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ABSTRACT 

The Grad-shafranov equation is derived from the magnetohydrodynamic (MHD) equilibrium equations given by 

the momentum equation for a plasma in equilibrium, Amperes law relating the current density 𝐽 to the curl of 

the magnetic flux density 𝐵 and The divergence free postulate, stating that there are no sources of magnetic 

flux, that is, no magnetic monopoles, the equilibrium equation in ideal magnetohydrodynamics (MHD) for a two 

dimensional plasma, for example the axisymmetric toroidal plasma in a tokamak. Tokamak equilibrium can be 

considered as an internal balance between the plasma pressure and the forces from the magnetic field. This 

gives rise to the shape and position of the plasma, controlled by the currents in the external coils. Cylindrical 

coordinate system is used to derive the grad-shafranov equation, we consider the right hand system (r, ϕ, z) that 

is 𝑒𝑟 . 𝑒𝜙 × 𝑒𝑧 > 0. The largest component of the magnetic field is the toroidal field produced by the poloidal 

currents in the external coils. The two main applications of magnetohydrodynamics (MHD) are technological—

to liquid metals and to plasmas. There is little doubt that the former has had the greater impact on society. It 

includes the casting and stirring of liquid metals, levitation melting, vacuum-arc re-melting, induction furnaces, 

electromagnetic valves, and aluminum reduction cells. 

KEYWORDS: Magnetohydrodynamics(MHD), Tokamak Equilibrium, Amperes Law, Divergence, Flux 

Function, Plasma, Magnetic Flux, Toroidal Field, Poloidal Currents, Current Density. 
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I. INTRODUCTION-MHD EQUILIBRIUM 
The Grad-shafranov equation (H. Grad and H. Rubin (1958); VitaliDmitrievich Shafranov (1966) is the 

equilibrium equation in ideal magnetohydrodynamics (MHD) for a two dimensional plasma, for example the 

axisymmetric toroidal plasma in a tokamak. This equation takes the same form as the Hick’s equation from fluid 

dynamics. This equation is a two dimensional, nonlinear, elliptic partial differential equation obtained from the 

reduction of the ideal MHD equations to two dimensions, often for the case of toroidal axisymmetric (the case 

relevant in a tokamak). Taking  𝑟, 𝜙, 𝑧  as the cylindrical coordinates, the flux function 𝛹 is governed by the 

equation 

 −𝜇°𝑟
2 𝑑

𝑑𝛹
−

1

2

𝑑𝐹2

𝑑𝛹
=

𝜕2𝛹

𝜕𝑟2 −
1

𝑟

𝜕𝛹

𝜕𝑧2 +
𝜕2𝛹

𝜕𝑧2               (i) 

Where 𝜇° is the magnetic permeability, 𝑃 𝛹  is the pressure, 𝐹 𝛹 = 𝑟𝐵𝜙 and the magnetic field and current 

are respectively given by  

   𝐵 =
1

𝑟
∇𝛹 × 𝑒𝜙 +

𝐹

𝑟
𝑒𝜙              (ii) 

   𝜇°𝐽 =
1

𝑟

𝑑𝐹

𝑑𝛹
∇𝛹 × 𝑒𝜙 −  

𝜕

𝜕𝑟
 

1

𝑟

𝜕𝛹

𝜕𝑟
 +

1

𝑟

𝜕2𝛹

𝜕𝑧2  𝑒𝜙           (iii) 

The nature of the equilibrium whether it be a tokamak, reversed field pinch, etc. is largely determined by the 

choices of the two functions 𝐹 𝛹  and 𝑃 𝛹  as well as the boundary conditions. 

FLUX FUNCTIONS 
The fundamental equilibrium condition is that the forces are zero at all points. Assuming the absence of plasma 

resistance, (i.e. ideal MHD conditions) we require that the magnetic and pressure forces balance at all points, 

 𝐽 × 𝐵 =  ∇𝑃                (a)  

Where, 𝐽 is the current density, 𝐵 is the magnetic field and 𝑃 is the pressure. 
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Hence  

  𝐵. ∇𝑃 = 0               
(b) 

  𝐵. (𝐽 × 𝐵) = 0              (c)  

Equation (ii) shows that the magnetic surfaces are surfaces of constant pressure and that  

  𝐽. ∇𝑃 = 0 

 
Figure 1: cylindrical coordinate system 𝑅 = 0 is the major axis of the torus. 

