Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 5 (2021) pp: 01-06 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Core theorems of double sequences through the generalized de la Vallée-Poussin Mean

Zakawat U. Siddiqui*, Mohammed A. Chamalwa and Ahmadu Kiltho

 Department of Mathematical Sciences, Faculty of Science, University of Maiduguri, Nigeria

ABSTRACT

The convergence of double sequences was a natural extension of the convergence of sequences. The transform of a sequence by a matrix A gives rise to the A-summability. It is natural that in order to find analogue of Asummability for double sequences, the matrix A is taken four-dimensional. It is pertinent to find the analogue of core of sequences for the double sequences. The aim of this paper is to use the generalized double de la Vallẻe-Pousin mean to find analogues of some results related to the Pringsheim P-core of double sequences. KEY WORDS: Double sequences, Bounded double sequences, Almost Convergence, Core theorems, Pringsheim core, Double De la Vallẻe-Pousin Mean.

Received 14 May, 2021; Revised: 28 May, 2021; Accepted 30 May, 2021 © The author(s) 2021. Published with open access at www.questjournals.org

I. INTRODUCTION

The concept of the core of a sequence was first introduced by Knopp [1], now known as the Knopp core. Let $x = \{x_k\}$ be a sequence in C, the set of all complex numbers and C_k be the least convex closed region of complex plane containing $x_k, x_{k+1}, x_{k+2}, \ldots$. The Knopp core of x (K-core of x or core of x) is defined by the intersection of all C_k ($k = 1, 2, ...$). In the real case the K-core of x is reduced to the closed interval $\limsup x$. If A is a non-negative regular matrix, then the core of x is contained in the core of Ax, provided that Ax exists. Rhoades [2] gave a slight generalization of Knopp's core theorem in 1960. In 1979, Maddox [3] gave some analogues of Knopp's core theorem.

In 1999, Patterson [4] extended the Knopp core for the double sequences using the convergence of double sequences defined by Pringsheim $[5]$, called it Pringsheim core (shortly, P-core) which is given by $[P - \liminf x, P - \limsup x]$, and proved some result on them. In 2002, the M-core and σ -core for double sequences were defined and studied by Mursaleen and Edely [6] and Mursaleen and Mohiuddine ([7] and [8]), respectively. The σ -core for single sequences was given by Mishra et al [9]. Kayaduman and Çakan [10] presented the concept of Cesáro core of double sequences.

 Mohiuddine and Alotaibi [11] presented a generalization of the notion of almost convergent of double sequence with the help of de la Vallée-Poussin mean and called it $[\lambda, \mu]$ -almost convergent. Using this concept, they defined the notions of regularly of $[\lambda, \mu]$ -almost conservative and $[\lambda, \mu]$ -almost coercive fourdimensional matrices and obtain their necessity and sufficient conditions. Further, they introduced the space \mathcal{L}_1 of all absolutely convergent double series and characterize the matrix class $(\mathcal{L}_1, \mathcal{F}_{[\lambda,\mu]})$, where $\mathcal{F}_{[\lambda,\mu]}$ denotes the space of $[\lambda,\mu]$ -almost convergence for double sequences.

Definition 1.1 [5]: A double sequence $x = (x_{jk})$ is said to be convergent to L in the Pringsheim's sense (or Pconvergent to L) if for a given $\varepsilon > 0$ there exists an integer N such that $|x_{jk} - L| < \varepsilon$ whenever *j*, $k > N$. The space of P-convergent sequences is denoted by C_{P} .

Definitions 1.2 [5]: A double sequence $x = (x_{jk})$ is said to be bounded if $||x|| = \frac{s}{i k}$ $j, k \geq 0$ $|x_{jk}| < \infty$. We denote the space of all bounded double sequences by \mathfrak{J}_{∞} .

The space of double sequences which are both bounded and P-convergent are denoted by C_{BP} .

