the Mellin transform of 𝑊(𝜌, 𝜙) defined by  

𝑊  𝑠, 𝜙 =  𝜌𝑠−1𝑊 𝜌, 𝜙 𝑑𝜌   ,     0 < 𝑅𝑒𝑠 < 1
∞

0
       (8) 

is applied to equations (6) and (7) the result is  

 
𝑑2

𝑑𝜙2 + 𝑠2 𝑊  𝑠, 𝜙 = 0  ,   0 < 𝑅𝑒𝑠 < 1        (9) 
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subjected to 

𝑙𝑖𝑚𝜌→0
𝜌→∞ 𝜌

𝑠+1 𝜕

𝜕𝜌
𝑊 𝜌,𝜙 +𝜌𝑠𝑊(𝜌,𝜙) =0

         (10) 

Utilizing equations (7) and (10), we obtain the asymptotic behaviours and the strip of regularity in equation (8). 

 

The behaviours are                      

𝑊 𝜌, 𝜙 = 0 1  𝑎𝑠 𝜌 → 0 

    = 0 𝜌−1   𝑎𝑠   𝜌 → 0 

The Mellin transform of equation  (7) gives   𝑊  𝑠, 0 = 𝑤0𝛽(𝑠)    (11)                        
𝜕𝑤 

𝜕𝜃
 𝑠, 𝜋 =

2𝑎𝑄

𝜇
𝛽(𝑠 + 1)      (12) 

where formula 3.241 2[8] produces 

𝛽 𝑠 =  
𝜌𝑠−1

1+𝜌2 𝑑𝜌 =
𝜋

2

∞

0
𝑐𝑜𝑠𝑒𝑐

𝜋

2
𝑠  ,          0 < 𝑅𝑒𝑠 ≤ 2  

Equations (11) and (12) together with the solution of equation (9) in the form   

 𝑊  𝑠, 𝜙 = 𝐴 𝑠 𝑠𝑖𝑛𝜙𝑠 + 𝐵 𝑠 𝑐𝑜𝑠𝜙𝑠  
lead to  

𝐵 𝑠 = 𝑤0𝛽(𝑠) and 𝐴 𝑠 =
2𝑎𝑄

𝜇𝑠𝑐𝑜𝑠𝜋𝑠
 𝛽 𝑠 + 1 + 𝐵(𝑠)

𝑠𝑖𝑛𝜋𝑠

𝑐𝑜𝑠𝜋𝑠
     and    

𝑊  𝑠, 𝜙 =
𝜋

2
 

2𝑎𝑄𝑠𝑖𝑛𝜙𝑠

𝜇𝑠𝑐𝑜𝑠𝜋𝑠𝑐𝑜𝑠
𝜋

2
𝑠

+
𝑤0𝑐𝑜𝑠  𝜋−𝜙 𝑠

𝑐𝑜𝑠𝜋𝑠  𝑠𝑖𝑛
𝜋

2
𝑠
        (13) 

The inversion formula for Mellin transform produces the displacement as 

𝑊 𝜌, 𝜙 =
1

2𝜋𝑖
 𝑊  𝑠, 𝜙 𝜌−𝑠𝑑𝑠     ,       0 < 𝜍 < 1

2

𝜍+𝑖∞

𝜍−𝑖∞
      (14) 

 

Equations (13) and (14) lead to    𝑊 𝜌, 𝜙 =
𝜋𝑎𝑄

𝜇
𝑊1 𝜌, 𝜙 +

𝜋𝑤0

2
𝑊2(𝜌, 𝜙)   (15) 

where  𝑊1 𝜌, 𝜙 =
1

2𝜋𝑖
 

sin 𝜙𝑠𝜌−𝑠

𝑠 𝑐𝑜𝑠𝜋𝑠  𝑐𝑜𝑠𝜋2𝑠
𝑑𝑠

𝜍+𝑖∞

𝜍−𝑖∞
       (16)  

𝑊2 𝜌, 𝜙 =
1

2𝜋𝑖
 

cos (π−𝜙)𝑠

𝑠 𝑐𝑜𝑠𝜋𝑠  𝑠𝑖𝑛𝜋
2𝑠
𝑑𝑠

𝜍+𝑖∞

𝜍−𝑖∞
       (17) 

Evaluation of 𝑊1(𝜌, 𝜙) is associated with simple poles at 

 𝑠 = ± 2𝑛 − 1    𝑎𝑛𝑑 𝑠 = ±(𝑛 − 1

2
) ,   𝑛=1,2,3,… Cauchy’s residue theorem leads to   𝑊1 𝜌, 𝜙 =

2

𝜋
 

(−1)𝑛

2𝑛−1
𝜌2𝑛−1∞

𝑛=1 sin 2𝑛 − 1 𝜙 −
1

𝜋
 

(−1)𝑛

(𝑛−1
2)𝛼𝑛

∞
𝑛=1 𝜌𝑛−1

2sin⁡(𝑛 − 1

2
)𝜙  ,   𝜌>1  (18) 