 

Introducing the poloidal magnetic function 𝛹. This function is determined by the poloidal flux lying within each 

magnetic surfaces and is therefore constant on that surface. Hence  

  𝐵. ∇𝛹 = 0 

Defining the flux function𝛹 as the poloidal flux per unit radian in ϕ, the poloidal magnetic field is related to 𝛹 

by equation (d) below. 

  𝐵𝑅 = −
1

𝑅

𝜕𝛹

𝜕𝑅
, 𝐵𝑍 =

1

𝑅

𝜕𝛹

𝜕𝑅
              (d) 

Recall, from Maxwell equation of divergence∇. B = 0, that is  

  
1

𝑅

𝜕𝑅𝐵𝑅

𝜕𝑅
+

𝜕𝐵𝑍

𝜕𝑍
= 0 

The flux function is arbitrary to an additive constant which is chosen for convenience. From the symmetry of 

𝐽 and 𝐵 it is clean that a current flux function also exists. This function is related to the poloidal current density 

by  

  𝐽𝑅 = −
1

𝑅

𝜕𝐹

𝜕𝑍
, 𝐽𝑍 =

1

𝑅

𝜕𝐹

𝜕𝑅
               

(e) 

Comparison of equation with ampere equation  

  𝐽𝑅 = −
1

𝜇 ⁰𝑅

𝜕𝐵𝜙

𝜕𝑍
, 𝐽𝑍 =

1

𝜇 ⁰𝑅

𝜕𝐵𝜙

𝜕𝑅
 

 

Gives the relation between 𝐹 and the toroidal magnetic field as 

  𝐹 =  
𝑅𝐵𝜙

𝜇 ⁰
                

(f) 

It can be shown that 𝐹 function of 𝛹 by taking the scalar product of equation (a) with 𝐽 to obtain 𝐽. ∇𝑃 = 0, and 

then substituting equation (f) for 𝐽. thus  

  
𝜕𝐹

𝜕𝑅

𝜕𝑃

𝜕𝑍
−

𝜕𝐹

𝜕𝑍

𝜕𝑃

𝜕𝑅
= 0 

And so  

  ∇𝑓 × ∇𝑃 = 0,  

Proving that 𝐹 is a function of 𝑃. then since 𝑃 = 𝑃 𝛹 , it follows that 𝐹 = 𝐹 𝛹 . The flux function as defined 

here give the poloidal flux per radian in 𝜙. It is possible to define the total flux function for the torus which is 

simply 2𝜋𝛹. 

 

THE GRAD-SHAFRANOV EQUATION  

The grad-shafranov equation is derived from the magnetohydrodynamic (MHD) equilibrium equations given by: 

1. The momentum equation for a plasma in equilibrium 

  J × 𝐵 =  ∇𝑃        (1) 

No time variation, therefore 
𝑑𝑣

𝑑𝑡
= 0 

2. Amperes law relating the current density 𝐽 to the curl of the magnetic flux density 𝐵. 

  𝜇⁰J = ∇ × 𝐵               (2) 

3. The divergence free postulate, stating that there are no sources of magnetic flux, that is, no magnetic 

monopoles. 
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  ∇. 𝐵 = 0                (3) 

Note, equation (1) establishes the force balance needed for equilibrium, the pressure gradient (expansion force) 

needs to be equal to the magnetic force (confinement force). In this way the plasma is in equilibrium. 

Importantly, the plane defined by 𝐽 and 𝐵 everywhere tangent to the isosurfaces of 𝑃. 

 

DERIVATION VECTOR CALCULUS  

For the derivation of the grad-shafranov equation, an axisymmetric geometry and a standard cylindrical 

coordinate system (r, ϕ, z) 

 

 
Figure 2:Cylindrical coordinate system is used to derive the grad-shafranov equation, note that we consider the 

right hand system (r, ϕ, z) that is 𝑒𝑟 . 𝑒𝜙 × 𝑒𝑧 > 0. 

 

Since we assume axisymmetric, for all functions defined on the domain Ω, spatial derivatives with respect to ϕ 

are zero. 

  
𝜕𝐹

𝜕𝜙
= 0,⩝ 𝐹 𝝐 𝑤𝜙

1  Ω          (4) 

Since the magnetic flux density B is divergence free, from equation (3)Poincare’s theorem. 

For example, states that there must exist a magnetic vector potential A. 