Let $\{A = a_{pqmn}, p, q = 0,1,2,...\}$ be a doubly infinite matrix of real numbers for all m, n = 0, 1, 2,... . Forming the sums

$$
y_{pq} = (Ax)_{pq} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{pqmn} x_{mn},
$$

called the A-mean of the sequence $x = \{x_{ik}\}\$, yield a method of summability. More exactly, we say that a sequence $x = \{x_{ik}\}\$ is A-summable to the limit l if the A-mean exists for all j, k = 0, 1, 2, ... in the sense of Pringsheim, i. e.,

 $_{j=0}^m \sum_k^n$

We say that a matrix A is bounded regular if every bounded and convergent sequence $x = \{x_{ik}\}\$ is A-summable to the same limit and the A-means are bounded, Başarir [12].

Definition 1.3 [11]: A double sequence $x = \{x_{ik}\}\$ of real is said to be $[\lambda, \mu]$ -almost convergent (briefly, $\mathcal{F}_{[\lambda,\mu]}$ – convergent) to some number l if $x \in \mathcal{F}_{[\lambda,\mu]}$, where

 $\mathcal{F}_{[\lambda,\mu]} = \{x = \{x_{jk}\}: p - \lim_{mn \to \infty} \Omega_{mnst}(x) = L \text{ exists, uniformly in } s, t; L = \mathcal{F}_{[\lambda,\mu]} - \lim x\},$ $\mathbf{1}$,

$$
L_{mn,s,t}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j+s,k+t}
$$

Denote by $\mathcal{F}_{[\lambda,\mu]}$, the space of all $[\lambda,\mu]$ -almost convergent sequence $\{x_{ik}\}\$. Note that $\mathcal{C}_{BP} \subset \mathcal{F}_{[\lambda,\mu]} \subset \ell_{\infty}$. **Definition 1.4** [4] Let $x = \{x_{i,k}\}$ be a double sequence of real numbers and for each n, let $\alpha_n = \sup_n \{x_{i,k}\}\$ n } The Pringsheim limit superior of $\{x\}$ is defined as follows:

(1) If $\alpha_n = +\infty$ for each n, then $P - \limsup\{x\} = +\infty$;

(2) If $\alpha_n < \infty$ for some n, then $P - \limsup \{x\} := \inf_n \{\alpha_n\}$

Similarly, let $\beta_n = \inf_n \{x_{i,k} : j, k \geq n\}$ then the Pringsheim limit inferior of $\{x_{i,k}\}$ is defined as follows:

(3) If $\beta_n = -\infty$ for each n, then $P - \liminf \{x\} = -\infty$;

(4) If $\beta_n > -\infty$ for some n, then $P - \liminf \{x\} = \sup_n {\{\beta_n\}}$

Let $\lambda = (\lambda_m : m = 0, 1, 2, ...)$ and $\mu = (\mu_n : n = 0, 1, 2, ...)$ be two nondecreasing sequences of positive real with each tending to ∞ such that $\lambda_{m+1} \leq \lambda_m + 1$, $\lambda_1 = 0$, $\mu_{n+1} \leq \mu_n + 1$, $\mu_1 = 0$ and define

$$
\mathfrak{F}_{mn}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j,k}
$$

called the double generalized de la Vallée – Poussin mean, where $J_m = [m - \lambda_m + 1, m]$ and $I_n = [n \mu_n + 1$, n]. We denote the set of all λ and μ type sequence by using the symbol [λ , μ]. We wish to study the core of double sequences via the generalized double de la Vallée-Poussin mean.

Define the following sub-linear functional on \mathcal{L}_{∞} .

$$
\Gamma(x) = \lim_{m, n \to \infty} \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j+s,k+t}
$$

Then the $\mathcal{F}_{[\lambda,\mu]}$ – core of a real-valued bounded double sequence $\{x_{i,k}\}$ is defined to be the closed interval $[-\Gamma(-x), \Gamma(x)]$. Since BP-convergent double sequence is $\mathcal{F}_{[\lambda,\mu]}$ -convergent, we have, $\Gamma(x) \le L(x)$, where $L(x) = P - \limsup x$ and hence it follows that $\mathcal{F}_{[\lambda,\mu]} - core\{x\} \subseteq P - core\{x\}$ for all $x \in \mathcal{L}_{\infty}$.