       
2

𝜋
 

(−1)𝑛

2𝑛−1
𝜌2𝑛−1∞

𝑛=1 sin 2𝑛 − 1 𝜙 −
1

𝜋
 

(−1)𝑛

(𝑛−1
2)𝛼𝑛

∞
𝑛=1 𝜌𝑛−1

2sin⁡(𝑛 − 1

2
)𝜙  ,   𝜌>1 

where 𝛼𝑛 = 𝑐𝑜𝑠𝜋
2

(𝑛−1
2) 

𝑊2(𝜌, 𝜙) has its integrand with simple  poles  at 𝑠 = 0, 𝑠 = ±2𝑛, 𝑎𝑛𝑑 𝑠 = ±(𝑛 − 1

2
) ,𝑛=1,2,3,… 

The residue theorem leads to 

𝑊2 𝜌, 𝜙 = 
2

𝜋
+

2

𝜋
 (−1)𝑛𝜌2𝑛 ∞

𝑛=1 cos 2n𝜙 −
1

𝜋
 

(−1)𝑛

𝛼𝑛

∞
𝑛=1 𝜌𝑛−1

2sin⁡(𝑛 − 1

2
)𝜙  ,   𝜌<1   

     =  −
2

𝜋
 (−1)𝑛𝜌−2𝑛∞

𝑛=1 cos 2n𝜙 +
1

𝜋
 

(−1)𝑛

𝛼𝑛

∞
𝑛=1 𝜌𝑛−

1
2sin⁡(𝑛 − 1

2
)𝜙  ,   𝜌>1 (19) 

The upper half plane displacement is obtained from equations (15) , (18) and (19). 

 

IV. DISCUSSION OF THE RESULTS 
The fields for which 𝜌 < 1 in the upper half plane refer to those of the semi-circular region of the left half 𝑟𝜃-

plane while those for 𝜌 > 1 correspond to those of the semicircle in the right half 𝑟𝜃-plane. The line of symmetry 

, 𝜙 =
𝜋

2
 , 0 ≤ 𝜌 < ∞ in the 𝜌𝜙-plane, through 𝑢 𝑟, 𝜃 = 0  (equation (5)) , corresponds to 𝜃 = 0, 0 ≤ 𝑟 ≤

a     ρ > 1 , θ = π ,   0 ≤ 𝑟 ≤ a  (ρ < 1) and can be  studied  for fracture initiation. 

Using equation(5) in the form 𝜌2 𝑟, 𝜃 =
𝑎2+2𝑎𝑟𝑐𝑜𝑠𝜃 +𝑟2

𝑎2−2𝑎𝑟𝑐𝑜𝑠𝜃 +𝑟2  and noting that  𝑎 ≤ 2𝑟 + 𝑎 implies 
𝑎−𝑟

𝑎+𝑟
≤ 1 we find that 

 𝜌 𝑟, 0 =
𝑎+𝑟

𝑎−𝑟
≥ 1 , 𝜌 𝑟, 𝜋 =

𝑎−𝑟

𝑎+𝑟
≤ 1 ,   𝜌 𝑟, ±𝜋

2
 = 1            (20) 

From equations (5) and (20) 

 

𝑡𝑎𝑛𝜙 𝑟, 0 = ∞ implies  𝜙 𝑟, 0 = 𝜋

2
  , 𝜌 > 1          (21a) 

 

𝑡𝑎𝑛𝜙 𝑟, 𝜋 = ∞ implies  𝜙 𝑟, 𝜋 = 𝜋

2
  , 𝜌 < 1            (21b) 

 

We may use equations (20) and (21b) to investigate fracture along 
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𝜃 = 𝜋 , 0 < 𝑟 ≤ 𝑎 ,
𝑎−𝑟

𝑎+𝑟
< 1  these equations lead to  

𝑊1(𝜌, 𝜋
2

) = −
2

𝜋
  

𝜌2𝑛−1

2𝑛−1

∞
𝑛=1 −

1

2
 

𝜌
𝑛−

1
2

𝑛−1
2

∞
𝑛=1  = −

1

𝜋
 𝑙𝑛  

1+𝜌

1−𝜌
 − 𝑙𝑛  

1+𝜌
1
2

1−𝜌
1
2

        (22) 

𝑊2(𝜌, 𝜋
2

)=−
2

𝜋
  𝜌𝑛∞

𝑛=0 −
1

2
 𝜌𝑛−

1
2∞

𝑛=1  =  −
2

𝜋
 

1−1
2𝜌

1
2(1+𝜌)

1−𝜌
       (23) 

The series are summed with the aid of the relations 

 𝑧𝑛∞
𝑛=0 =

1

1−𝑧
 ,  𝑧 < 1,     

𝑧2𝑛+1

2𝑛+1

∞
𝑛=0 =

1

2
𝑙𝑛  

1+𝑧

1−𝑧
  ,    𝑧 < 1   

 

and /or the use of entries [8] 2.2481  and [9] 7.4(60,61 and 120). 

