Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 5 (2021) pp: 01-06 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Core theorems of double sequences through the generalized de la Vallée-Poussin Mean

Zakawat U. Siddiqui*, Mohammed A. Chamalwa and Ahmadu Kiltho

Department of Mathematical Sciences, Faculty of Science, University of Maiduguri, Nigeria

ABSTRACT

The convergence of double sequences was a natural extension of the convergence of sequences. The transform of a sequence by a matrix A gives rise to the A-summability. It is natural that in order to find analogue of A-summability for double sequences, the matrix A is taken four-dimensional. It is pertinent to find the analogue of core of sequences for the double sequences. The aim of this paper is to use the generalized double de la Vallée-Pousin mean to find analogues of some results related to the Pringsheim P-core of double sequences. **KEY WORDS:** Double sequences, Bounded double sequences, Almost Convergence, Core theorems, Pringsheim core, Double De la Vallée-Pousin Mean.

Received 14 May, 2021; Revised: 28 May, 2021; Accepted 30 May, 2021 © *The author(s) 2021. Published with open access at* <u>www.questjournals.org</u>

I. INTRODUCTION

The concept of the core of a sequence was first introduced by Knopp [1], now known as the Knopp core. Let $x = \{x_k\}$ be a sequence in \mathbb{C} , the set of all complex numbers and C_k be the least convex closed region of complex plane containing $x_k, x_{k+1}, x_{k+2}, \dots$. The Knopp core of x (K-core of x or core of x) is defined by the intersection of all C_k ($k = 1, 2, \dots$). In the real case the K-core of x is reduced to the closed interval [*lim inf x, lim sup x*]. If A is a non-negative regular matrix, then the core of x is contained in the core of Ax, provided that Ax exists. Rhoades [2] gave a slight generalization of Knopp's core theorem in 1960. In 1979, Maddox [3] gave some analogues of Knopp's core theorem.

In 1999, Patterson [4] extended the Knopp core for the double sequences using the convergence of double sequences defined by Pringsheim [5], called it Pringsheim core (shortly, *P*-core) which is given by [P - lim inf x, P - lim sup x], and proved some result on them. In 2002, the *M*-core and σ -core for double sequences were defined and studied by Mursaleen and Edely [6] and Mursaleen and Mohiuddine ([7] and [8]), respectively. The σ -core for single sequences was given by Mishra et al [9]. Kayaduman and Çakan [10] presented the concept of Cesáro core of double sequences.

Mohiuddine and Alotaibi [11] presented a generalization of the notion of almost convergent of double sequence with the help of de la Vallée-Poussin mean and called it $[\lambda, \mu]$ -almost convergent. Using this concept, they defined the notions of regularly of $[\lambda, \mu]$ -almost conservative and $[\lambda, \mu]$ -almost coercive fourdimensional matrices and obtain their necessity and sufficient conditions. Further, they introduced the space \mathcal{L}_1 of all absolutely convergent double series and characterize the matrix class $(\mathcal{L}_1, \mathcal{F}_{[\lambda,\mu]})$, where $\mathcal{F}_{[\lambda,\mu]}$ denotes the space of $[\lambda, \mu]$ -almost convergence for double sequences.

Definition 1.1 [5]: A double sequence $x = (x_{jk})$ is said to be convergent to L in the Pringsheim's sense (or P-convergent to L) if for a given $\varepsilon > 0$ there exists an integer N such that $|x_{jk} - L| < \varepsilon$ whenever j, k > N. The space of P-convergent sequences is denoted by C_{P_i} .

Definitions 1.2 [5]: A double sequence $x = (x_{jk})$ is said to be bounded if $||x|| = \sup_{j,k \ge 0} |x_{jk}| < \infty$. We denote the space of all bounded double sequences by \mathfrak{I}_{∞} .

The space of double sequences which are both bounded and P-convergent are denoted by C_{BP} .

Let $\{A = a_{pqmn}, p, q = 0, 1, 2, ...\}$ be a doubly infinite matrix of real numbers for all m, n = 0, 1, 2,.... Forming the sums

$$y_{pq} = (Ax)_{pq} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{pqmn} x_{mn} ,$$

called the A-mean of the sequence $x = \{x_{jk}\}$, yield a method of summability. More exactly, we say that a sequence $x = \{x_{jk}\}$ is A-summable to the limit *l* if the A-mean exists for all j, k = 0, 1, 2, ... in the sense of Pringsheim, i. e.,

 $\lim_{m,n\to\infty}\sum_{j=0}^{m}\sum_{k=0}^{n}a_{pqjk}x_{jk}=y_{pq} and \lim_{pq\to\infty}y_{pq}=l$

We say that a matrix A is bounded regular if every bounded and convergent sequence $x = \{x_{jk}\}$ is A-summable to the same limit and the A-means are bounded, Başarir [12].