II. MATERIALS AND METHOD

The following results are used in our work to establish the results in the next sections. **Theorem 2.1** [13]: The four-dimensional matrix $A = (a_{pqmn})$ is RH-regular if and only if: (RH₁) P-lim_{p,q→∞} $a_{p,q,m,n} = 0$, for each m and n (RH_2) $P-\lim_{p,q\to\infty}\sum_{m=1}^p\sum_n^q$ \boldsymbol{n} \overline{p} \boldsymbol{m} (RH_3) $P-\lim_{p,q\to\infty}\sum_{n=0}^{p}$ $\binom{p}{m=1}a_{pqmn}$ = 0, for each n, (RH_4) P – $\lim_{p,q\to\infty}\sum_{n=1}^{q}$ $\binom{q}{n-1}$ $|a_{pqmn}| = 0$, for each m,

(RH₅) $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}|$ is P-convergent; and

(RH₆) there exist positive numbers A and B such that $\sum_{j>B}^{\infty} \sum_{k=1}^{\infty}$

Theorem 2.2 [4] If A is a non-negative RH-regular summability matrix, then $P - C\{Ax\} \subseteq P - C\{x\}$ for any bounded sequence $\{x\}$ for which $\{Ax\}$ exists.

Lemma 2.1 [4] If $A = (a_{mnjk})$ is a four-dimensional matrix, such that (RH_1) , (RH_3) , (RH_4) and

$$
P - \limsup_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}| = M,
$$

holds, then for any bounded double sequence $x = \{x_{ik}\},\$

 $p - \limsup \{ |Ax| \} \le M(p - \limsup \{ |x| \}),$

where,

$$
y_{mn} = \sum_{j,k=0,0}^{\infty,\infty} a_{mnjk} \, x_{j,k}
$$

In addition, there exists a real-valued double sequence $\{x\}$ such that if a_{mnjk} is real with $0 < P$ – lim sup $\{|x|\} < \infty$, then

$$
limsup\{|y|\}=M(P-limsup\{|x|\}).
$$

(1.1)

III. RESULTS

Lemma 3.1. If $A = (a_{mnjk})$ is a four-dimensional matrix, such that (RH_1) , (RH_3) , (RH_4) and

$$
p-\limsup_{m,n}\sum_{j=0}^{\infty}\sum_{k=0}^{\infty}|a_{mnjk}|=M,
$$

holds, then for any bounded double sequence $x = \{x_{jk}\}\)$, we obtain the following:

 p – lim sup $\{A\mathfrak{I}\}\leq M(p - \limsup \{\mathfrak{I}\}),$

where,

$$
\mathfrak{J} = \mathfrak{J}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j,k}
$$

$$
A \mathfrak{J} = A \mathfrak{J}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} a_{mnjk} x_{j,k}
$$

In addition, if there exists a real – valued double sequence $x = \{x_{ik}\}\$ such that, a_{mnjk} is real with $\limsup\{\mathfrak{I}\} < \infty$, then

 $p - \lim \sup\{|A \Im\} = M(p - \lim \sup\{A \Im\}),$

where \Im is the generalized double de la Vallée-Pousin mean. **Proof**

Let $x = Sup_{j,k} |x_{j,k}| < \infty$ and let $\beta := P - \lim_{m,n} Sup|x_{j,k}| < \infty$, for any $\varepsilon > 0$, there exists a positive integer N such that $|x_{i,k}| < \frac{1}{2}$ $\frac{+e_j}{3}$, for each j, k >N.

$$
|A\mathfrak{I}_{m}(x)| \leq \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=0}^{N} \sum_{k=0}^{N} |a_{mnjk}| |x_{,k}|
$$

+
$$
\frac{1}{\lambda_{m}\mu_{n}} \sum_{0 \leq j \leq N} \sum_{N \leq k \leq \infty} |a_{mnjk}| |x_{,jk}|
$$

+
$$
\frac{1}{\lambda_{m}\mu_{n}} \sum_{N \leq j \leq \infty} \sum_{0 \leq k \leq N} |a_{mnjk}| |x_{jk}| + \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} |a_{mnjk}| |x_{jk}|
$$

+
$$
\frac{1}{\lambda_{m}\mu_{n}} \sum_{0 \leq j \leq N} \sum_{N \leq k \leq \infty} |a_{mnjk}| \frac{(\beta + \varepsilon)}{3}
$$