Equations (15),(22) , and (23) yield 

𝑊 𝜌, 𝜋
2
 =  −

𝑎𝑄

𝜇
 𝑙𝑛  

1+𝜌

1−𝜌
 + 𝑙𝑛  

1+𝜌
1
2

1−𝜌
1
2

  + 𝑤0  
1−

1
2𝜌

1
2(1+𝜌)

1−𝜌2    ,   𝜌 < 1       (24) 

Equations (20b) and (24) lead to  

𝑤 𝑟, 𝜋 =
2𝑎𝑄

𝜇
𝑙𝑛  

𝑎+ 𝑎2−𝑟2 
1
2

𝑎
 +

𝑤0

4𝑎𝑟
  𝑎 + 𝑟 2 − 𝑎 𝑎2 − 𝑟2 

1
2   ,        0 < 𝑟 ≤ 𝑎    (25) 

Differentiation of equation (25) yields  the nonzero polar stress 𝜍𝑟𝑧 (𝑟, 𝜋) in the form 

𝜍𝑟𝑧  𝑟, 𝜋 =
1

𝑟 𝑎2−𝑟2 
1
2

 2𝑎𝑄  (𝑎2 − 𝑟2)
1

2 − 𝑎 +
𝜇𝑤0

4𝑎
 
𝑎

𝑟
 𝑎2 − 𝑟2 2 𝑎2 − 𝑟2 

1
2 +  𝑎 + 𝑟  𝑎2 − 𝑟2 

1
2 + 𝑎𝑟    , 

 0 < 𝑟 < 𝑎             (26) 

The other nonzero polar stress along 𝜃 = 𝜋  , 0 < 𝑟 < 𝑎,   
𝑎−𝑟

𝑎+𝑟
< 1 is deduced by use of  equations (18) , (19) and 

chain rule as 𝜍𝑟𝜃  𝑟, 𝜋 =
𝜇

𝑟

𝜕𝑊

𝜕𝜙
 𝜌,

𝜋

2
 
𝜕𝜙

𝜕𝜃
 𝑟, 𝜋     ,   𝜌 = 𝜌 𝑟, 𝜋 < 1 Differentiating and simplifying equations (18) 

and (19) and applying (15) yields   
𝜕𝑊

𝜕𝜙
 𝜌,

𝜋

2
 =

𝜌
1
2

1+𝜌
 
𝑎𝑄

𝑟𝜇
+

𝑤0

4𝑎
 

1−𝜌

1+𝜌
     Consequently ,  

𝜍𝑟𝜃  𝑟, 𝜋 =  −
𝜇𝑟

 𝑎2−𝑟2 
1
2

 
𝑎𝑄

𝑟𝜇
+

𝑤0

4𝑎
   ,     0 < 𝑟 < 𝑎  (27)  Equations (20a) and (20b) are used to 

investigate fracture along the ray 

 𝜃 = 0  , 0 < 𝑟 ≤ 𝑎 ,   
𝑎+𝑟

𝑎−𝑟
> 1 , 𝜌 = 𝜌 𝑟, 0 > 1. 

 

For this case,  we use equation (15) and  

𝑊1(𝜌, 𝜋
2

) = −
2

𝜋
  

𝜌−(2𝑛−1)

2𝑛−1

∞
𝑛=1 −

1

2
 

𝜌
−(𝑛−

1
2)

𝑛−1
2

∞
𝑛=1  = −

1

𝜋
 𝑙𝑛  

1+𝜌

1−𝜌
 − 𝑙𝑛  

1+𝜌
1
2

1−𝜌
1
2

                                                

 𝑊2(𝜌, 𝜋
2

)=−
2

𝜋
  𝜌−2𝑛∞

𝑛=0 +
1

2
 𝜌−(𝑛−1

2)∞
𝑛=1  =  −

2

𝜋
 

1+1
2𝜌

1
2(1+𝜌)

𝜌2−1
  

to derive  𝑊 𝜌,
𝜋

2
 =  − 

𝑎𝑄

𝜇
 𝑙𝑛  

𝜌+1

𝜌−1
 − 𝑙𝑛  

𝜌
1
2+1

𝜌
1
2−1

  − 𝑤0  
1+

1

2
𝜌

1
2(1+𝜌)