Definition 1.3 [11]: A double sequence $x = \{x_{jk}\}$ of real is said to be $[\lambda, \mu]$ -almost convergent (briefly, $\mathcal{F}_{[\lambda,\mu]} - convergent$) to some number l if $x \in \mathcal{F}_{[\lambda,\mu]}$, where

 $\mathcal{F}_{[\lambda,\mu]} = \{ x = \{x_{jk}\}: p - \lim_{mn \to \infty} \Omega_{mns,t} (x) = L \text{ exists, uniformly in } s, t; L = \mathcal{F}_{[\lambda,\mu]} - \lim x \},$

$$m_{n,s,t}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j+s,k+t}$$

Denote by $\mathcal{F}_{[\lambda,\mu]}$, the space of all $[\lambda,\mu]$ -almost convergent sequence $\{x_{jk}\}$. Note that $\mathcal{C}_{BP} \subset \mathcal{F}_{[\lambda,\mu]} \subset \ell_{\infty}$. **Definition 1.4** [4] Let $x = \{x_{j,k}\}$ be a double sequence of real numbers and for each n, let $\alpha_n = \sup_n \{x_{j,k}: j, k \ge n\}$ The Pringsheim limit superior of $\{x\}$ is defined as follows:

(1) If $\alpha_n = +\infty$ for each n, then $P - \lim \sup\{x\} \coloneqq +\infty$;

(2) If $\alpha_n^n < \infty$ for some n, then $P - \lim \sup\{x\} \coloneqq \inf_n \{\alpha_n\}$

Similarly, let $\beta_n = inf_n\{x_{i,k}: j, k \ge n\}$ then the Pringsheim limit inferior of $\{x_{i,k}\}$ is defined as follows:

(3) If $\beta_n = -\infty$ for each n, then $P - \lim \inf\{x\} \coloneqq -\infty$;

(4) If $\beta_n > -\infty$ for some n, then $P - \lim \inf\{x\} \coloneqq \sup_n \{\beta_n\}$

Let $\lambda = (\lambda_m: m = 0, 1, 2, ...)$ and $\mu = (\mu_n: n = 0, 1, 2, ...)$ be two nondecreasing sequences of positive real with each tending to ∞ such that $\lambda_{m+1} \le \lambda_m + 1, \lambda_1 = 0, \mu_{n+1} \le \mu_n + 1, \mu_1 = 0$ and define

$$\mathfrak{F}_{mn}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j,k}$$

called the *double generalized de la Vallée – Poussin mean*, where $J_m = [m - \lambda_m + 1,m]$ and $I_n = [n - \mu_n + 1,n]$. We denote the set of all λ and μ type sequence by using the symbol $[\lambda, \mu]$. We wish to study the core of double sequences via the generalized double de la Vallée-Poussin mean. Define the following sub-linear functional on L_m .

time the following sub-linear functional on
$$\mathcal{L}_{\infty}$$
.

$$\Gamma(x) = \frac{\min \sup_{m,n\to\infty} \frac{1}{\lambda_m\mu_n} \sum_{j\in J_m} \sum_{k\in I_n} x_{j+s,k+t}}$$

Then the $\mathcal{F}_{[\lambda,\mu]} - core$ of a real-valued bounded double sequence $\{x_{j,k}\}$ is defined to be the closed interval $[-\Gamma(-x), \Gamma(x)]$. Since BP-convergent double sequence is $\mathcal{F}_{[\lambda,\mu]}$ -convergent, we have, $\Gamma(x) \leq L(x)$, where $L(x) = P - \limsup x$ and hence it follows that $\mathcal{F}_{[\lambda,\mu]} - core\{x\} \subseteq P - core\{x\}$ for all $x \in \mathcal{L}_{\infty}$.