+
$$
\frac{1}{\lambda_{m}\mu_{n}} \sum_{0 \leq j \leq N} \sum_{0 \leq k \leq N} |a_{mnjk}| \frac{(\beta + \varepsilon)}{3} + \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} |a_{mnjk}| \frac{(\beta + \varepsilon)}{3}
$$

which yields

$$
P - \limsup \{ |\mathfrak{S}_{m,n}(x)| \} = M(\beta + \varepsilon)
$$

Therefore, the following holds:

$$
P - \lim \sup \{ |\mathfrak{I}_{m,n}(x)| \} = M(p - \lim \sup \left[|x| \right])
$$

Since P – $\limsup_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}|$ We may assume that $M > 0$ without loss of generality. Using RH-regularity conditions, we choose m_0 , n_0 , j_0 and k_0 , so large that

$$
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{m_0 n_0 j_0 k_0}| > M - \frac{1}{4}, \sum_{0 < j < j_0} \sum_{k_0 \le k \le \infty} |a_{m_0 n_0 j_0 k_0}| \le \frac{1}{4},
$$
\n
$$
\sum_{0 < j < j_0} \sum_{k_0 \le k \le \infty} |a_{m_0 n_0 j_0 k_0}| \le \frac{1}{4}, \sum_{j=j_0}^{\infty} \sum_{k=k_0}^{\infty} |a_{m_0 n_0 j_0 k_0}| \le \frac{1}{4}.
$$
\nLet $[m_{p-1}], [n_{q-1}], [j_{p-1}]$ and $[k_{q-1}]$ be four chosen strictly increasing index se

be equences with $p, q = 1, 2, \dots, i$ 1, ..., $r-1$ with $j_0 = k_0 > 0$. Using the RH-regularity conditions we now choose $m_i > m_{i-1}$ and $n_r > n_{r-1}$ such that

$$
\sum_{0 \le j \le j_{i-1}} \sum_{0 \le k \le \infty} |a_{m_i n_r j_k}| < \frac{1}{2^{i+r}}, \sum_{0 \le k \le k_{r-1}} \sum_{k_{r-1} < k \le \infty} |a_{m_i n_r j_k}| < \frac{1}{2^{i+r}},
$$
\n
$$
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{m_i n_r j_k}| > M - \frac{1}{2^{i+r}}.
$$
\nLet us define $\{x\}$ as follows:\n
$$
x_{ik} := \begin{cases} \frac{\hat{a}_{m_i n_r jk}}{a_{m_i n_i k}}, & \text{if } j_{i-1} < j < j_i, k_{r-1} < k < k_r \text{ and } a_{m_i n_r jk} \neq 0; \end{cases}
$$

Consider the following:

 $\boldsymbol{0}$

otherwise.

$$
|A\mathfrak{I}_{m_{i}n_{r}}(x)| = \left| \frac{1}{\lambda_{m_{i}}\mu_{n_{r}}} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m_{i}n_{r}jk} x_{jk} \right|
$$

\n
$$
\geq -\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}} \sum_{0 \leq j \leq j_{i-1}} \sum_{0 \leq k \leq \infty} |a_{m_{i}n_{r}jk}| - \frac{1}{\lambda_{m_{i}}\mu_{n_{r}}} \sum_{0 \leq j \leq j_{i-1}} \sum_{k_{r-1} < k \leq \infty} |a_{m_{i}n_{r}jk}|
$$

\n
$$
- \frac{1}{\lambda_{m_{i}}\mu_{n_{r}}} \sum_{k_{r-1} < k < k_{r}} \sum_{j_{i} \leq j \leq \infty} |a_{m_{i}n_{r}jk}| - \frac{1}{\lambda_{m_{i}}\mu_{n_{r}}} \sum_{j_{i-1} < j < \infty} \sum_{k_{r} \leq k \leq \infty} |a_{m_{i}n_{r}jk}| < \frac{1}{2^{i+r}}
$$