  ∇. 𝐵 = 0 ⇒ ∋ 𝐴 ∈  𝐻  𝑐𝑢𝑟𝑙, ∇     /   ∇ × A = B       (5) 

In cylindrical coordinates this vector potential A and ∇can be written respectively as  

  𝐴 = 𝐴𝑟𝑒𝑟 + 𝐴𝜙𝑒𝜙 + 𝐴𝑧𝑒𝑧  ,∇= 𝑟
𝜕

𝜕𝑟
+ 𝜙

1

𝑟

𝜕

𝜕𝜙
+ 𝑧

𝜕

𝜕𝑧
    (6) 

Therefore, the magnetic flux field becomes  

  𝐵 = ∇ × 𝐴 =
1

𝑟
 

𝑒𝑟 𝑒𝜙𝑟 𝑒𝑧
𝜕

𝜕𝑟

𝜕

𝜕𝜙

𝜕

𝜕𝑧

𝐴𝑟 𝑟𝐴𝜙 𝐴𝑧

            (7) 

Due to the axisymmetric assumption equation from equation (4)  
𝜕𝐴𝑟

𝜕𝜙
=

𝜕𝐴𝑍

𝜕𝜙
= 0 

  𝐵 = ∇ × 𝐴 =
1

𝑟
 𝑒𝑟  

𝜕𝐴𝑍

𝜕𝜙
−

𝑟𝜕𝐴𝜙

𝜕𝑧
 − 𝑒𝜙𝑟  

𝜕𝐴𝑧

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝑧
 + 𝑒𝑧  

𝑟𝜕𝐴𝜙

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝜙
   

  𝐵 = ∇ × 𝐴 = 
1

𝑟
 𝑒𝑟  −

𝑟𝜕𝐴𝜙

𝜕𝑧
 − 𝑒𝜙𝑟  

𝜕𝐴𝑧

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝑧
 +  𝑒𝑧  

𝑟𝜕𝐴𝜙

𝜕𝑟
      (8) 

Opening the outer bracket, we obtain equation (8) 

  =  −
𝜕𝐴𝜙

𝜕𝑧

𝑒𝑟

1
− 𝑒𝜙  

𝜕𝐴𝑧

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝑧
 +

1

𝑟

𝜕 𝑟𝐴𝜙  

𝜕𝑟

𝑒𝑧

1
 

Since,   ∇ ×  𝐴𝜙𝑒𝜙 =  −
𝜕𝐴𝜙

𝜕𝑧

𝑒𝑟

1
+

1

𝑟

𝜕 𝑟𝐴𝜙  

𝜕𝑟

𝑒𝑧

1
     (9a) 

considering 𝐴 in the direction of 𝜙, hence we can write that 

𝐵 = ∇ ×  𝐴𝜙𝑒𝜙 − 𝑒𝜙  
𝜕𝐴𝑧

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝑧
         (9b) 

Defining the following two variables  

  𝛹 = −𝑟𝐴𝜙         (10) 

  𝑔 = 𝑟𝐵𝜙 = 𝑟  
𝜕𝐴𝑧

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝑧
        (11) 

Recall also that, 

  ∇𝜙 =
1

𝑟
𝑒𝜙         (12) 

Hence, equation (9b) can be rewritten as, 

𝐵 = ∇𝜙 × ∇𝛹 + 𝑔∇𝜙         (13) 
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By substituting equation (13) into equation (2), 𝝁°𝑱 = 𝛁 × 𝑩. 

  𝜇°𝐽 = ∇ × 𝐵. 

  = ∇ ×  ∇∅ × ∇Ψ + ∇ ×  𝑔∇∅  

= ∇ ×  
1

𝑟
𝑒𝜙 ×  

𝜕𝛹

𝜕𝑟
𝑒𝑟 +

𝜕𝛹

𝜕𝑧
𝑒𝑧  + ∇𝑔 × ∇𝜙         (14) 

Where ∇𝜙 and ∇𝛹 have been expanded and the first term of the right hand side on the second term of the right 

hand side the vector calculus identity. ∇ ×  𝑔𝑉 = 𝑔∇ × 𝑉 + ∇𝑔 + 𝑉 has been used. Recall that in this case 

V = ∇𝜙 which implies that ∇ × 𝑉 = ∇ × ∇𝜙 = 0. Further expanding the curl term in equation (14) yields. 