II. MATERIALS AND METHOD

The following results are used in our work to establish the results in the next sections. **Theorem 2.1** [13]: The four-dimensional matrix $A = (a_{pqmn})$ is RH-regular if and only if: (RH₁) P-lim_{$p,q\to\infty$} $a_{p,q,m,n} = 0$, for each m and n (RH₂) $P - \lim_{p,q\to\infty} \sum_{m=1}^{p} \sum_{n=1}^{q} a_{pqmn} = 1$ (RH₃) $P - \lim_{p,q\to\infty} \sum_{m=1}^{p} |a_{pqmn}| = 0$, for each n, (RH₄) $P - \lim_{p,q\to\infty} \sum_{n=1}^{q} |a_{pqmn}| = 0$, for each m,

(RH₅) $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}|$ is P-convergent; and

(RH₆) there exist positive numbers A and B such that $\sum_{j>B}^{\infty} \sum_{k>B}^{\infty} |a_{mnjk}| < A$

Theorem 2.2 [4] If A is a non-negative RH-regular summability matrix, then $P - C\{Ax\} \subseteq P - C\{x\}$ for any bounded sequence $\{x\}$ for which $\{Ax\}$ exists.

Lemma 2.1 [4] If $A = (a_{mnik})$ is a four-dimensional matrix, such that (RH₁), (RH₃), (RH₄) and

P - lim sup
$$_{m,n} \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}| = M$$
,

holds, then for any bounded double sequence $x = \{x_{jk}\},\$

 $p - \limsup \{|Ax|\} \le M(p - \limsup \{|x|\}),$

where,

$$y_{mn} = \sum_{j,k=0,0}^{\infty,\infty} a_{mnjk} \, x_{j,k}$$

In addition, there exists a real-valued double sequence $\{x\}$ such that if a_{mnjk} is real with $0 < P - \limsup \{|x|\} < \infty$, then

$$limsup\{|y|\} = M(P - limsup\{|x|\}).$$

(1.1)

III. RESULTS

Lemma 3.1. If $A = (a_{mnjk})$ is a four-dimensional matrix, such that (RH₁), (RH₃), (RH₄) and

$$p - \limsup \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}| = M,$$

holds, then for any bounded double sequence $x = \{x_{ik}\}$, we obtain the following:

 $p - \limsup \{A\Im\} \le M(p - \limsup \{\Im\}),$

where,

$$\mathfrak{I} = \mathfrak{I}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j,k}$$
$$A\mathfrak{I} = A\mathfrak{I}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} a_{mnjk} x_{j,k}$$

In addition, if there exists a real – valued double sequence $x = \{x_{jk}\}$ such that, a_{mnjk} is real with 0 $\lim \sup\{\mathfrak{I}\} < \infty$, then

$$p - \lim \sup\{|A\mathfrak{I}|\} = M(p - \limsup\{A\mathfrak{I}\}),$$

where \Im is the generalized double de la Vallée-Pousin mean. Proof

Let $x = Sup_{j,k}|x_{j,k}| < \infty$ and let $\beta \coloneqq P - \lim_{m,n} Sup |x_{j,k}| < \infty$, for any $\varepsilon > 0$, there exists a positive integer N such that $|x_{j,k}| < \frac{(\beta + \varepsilon)}{3}$, for each j, k >N.

$$\begin{split} |A\mathfrak{I}_{m}(x)| &\leq \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=0}^{N} \sum_{k=0}^{N} |a_{mnjk}| |x_{,k}| \\ &+ \frac{1}{\lambda_{m}\mu_{n}} \sum_{0 \leq j \leq N} \sum_{N < k < \infty} |a_{mnjk}| |x_{,jk}| \\ &+ \frac{1}{\lambda_{m}\mu_{n}} \sum_{N < j \leq \infty} \sum_{0 \leq k \leq N} |a_{mnjk}| |x_{jk}| + \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} |a_{mnjk}| |x_{jk}| \\ &\leq \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=0}^{N} \sum_{k=0}^{N} |a_{mnjk}| |x_{jk}| \\ &+ \frac{1}{\lambda_{m}\mu_{n}} \sum_{0 \leq j \leq N} \sum_{N < k < \infty} |a_{mnjk}| \frac{(\beta + \varepsilon)}{3} \\ &+ \frac{1}{\lambda_{m}\mu_{n}} \sum_{N < j \leq \infty} \sum_{0 \leq k \leq N} |a_{mnjk}| \frac{(\beta + \varepsilon)}{3} + \frac{1}{\lambda_{m}\mu_{n}} \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} |a_{mnjk}| \frac{(\beta + \varepsilon)}{3} \end{split}$$

which yields

$$P - \lim \sup\{|\Im_{m,n}(x)|\} = M(\beta + \varepsilon)$$

Therefore, the following holds:

$$P - \lim \sup\{|\Im_{m,n}(x)|\} = M(p - \lim \sup [|x|])$$

Since P - lim sup_{*m,n*} $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnjk}| = M$ We may assume that M > 0 without loss of generality. Using RH-regularity conditions, we choose m_0, n_0, j_0 and k_0 , so large that $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \left| a_{m_0 n_0 j_0 k_0} \right| > M - \frac{1}{4}, \sum_{0 < j < j_0} \sum_{k_0 \le k \le \infty} \left| a_{m_0 n_0 j_0 k_0} \right| \le \frac{1}{4},$

$$\begin{split} & \sum_{0 < j < j_0} \sum_{k_0 \le k \le \infty} |a_{m_0 n_0 j_0 k_0}| \le \frac{1}{4}, \sum_{j=j_0}^{\infty} \sum_{k=k_0}^{\infty} |a_{m_0 n_0 j_0 k_0}| \le \frac{1}{4}. \\ & \text{Let } [m_{p-1}], [n_{q-1}], [j_{p-1}] and [k_{q-1}] \text{ be four chosen strictly increasing index set} \\ & 1 \qquad n = 1 \text{ with } i_{q-1} \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty} |a_{k-1}| \ge 0. \\ & \text{Let } [m_{p-1}] \sum_{k=k_0}^{\infty}$$

equences with p, q = 1, 2, ..., i -1, ..., r - 1 with $j_0 = k_0 > 0$. Using the RH-regularity conditions we now choose $m_i > m_{i-1}$ and $n_r > n_{r-1}$ such that

$$\begin{split} \sum_{0 \le j \le j_{i-1}} \sum_{0 \le k \le \infty} \left| a_{m_i n_r j k} \right| &< \frac{1}{2^{i+r}}, \ \sum_{0 \le k \le k_{r-1}} \sum_{k_{r-1} < k \le \infty} \left| a_{m_i n_r j k} \right| &< \frac{1}{2^{i+r}}, \\ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \left| a_{m_i n_r j k} \right| &> M - \frac{1}{2^{i+r}} \\ \text{Let us define } \{x\} \text{ as follows:} \\ x_{jk} &:= \begin{cases} \hat{a}_{m_i n_r j k}, & \text{if } j_{i-1} < j < j_i, k_{r-1} < k < k_r \text{ and } a_{m_i n_r j k} \neq 0; \\ 0, & \text{otherwise.} \end{cases}$$

Consider the following:

*Corresponding Author: Zakawat U. Siddiqui

otherwise.

$$\begin{split} \left|A\Im_{m_{i}n_{r}}(x)\right| &= \left|\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}}\sum_{j=0}^{\infty}\sum_{k=0}^{\infty}a_{m_{i}n_{r}jk}x_{jk}\right| \\ &\geq -\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}}\sum_{0\leq j\leq j_{i-1}}\sum_{0\leq k\leq \infty}\left|a_{m_{i}n_{r}jk}\right| -\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}}\sum_{0\leq j\leq j_{i-1}}\sum_{k_{r-1}< k\leq \infty}\left|a_{m_{i}n_{r}jk}\right| \\ &-\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}}\sum_{k_{r-1}< k< k_{r}}\sum_{j_{i}\leq j\leq \infty}\left|a_{m_{i}n_{r}jk}\right| -\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}}\sum_{j_{i-1}< j<\infty}\sum_{k_{r}\leq k\leq \infty}\left|a_{m_{i}n_{r}jk}\right| <\frac{1}{2^{i+r}} \\ &+\frac{1}{\lambda_{m_{i}}\mu_{n_{r}}}\sum_{j_{i-1}< j< j_{i}}\sum_{k_{r-1}< k< k_{r}}a_{m_{i}n_{r}jk}sgn(a_{m_{i}n_{r}jk}) \\ &\geq -\frac{1}{2^{i+r}} -\frac{1}{2^{i+r}} -\frac{1}{2^{i+r}} -\frac{1}{2^{i+r}} +M -5\left(\frac{1}{2^{i+r}}\right) =M -9\frac{1}{2^{i+r}} \end{split}$$

.

This implies that

 $P - \lim \sup\{|\mathfrak{I}_{m,n}(x)|\} \ge M = M(p - \lim \sup [|x|])$ Thus, if A is real-valued then so is [x] with $0 < limSup[x] < \infty$

$$-\lim \sup\{|\mathfrak{I}_{m,n}(x)|\} = M(p - \lim \sup ||x||)$$

This completes the proof.

We use the above lemma to prove the following theorem.