\n
$$
+ \frac{1}{\lambda_{m_{i}}\mu_{n_{r}}} \sum_{j_{i-1} < j < j_{i}} \sum_{k_{r-1} < k < k_{r}} a_{m_{i}n_{r}jk} sgn(a_{m_{i}n_{r}jk})
$$

\n
$$
\geq -\frac{1}{2^{i+r}} - \frac{1}{2^{i+r}} - \frac{1}{2^{i+r}} - \frac{1}{2^{i+r}} + M - 5\left(\frac{1}{2^{i+r}}\right) = M - 9\frac{1}{2^{i+r}}
$$

This implies that

 $P - \lim \sup \{ | \Im_{m,n}(x) | \} \ge M = M(p - \lim \sup [|x|])$ Thus, if A is real-valued then so is [x] with $0 < limSup[x] < \infty$

$$
-\lim \sup\{|\mathfrak{I}_{m,n}(x)|\} = M(p - \limsup ||x|]
$$

This completes the proof.

We use the above lemma to prove the following theorem.

 \overline{a}

 \boldsymbol{p}

Theorem 3.2

If $A = (a_{mnik})$ is a four–dimensional matrix, then the following are equivalent

(i) For all real–valued double sequences
$$
x = \{x_{jk}\}\
$$

(i) A is an RH – regular summability matrix with
\n
$$
p - \limsup \{A \Im\} \leq p - \limsup \{x\}
$$
\n
$$
p - \lim_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}| = 1
$$
\n(3.1)

 $Proof$ **(i)** \Rightarrow **(ii)**

Let $x = \{x_{ik}\}\$ be a bounded p–convergent double sequence.

Then $p - \liminf\{\mathfrak{I}\} \le p - \limsup\{\mathfrak{I}\} = p - \lim \{\mathfrak{I}\}$ And also,

$$
p - \limsup\{|A(-\Im)|\} \le -(p - \liminf\{\Im\})
$$

These imply that

Hence ${A\mathfrak{I}}$ is

$$
p - \liminf\{\Im\} \le P - \liminf \{A\Im\} \le p - \limsup \{A\Im\} \le p - \limsup \{A\Im\} \le p - \limsup \{\Im\}
$$

p- convergent and $p - \lim \{A\Im\} = p - \lim \{\Im\}$.

Therefore, A is an RH – regular summability matrix. By Lemma 3.1, there exists a bounded double sequence $x = \{x_{ik}\}\$ such that $\limsup \{\mathbb{E}[S]\} = 1$ and $p - \limsup \{A\mathbb{E}[S]\} = A$, where A is defined by (RH_6) . This implies that

$$
1 \le p - \liminf_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{mnj,k} \le p - \limsup_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{mnjk} \le 1
$$

whence

$$
p-\lim_{m,n}\sum_{j=0}^{\infty}\sum_{k=0}^{\infty}\left|a_{mnjk}\right|=1
$$

 $(iii) \Rightarrow (i)$

Here we show that if $\{3\}$ is a p– convergent sequence and A is an RH – regular matrix satisfying (3.1), then $p - \lim \{A\mathfrak{I}\} \leq p - \lim \sup \{\mathfrak{I}\}\$

For p, q > 1, we obtain the following

$$
A\mathfrak{I} \le \left| \frac{1}{1 - \sum_{i \in \mathcal{I}_m} \sum_{k \in \mathcal{I}_n} a_{mnjk} x_{ik} \right|
$$

$$
I_{\infty} = \left| \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} \frac{|a_{mnjk} x_{jk}|}{a_{mnjk} x_{jk}|} \right|
$$

\n
$$
= \frac{1}{\lambda_m \mu_n} \left| \sum_{j \in J_m} \sum_{k \in I_n} \frac{|a_{mnjk} x_{jk}| - a_{mnjk} x_{jk}|}{2} + \sum_{j \in J_m} \sum_{k \in J_n} \frac{|a_{mnjk} x_{jk}| + a_{mnjk} x_{jk}|}{2} \right|
$$

\n
$$
\leq \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} |a_{mnjk}| + \frac{||x||}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in J_n} |a_{mnjk}| + \frac{||x||}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} (|a_{mnjk}| - a_{mnjk}) |x_{jk}| + \frac{||x||}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} |a_{mnjk}| + \frac{||x||}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} |a_{mnjk}| + \frac{||x||}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} |a_{mnjk}| - a_{mnjk}.
$$
\nUsing (BH.) (BH.) and (3.6), we take the Principal limit to get the required result.

