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ABSTRACT: The event horizon is the boundary of a blackhole and at it we have a surface gravity

- 4 . ~ - . . .
(K) given by _éw . This surface gravity is quite strong, but surface gravity gets stronger as we
move beyond the event horizon and go further mto the blackhole. At the singularity, which 1s the
smallest point in a black hole, the fabric of space time bends infinitely and we have an infinitely small
area. This shows that the surface area and the surface gravity in a blackhole actually have an inverse
relationship. In this paper we will find a mathematical model for that inverse relationship.
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. INTRODUCTION
Through the differential equations formed and Stokes theorem, we will show that if there is a
gravitational singularity, it has no mass. This is contradictory to what we know about the singularity
at the present (Katz, 1979). According to existing calculations, the singularity has an infinitely high
density, which means there is some mass which is concentrated in an infinitely small volune
(Macdonald, 2014). According to the equations formulated in this paper, we find that the singularity
has no mass and hence can’t contain any matter. This gives birth to many paradoxes, as mass is

required for there to be a gravitational force. So how can something which has no mass, bend the
fabric of spacetime infinitely?

ANALYSIS

Following the Poincare conjecture, a manifold in 3 or more dimensions is homeomorphic to the 3-
sphere (Hamilton, 1997). When it comes to Schwarzschild blackholes, we can assume the area
enclosed by the event horizon to be homeomorphic to the area enclosed by the singularity (Hughston
& Tod, 1990). Therefore, transforming the event horizon into the singularity, we see an increase in
surface gravity.

The surface area of a schwarzschild blackhole can be given as 4 = 477

i . ‘ : . = 2GM
The radius of the event horizon can be given as 7, = r—f

Since we are minimizing the area and transforming it into the singularity, we notice that surface
gravity gets stronger. however this relationship isn’t linear. In order to express the rate of change of
surface gravity with respect to area, we need a differential equation.
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The de1'ivative of surface gravity (K) with respect to surface area (A) can be expressed as follows:

% = g—f{ dA M \where M is mass

i , , , . 4
We know that surface gravity at the event horizon can be given as follows: K oh 3 G(‘;M
’ eh

The derivative of surface gravity with respect to mass can be found by differentiating the above
expression and this gets us

dEK _ _=¢*

dM  aGM?
Now, that we have the surface gravity and mass relation, we must move on to the mass and area
relation.
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By substituting the expression above for r, we can find the Area and Mass relation 4 ;, = 47( )
o A4,
My, = 267

To find the derivative of Mass with respect to area, we have to differentiate the expression above and
that gives us

d4 SGVAT arr .
M a
Since we have found W as well a:, 77 We can now find out i
@ = d_K pd @ = i > c” = 7(,6
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Now we have to write M in terms of A in order to find an accurate relation which is as follows:
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Substituting M squared in the derivative we get
dK _ —° _ T
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Arriving at a general equation for surface gravity K
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Since this expression for k corresponds with the earlier expression of k which was given by
Schawrzchild, we can confirm that the derivative of surface gravity with respect to surface area holds
true.

By using Stokes theorem, we can show the difference between surface gravity at the singularity and
the surface gravity at the event horizon. This means that the boundary condition 1s from the event
horizon to the singularity.
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Therefore, surface gravity at the singularity approaches infinity.

By using Stokes theorem, we can show the difference between Mass at the event horizon and mass at
the singularity. This means that the boundary condition is from the singularity to the event horizon.
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This proves that the mass of the singularity approaches 0. So if there is some form of a singularity
that has the radius approaching 0, and the mass also approaches 0, then how 1s 1t able to bend the
fabric of spacetime. Since gravity 1s what causes the bending of space time and mass 1s required to
have a gravitational force, it seems paradoxical that something with no mass approaches infinite
surface gravity. However, according to existing ideas, at the singularity the fabric of space-time bends
mfinitely (Claes, 2006). That means that some of the mass of the blackhole should be concentrated at
the region of the singularity. However, according to these calculations, the singularity has no mass
and vet surface gravity tends towards infinity. This paradox could perhaps show that mass may not be
the sole characteristic that determines the distortion of space-time.

Now we will move onto another approach that demonstrates that there may be no singularity at all. In
calculus a key concept is that in the graph of a function, at the maximum or minimum point, the

denivative 1s equal to 0. If this 1s true and the singularity 1s the point of maximum gravity. Then

- . . . . . < —\T
% =0 and % = 0 at the singularity. According to expressions calculated earlier, % = "

, we can say that perhaps there

- _ 4 . . L.
and “& = —< _Since 0 isn’t equal to — ¢ and it isn’t equal to — ¢*
aM G

is N0 maximum or minimum point. Instead, the further we reduce the area, the further we increase the
surface gravity, and we can keep going on like this forever, but never reach 0 area. Hence, there may
be no singularity (Forshaw & Smith, 2004).

1. CONCLUSION
In conclusion, a gravitational singularity may not exist for a Schwarzschild blackhole with these
specific boundary conditions. If a gravitational singularity does exist, it approaches no mass and hence the
expression for its surface gravity becomes paradoxical, even though at a surface area equal to 0, the surface
gravity becomes infinitely large as shown earlier. These paradoxes highlight that it isn’t possible for a
gravitational singularity to exist in both states of 0 area and 0 mass.
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