P

Theorem 3.2

If $A = (a_{mnik})$ is a four-dimensional matrix, then the following are equivalent

(i) For all real – valued double sequences
$$x = \{x_{jk}\}$$

(i) For all teal values solutions
$$x = \{x\}_{k=1}^{k}$$

(ii) $p - \lim \sup \{A \Im\} \le p - \lim \sup \{x\}$
(iii) A is an RH – regular summability matrix with
 $p - \lim_{m,n} \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} |a_{mnik}| = 1$ (3.1)

Proof (i) \Rightarrow (ii)

Let $x = \{x_{ik}\}$ be a bounded p-convergent double sequence.

Then $p - \lim \inf\{\Im\} \le p - \limsup\{\Im\} = p - \lim \{\Im\}$ And also,

$$p - \limsup\{|A(-\mathfrak{I})|\} \le -(p - \liminf\{\mathfrak{I}\})$$

These imply that

$$p - \liminf\{\mathfrak{I}\} \le P - \liminf\{A\mathfrak{I}\} \le p - \limsup\{A\mathfrak{I}\} \le p - \limsup\{\mathfrak{I}\}$$

Hence $\{A\mathfrak{I}\}$ is p- convergent and $p - \lim\{A\mathfrak{I}\} = p - \lim\{\mathfrak{I}\}$.

Therefore, A is an RH - regular summability matrix. By Lemma 3.1, there exists a bounded double sequence $x = \{x_{ik}\}$ such that $\limsup \{|\Im|\} = 1$ and $p - \limsup \{A\Im\} = A$, where A is defined by (RH_6) . This implies that

$$1 \leq p - \lim \inf_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{mnj,k} \leq p - \lim \sup_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{mnjk} \leq 1$$

whence

$$p - \lim_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \left| a_{mnjk} \right| = 1$$

 $(ii) \Rightarrow (i)$

Here we show that if $\{\Im\}$ is a p-convergent sequence and A is an RH – regular matrix satisfying (3.1), then $p - \lim \{A\Im\} \le p - \limsup\{\Im\}$

For p, q > 1, we obtain the following $\Delta \mathfrak{T} < \left| \frac{1}{2} \Sigma_{12} \Sigma_{12} \Sigma_{13} \right|$

$$\begin{aligned} &|X_{0} \leq |_{\lambda_{m}\mu_{n}} \Sigma_{j \in J_{m}} \Sigma_{k \in I_{n}} u_{mnjk} x_{jk}| \\ &= \frac{1}{\lambda_{m}\mu_{n}} \left| \sum_{j \in J_{m}} \sum_{k \in I_{n}} \frac{|a_{mnjk} x_{jk}| - a_{mnjk} x_{jk}|}{2} + \sum_{j \in J_{m}} \sum_{k \in J_{n}} \frac{|a_{mnjk} x_{jk}| + a_{mnjk} x_{jk}|}{2} \right| \\ &\leq \frac{1}{\lambda_{m}\mu_{n}} \sum_{j \in J_{m}} \sum_{k \in I_{n}} |a_{mnjk}| |x_{jk}| + \frac{1}{\lambda_{m}\mu_{n}} \sum_{j \in J_{m}} \sum_{k \in J_{n}} (|a_{mnjk}| - a_{mnjk}) |x_{jk}| \\ &\leq \frac{||x||}{\lambda_{m}\mu_{n}} \sum_{j \in J_{m}} \sum_{k \in I_{n}} |a_{mnjk}| + \frac{||x||}{\lambda_{m}\mu_{n}} \sum_{j \in J_{m}} \sum_{k \in J_{n}} |a_{mnjk}| + \frac{||x||}{\lambda_{m}N_{n}} \sum_{j \in J_{m}} \sum_{k \in I_{n}} |a_{mnjk}| + \frac{||x||}{\lambda_{m}N_{n}} \sum_{j \in J_{m}} \sum_{k \in I_{n}} |a_{mnjk}| + \frac{||x||}{\lambda_{m}N_{n}} \sum_{j \in J_{m}} \sum_{k \in I_{n}} |a_{mnjk}| + \frac{||x||}{\lambda_{m}N_{n}} \sum_{j \in J_{m}} \sum_{k \in I_{n}} |a_{mnjk}| - a_{mnjk}|. \end{aligned}$$

Using (RH_1) - (RH_4) and (3.6), we take the Pringsheim limit to get the required result. Theorem 3.3:

If $A = (a_{mn,ik})$ is a non-negative RH-regular summability matrix, then

*Corresponding Author: Zakawat U. Siddiqui

$$\mathcal{F}_{[\lambda,\mu]} - core\{A\mathfrak{I}\} \subseteq \mathcal{F}_{[\lambda,\mu]} - core\{\mathfrak{I}\}$$