Using (RH_1) - (RH_4) and (3.6), we take the Pringsheim limit to get the required result. **Theorem 3.3:**

If $A = (a_{mn,ik})$ is a non-negative RH-regular summability matrix, then

*Corresponding Author: Zakawat U. Siddiqui 4 | Page

$$
\mathcal{F}_{[\lambda,\mu]} - core\{A\mathfrak{I}\} \subseteq \mathcal{F}_{[\lambda,\mu]} - core\{\mathfrak{I}\}
$$

For any bounded $\mathcal{F}_{[\lambda,\mu]}$ -double sequence $\{x\}$ for which AS exist. **Proof**:

We have

$$
\mathfrak{I} = \mathfrak{I}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j,k}
$$

$$
A\mathfrak{I} = A\mathfrak{I}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} a_{mnjk} x_{j,k}
$$

If $\mathcal{F}_{[\lambda,\mu]}$ – core {3} is the complex plane, then the result is trivial. Now we consider the case where {x} is bounded or unbounded and establish the required result. In both cases, the result will be established by proving the following:

If there exists a q such that $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_{q} \{\Im\}$, then there exist a p such that $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_{p} \{\Im\}$. When {x} is bounded $\omega \notin \mathcal{F}_{[\lambda,\mu]}$ – core{3} is not in the complex plane, thus there exists an $\omega \notin \mathcal{F}_{[\lambda,\mu]}$ – core{3}. This implies that there exists a q for which $\omega \notin \mathcal{F}_{[\lambda,\mu]}$ – $core_a\{\Im\}$. Since ω is finite, we may assume that $\omega=0$ by linearity of A. Since we are also given that $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_{\alpha} \{\Im\}$ is a convex set, we can rotate *core*_a{3} so that the distance from zero to $\omega \notin \mathcal{F}_{[\lambda,\mu]}$ – *core*_a{3} is the minimum of coreq \tilde{J} , and is on positive real axis; say that this minimum is 3d. Since $\omega \notin \mathcal{F}[\lambda,\mu]-coreq\{\tilde{J}\}$ is convex, all points on $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_{\alpha} \{\mathfrak{J}\}\$ have real part which is at least 3d. Let $M = max\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$ $\frac{1 \times j \neq k}{\lambda_{m} \mu_{n}}$. By regularity conditions (RH₁) - (RH₄) and assumption $a_{mnik} \ge 0$, there exists an N such that for m,n>N, the following hold:

$$
\sum_{j,k \in \alpha_1} a_{mnjk} < \frac{d}{3M}, \sum_{j,k \in \alpha_2} a_{mnjk} < \frac{d}{3M}
$$
\n
$$
\sum_{j,k \in \alpha_3} a_{mnjk} < \frac{d}{3M}, \sum_{j,k \in \alpha_4} a_{mnjk} < \frac{d}{3M}
$$

where,

$$
\alpha_1 = \{(j, k): 0 \le j \le j_0 \text{ and } 0 \le k \le k_0\},
$$

\n
$$
\alpha_2 = \{(j, k): j_0 \le j < \infty \text{ and } 0 \le k \le k_0\},
$$

\n
$$
\alpha_3 = \{(j, k): 0 < j \le j_0 \text{ and } k_0 < k < \infty\},
$$

\n
$$
\alpha_4 = \{(j, k): j_0 < j < \infty \text{ and } k_0 < k < \infty\}.
$$

Therefore, for $m, n > N$,

$$
R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}x_{j,k}\right\} = R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{1}}\sum_{k\in\alpha_{1}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{2}}\sum_{k\in\alpha_{2}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{3}}\sum_{k\in\alpha_{3}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{4}}\sum_{k\in\alpha_{4}}a_{mnjk}x_{j,k}\right\}
$$