  𝜇°𝐽 = ∇ ×  
1

𝑟

𝜕𝛹

𝜕𝑧
𝑒𝑟 −

1

𝑟

𝜕𝛹

𝜕𝑟
𝑒𝑟 × ∇𝑔 × ∇𝜙 

=  
𝜕

𝜕𝑧
 

1

𝑟

𝜕𝛹

𝜕𝑧
 +

𝜕

𝜕𝑟
 

1

𝑟

𝜕𝛹

𝜕𝑟
  𝑒𝜙 × ∇𝑔 × ∇𝜙  

  =  
1

𝑟

𝜕2𝛹

𝜕𝑧2 −
1

𝑟2

𝜕𝛹

𝜕𝑟
+

1

𝑟

𝜕2𝛹

𝜕𝑟2  𝑒𝜙 × ∇𝑔 × ∇𝜙 

Recall that, ∇𝜙 =
1

𝑟
𝑒𝜙  

  =  
𝜕2𝛹

𝜕𝑧2 −
1

𝑟

𝜕𝛹

𝜕𝑟
+

𝜕2𝛹

𝜕𝑟2  ∇𝜙 × ∇𝑔 × 𝜙     (15) 

Introducing the following elliptical operator, let  

  ∆∗𝛹 =
𝜕2𝛹

𝜕𝑧2 −
1

𝑟

𝜕𝛹

𝜕𝑟
+

𝜕2𝛹

𝜕𝑟2        (16) 

Hence equation (15) can be rewritten as, 

  𝜇°𝐽 = ∆∗𝛹∇𝛹 × ∇𝑔 × ∇𝜙       (17) 

Equation (17) decomposes the current density vector field into a toroidal component, ∆∗𝛹∇𝜙, and a poloidal 

component ∇𝑔 × ∇𝜙, the toroidal component is parallel to ∇𝜙 and the poloidal component us perpendicular to 

∇𝜙 since the triple product ∇𝜙. ∇𝑔 × ∇𝜙 = 0. 

Substituting (13) and (17) into the equilibrium equation, equation (1) and assuming for compactness 𝜇° = 1 we 

obtain 

∇𝑃 = 𝐽 × 𝐵 =  ∆∗𝛹∇𝜙 + ∇𝑔 × ∇𝜙 ×  ∇𝜙 × ∇𝛹 + 𝑔∇𝜙        (18) 

To further simplify this expression it is fundamental to show that 𝑃 = 𝑃 𝛹  and 𝑔 = 𝑔 𝛹  we start by P. 

computing the inner product of B with both sides of the equilibrium equation (1) yields. 

𝐵. ∇𝑃 = 𝐵.  𝐽 × 𝐵 = 0           (19) 

Combining (1) and (19) and noting that due to axisymmetric, ∇𝑃 =
𝜕𝑃

𝜕𝑟
𝑒𝑟 +

𝜕𝑃

𝜕𝑧
𝑒𝑧 , since by equation (4) 

𝜕𝑃

𝜕𝜙
= 0, 

we get. 

  𝐵. ∇𝑃 =  ∇𝜙 × ∇𝛹 + 𝑔∇𝜙 . ∇𝑃 

  =  ∇𝜙 × ∇𝛹 . ∇𝑃 

  =  
𝑒𝜙

𝑟
× ∇𝛹 ∇𝑃 

=
𝑒𝜙

𝑟
.  ∇𝛹 × ∇𝑃         (20) 

Since both ∇𝛹 and ∇𝑃 are vectors perpendicular to 𝑒𝜙  ( due to axisymmetric, equation (4) this implies that for 

equation (20) to satisfy equation (19), we have that. 

∇𝛹 × ∇𝑃 = 0 ⇒  ∇𝑃 ∇𝛹        (21) 

In turn, this means that pressure is a function only of the poloidal flux, 𝑃 = 𝑃 𝛹 , and its gradient can be 

written as 

∇𝑃 =
𝑑𝑃

𝑑𝛹
∇𝛹        (22) 

To show that 𝑔 is a function only of 𝛹, we need to follow a similar procedure to the one followed for P but 

using the current density J, the inner product of J with both sides of the equilibrium equation (1) yields. 