𝜌2−1
 ,   𝜌 > 1     

Hence , 𝑤 𝑟, 0 =
2𝑎𝑄

𝜇
 𝑙𝑛  

𝑎+ 𝑎2−𝑟2 
1
2

𝑎
 −

1

2
𝑙𝑛  

𝑎

𝑟
  −

𝑤0

4𝑎𝑟
  𝑎 − 𝑟 2 + 𝑎 𝑎2 − 𝑟2 

1

2   , 0 < 𝑟 ≤ 𝑎  (28) 

And 

𝜍𝑟𝑧  𝑟, 0 =

  
1

𝑟2 𝑎2−𝑟2 
1
2

  
𝑎𝑄

𝜇
 
 𝑎2−𝑟2 

1
2−𝑎

 𝑎2−𝑟2 
1
2

 +     
𝜇𝑤0

4𝑎
  𝑎 − 𝑟 2 𝑎2 − 𝑟2 

1

2 + 𝑎 𝑎2 − 𝑟2 + 2𝑟 𝑎 − 𝑟  𝑎2 − 𝑟2 
1

2 + 𝑟2𝑎
  

 

 

   , 

 𝑜 < 𝑟 < 𝑎          (29) 

Similarly,   𝜍𝜃𝑧  𝑟, 0 =
𝜇

𝑟
 

2𝑎𝑟

𝑎2−𝑟2 
𝜕𝑊

𝜕𝜙
 𝜌,

𝜋

2
   , 𝜌 = 𝜌 𝑟, 0 > 1 

     =
𝑎𝜇

 𝑎2−𝑟2 
1
2

 −
𝑎

𝑟

𝑄

𝜇
+

𝑟𝑤0

8𝑎2    ,       0 < 𝑟 < 𝑎       (30)
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V. CONCLUSION 
The solution of the upper half plane problem given by equations (15), (18) and (19) satisfies equations  (6) and 

(7). Equations  (25) and (27) show that the displacement 𝑤(𝑟, 𝜋) and 𝑤(𝑟, 0) satisfy the boundary condition given 

in equation (2). 

Using 

 𝜍𝑟𝑧 𝑎, 𝜃 = 𝜇
𝜕𝑤

𝜕𝜙
 𝜌, 𝜋 

𝜕𝜙

𝜕𝑟
 𝑎, 𝜃 , 𝜌 ≥ 0  ,0 < 𝜃 < 𝜋 ,  we get 𝜍𝑟𝑧 𝑎, 𝜃 = 𝑄 , 0 < 𝜃 < 𝜋 

From equations (26), (27), (29) and (30), it follows that as 𝑟 → 𝑎+ , 𝑎 − 𝑟 → 0   and  

𝜍𝑟𝑧  𝑟, 𝜋 =  
𝑎

2
 

1

2 𝜇

 𝑎−𝑟 
1
2

 
𝑤0

8𝑎
−

𝑄

𝜇
   𝑎𝑠 𝑟 → 𝑎+         (31) 

𝜍𝜃𝑧  𝑟, 𝜋 = − 
𝑎

2
 

1

2 𝜇

 𝑎−𝑟 
1
2

 
𝑄

𝜇
+

𝑤0

4𝑎
   𝑎𝑠 𝑟 → 𝑎+       (32) 

𝜍𝑟𝑧  𝑟, 0 =  
𝑎

2
 

1

2 𝜇

 𝑎−𝑟 
1
2

 
𝑤0

8𝑎
−

𝑄

𝜇
   𝑎𝑠 𝑟 → 𝑎+       (33) 

𝜍𝜃𝑧  𝑟, 0 =  
𝑎

2
 

1

2 𝜇

 𝑎−𝑟 
1
2

 
𝑤0

8𝑎
−

𝑄

𝜇
   𝑎𝑠 𝑟 → 𝑎+       (34) 

 

The form of the displacement 𝑤 𝑟, 𝜋   and 𝑤(𝑟, 0) given by equations (25) and (28) indicate likelihood of 

singularity of the displacement towards the origin along the rays 𝜃 = 0 and 𝜃 = 𝜋. 

 

Equations (31), (32), (33) and (34) indicate a tendency to locally tear [2] the material near the points (𝑎, 𝜋) and 

(𝑎, 0) , meaning that cracking may commence there. 

 

In figure 3, the relation linking the non-dimensional quantities 
𝜍𝑟𝑧 (𝑟,𝜋)

𝑄
=  2  1 −

𝑟

𝑎
  

−
1

2
 1 +

𝜁𝜂

4
   

For 𝑤0 = 𝜁𝑎  , 0 ≤ 𝜁 < 1   and  𝑄 = 𝜂𝜇   ,   0 < 𝜂 < ∞  is represented graphically for various values of 𝜁𝜂. These 

indicate that the tearing stress is linearly dependent on the applied stress 
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