>
$$
-M\left\{\sum_{j,k\in\alpha_{1}}a_{mnjk}\right\} - M\left\{\sum_{j,k\in\alpha_{2}}a_{mnjk}\right\} - M\left\{\sum_{j,k\in\alpha_{3}}a_{mnjk}\right\} + 3d\left\{\sum_{j,k\in\alpha_{4}}a_{mnjk}\right\}
$$

 $> -M\frac{3}{2}$ $rac{3d}{3M}+3d\frac{2}{3}$ $rac{2}{3}$ =

Therefore, $R\{A\mathfrak{T}\} > d$, which implies that there exists a p for which $\omega=0$ is also outside $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_n\{\mathfrak{T}\}$. Now suppose that $\{x\}$ is unbounded. Then ω may be the point at infinity or not. If ω is not the point at infinity, then choose N such that for $m, n > N$, the following hold:

 $\{\sum_{i,k \in \alpha_1} a_{mnik}\} < \frac{d}{2n}$ $\frac{d}{3M}$, $\sum_{j,k \in \alpha_2 \cup \alpha_3 \cup \alpha_4} a_{mnjk} > \frac{2}{3}$ 3

In a manner similar to the first part, we obtain $R\{A\mathfrak{T}\} > d$. In the case when ω is the point at infinity, $\omega \notin$ $\mathcal{F}[\lambda,\mu]-coreq\{\mathfrak{F}\}\$ is bounded for j, k > q. We may assume that [|x||<A for some positive number A without loss of generality. Thus for m and n large, we obtain the following:

$$
\left|\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}x_{j,k}\right| \leq \frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}|x_{j,k}| \leq \frac{|x_{j,k}|}{\lambda_{m}\mu_{n}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}|x_{j,k}|
$$

Hence there exists a p such that the point at infinity is outside of $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_{\alpha} \{ \mathfrak{I} \}.$

This completes the proof of the theorem.

REFERENCES

- [1]. K. Knopp (1930), "Zur theorie der limiteirungsverfahren", Mathematiche Zeischrift, vol. 31, no. 1, 97 127,
- [2]. B. E. Rhodes (1960), "Some properties of totally regular matrices", Illinois Jour. Math. 4, 518 525
- [3]. Maddox, I. J. (1979) "Some analogues of Knopp's Core Theorem", *Int. Jour of Math & Mathematical Sci.*, vol. 2, no. 4, 605–614.
- [4]. Richard F. Patterson (1999), "Double Sequence Core Theorems", *Int. Jour of Math & Mathematical Sci.*, vol. 22, no. 4, 785–793.
- [5]. A. Pringsheim (1900), "Zur theorie der zweifach unendlichen Zahlenfolgen", Math. Annalen, vol. 53, no. 3, 289 321.
- [6]. M. Mursaleen and O. H. H. Edely (2004), "Almost convergence and a core theorem for double sequences", J. Math. Anal. Appl., $293(2), 532 - 540.$

*Corresponding Author: Zakawat U. Siddiqui 5 | Page

- [7]. M. Mursaleen and S. A. Mohiuddine (2007), "Double σ-multiplicative matrices", Jour Math. Anal. Appl., vol. 327, no. 2, 991 996.
- [8]. ______________ (2010), "Invariant mean and some core theorems for double sequences", Taiwanese Journal of Mathematics, vol.14, no.1, 21 – 33.
- [9]. S. Mishra, B. Satapathy and N. Rath (1994), "Invariant means and σ-core", The Jour. of Indian Math. Soc. vol. 4, no. 1 4,151 158.
- [10]. K. Kayaduman and C. Çakan (2011), "The Cesáro core of double sequences", Abstract and Applied Analysis, vol.2011,Art. ID 950364, 9 pages
- [11]. S. A. Mohiuddine, and A. Alotaibi (2014), "Generalized Almost Conservative and Core Theorems of Double Sequences", *Abstract and Applied Analysis*, 2014, Article ID 152910, 7pages
- [12]. M. Başarir (1995), "On the strong almost convergence of double sequences", *Periodica Mathematica Hungarica*. vol. 30 no. 3, pp 177–181.
- [13]. G. M. Robison (1926), "Divergent double sequences and series", *Transactions of the American Mathematical Society*, vol. 28, no. 1, pp.50–73.