𝐽. ∇𝑃 = 𝐽.  𝐽 × 𝐵 = 0       (23) 

Combining equation (1) with (23) and noting that due to axisymmetric 

  ∇𝑃 =
𝜕𝑃

𝜕𝑟
𝑒𝑟 +

𝜕𝑃

𝜕𝑧
𝑒𝑧  

Since by equation (4) 
𝜕𝑃

𝜕𝜙
= 0, hence  we  obtain  

 𝐽. ∇𝑃 =  ∆∗∇𝛹 + ∇𝑔 × ∇𝜙 . ∇𝑃 

  =  ∇𝑔 × ∇𝜙 . ∇𝑃 

  =  ∇𝑔 ×
𝑒𝜙

𝑟
 . ∇𝑃 

=
𝑒𝜙

𝑟
.  ∇𝑔 × ∇𝑃         (24) 

Since both ∇𝑔 and ∇𝑃 are vectors perpendicular to 𝑒𝜙  ( due to axisymmetric equation (4)), this implies that for 

equation (24) to satisfy equation (23) we have that 
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∇𝑔 × ∇𝑃 = 0 ⇒  ∇𝑃 ∇𝑔 ⇒  ∇𝑔 ∇𝑃   where we used for the last implication ∇𝑃 ∇𝛹 , equation (21) in turn, this 

means that g is a function only of the poloidal flux 𝑔 = 𝑔 𝛹 , and its gradient can be written as  

∇𝑔 =
𝑑𝑔

𝑑𝛹
∇𝛹        (25) 

Combining now equation (22) and (25) into equation (18) we get  
𝑑𝑃

𝑑𝛹
∇𝛹 =  ∆∗𝛹∇𝜙 +

𝑑𝑔

𝑑𝛹
∇𝛹 × ∇𝜙 ×  ∇𝜙 × ∇𝛹 + 𝑔∇𝜙  

= ∆∗𝛹∇𝜙 ×  ∇𝜙 × ∇𝛹 + 𝑔  
𝑑𝑔

𝑑𝛹
∇𝛹 × ∇𝜙 × ∇𝜙 

=
∆∗𝛹

𝑟2 𝑒𝜙 ×  𝑒𝜙 × ∇𝛹 +
𝑔

𝑟2

𝑑𝑔

𝑑𝛹
 ∇𝛹 × 𝑒𝜙 × 𝑒𝜙      (26) 

Note that equation (12) was used on the last equality, recalling that due to axisymmetric equation (4) the 

gradient of the poloidal flux ∇𝛹 is perpendicular to 𝑒𝜙and that  𝑒𝜙 = 1, we have that 𝑒𝜙 ×  𝑒𝜙 × ∇𝛹 =

 ∇𝛹 × 𝑒𝜙 × −∇𝛹. Therefore, equation (26) can be simplified into. 
𝑑𝑃

𝑑𝛹
∇𝛹 = −

∆∗

𝑟2 ∇𝛹 −
𝑔

𝑟2

𝑑𝑔

𝑑𝛹
∇𝛹       (27) 

Which leads directly to the Grad-shafranov equation  

 ∆∗𝜳 = −𝒓𝟐 𝒅𝑷

𝒅𝜳
− 𝒈

𝒅𝒈

𝒅𝜳
         (28) 

 

 

II. APPLICATIONS 
The two main applications of magnetohydrodynamics (MHD) are technological—to liquid metals and 

to plasmas. There is little doubt that the former has had the greater impact on society. It includes the casting and 

stirring of liquid metals, levitation melting, vacuum-arc re-melting, induction furnaces, electromagnetic valves, 

and aluminum reduction cells. Another application, the flow of a liquid metal in the blanket surrounding a 

thermonuclear reaction chamber, touches on the other main area: plasma magnetohydrodynamics (MHD). The 

reactor contains a rarefied plasma of deuterium/tritium (DT) that is raised to a high enough temperature for these 

nuclei to fuse and release energy. The economic promise of such a device in generating magnetic fusion energy 

(MFE) has provided a powerful incentive for studying plasma magnetohydrodynamics (MHD) and has led to 

significant new insights, particularly into the structure and stability of MSE. In addition to these practical 

applications, the elucidation of a wide variety of magnetic phenomena in nature depends on an understanding of 

magnetohydrodynamics (MHD). Astrophysics and geophysics provide abundant examples, including the 

magnetism of the earth, planets, and satellites, that of the sun and other stars, and that of galaxies. 

Magnetohydrodynamics (MHD) is important in astrophysical processes such as magneto-convection, magnetic 

flux emergence, flux ropes, spots, atmospheric heating, wind acceleration, flares, and eruptions. 
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