For any bounded $\mathcal{F}_{[\lambda,\mu]}$ -double sequence $\{x\}$ for which $A\mathfrak{I}$ exist. **Proof**:

We have

$$\mathfrak{I} = \mathfrak{I}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} x_{j,k}$$
$$A\mathfrak{I} = A\mathfrak{I}_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{j \in J_m} \sum_{k \in I_n} a_{mnjk} x_{j,k}$$

If $\mathcal{F}_{[\lambda,\mu]} - core\{\Im\}$ is the complex plane, then the result is trivial. Now we consider the case where $\{x\}$ is bounded or unbounded and establish the required result. In both cases, the result will be established by proving the following:

If there exists a q such that $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\mathfrak{I}\}$, then there exist a p such that $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_p\{\mathfrak{I}\}$. When {x} is bounded $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core\{\Im\}$ is not in the complex plane, thus there exists an $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core\{\Im\}$. This implies that there exists a q for which $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\Im\}$. Since ω is finite, we may assume that $\omega=0$ by linearity of A. Since we are also given that $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\Im\}$ is a convex set, we can rotate $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\Im\}$ $core_q\{\mathfrak{I}\}$ so that the distance from zero to $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\mathfrak{I}\}$ is the minimum of $\{|\mathfrak{I}|: \mathfrak{I} \in \omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\mathfrak{I}\}\}$ *coreq* \mathfrak{J} , and is on positive real axis; say that this minimum is 3d. Since $\omega \notin \mathcal{F}[\lambda,\mu] - coreq\{\mathfrak{J}\}$ is convex, all points on $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\Im\}$ have real part which is at least 3d. Let $M = max\left\{\frac{|x_{j,k}|}{\lambda_m \mu_n}\right\}$. By regularity conditions (RH₁) - (RH₄) and assumption $a_{mnik} \ge 0$, there exists an N such that for m,n>N, the following hold:

$$\sum_{j,k\in\alpha_1} a_{mnjk} < \frac{d}{3M}, \sum_{j,k\in\alpha_2} a_{mnjk} < \frac{d}{3M}$$
$$\sum_{j,k\in\alpha_3} a_{mnjk} < \frac{d}{3M}, \sum_{j,k\in\alpha_4} a_{mnjk} < \frac{d}{3M}$$

where,

$$\begin{aligned} \alpha_1 &= \{(j,k): 0 \le j \le j_0 \text{ and } 0 \le k \le k_0\}, \\ \alpha_2 &= \{(j,k): j_0 \le j < \infty \text{ and } 0 \le k \le k_0\}, \\ \alpha_3 &= \{(j,k): 0 < j \le j_0 \text{ and } k_0 < k < \infty\}, \\ \alpha_4 &= \{(j,k): j_0 < j < \infty \text{ and } k_0 < k < \infty\}. \end{aligned}$$

Therefore, for m, n > N,

$$R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}x_{j,k}\right\} = R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{1}}\sum_{k\in\alpha_{1}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{2}}\sum_{k\in\alpha_{2}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{3}}\sum_{k\in\alpha_{3}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{4}}\sum_{k\in\alpha_{4}}a_{mnjk}x_{j,k}\right\} + R\left\{\frac{1}{\lambda_{m}\mu_{n}}\sum_{j\in\alpha_{4}}\sum_{k\in\alpha_{4}}a_{mnjk}x_{j,k}\right\} + R\left\{\sum_{j,k\in\alpha_{1}}a_{mnjk}\right\} - M\left\{\sum_{j,k\in\alpha_{2}}a_{mnjk}\right\} - M\left\{\sum_{j,k\in\alpha_{3}}a_{mnjk}\right\} + 3d\left\{\sum_{j,k\in\alpha_{4}}a_{mnjk}\right\}\right\}$$

 $> -M\frac{3d}{3M} + 3d\frac{2}{3} = d.$ Therefore, $R\{A\Im\} > d$, which implies that there exists a p for which $\omega=0$ is also outside $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_p\{\Im\}.$ Now suppose that $\{x\}$ is unbounded. Then ω may be the point at infinity or not. If ω is not the point at infinity,

then choose N such that for m, n > N, the following hold: $\{\sum_{j,k \in \alpha_1} a_{mnjk}\} < \frac{d}{3M}, \sum_{j,k \in \alpha_2 \cup \alpha_3 \cup \alpha_4} a_{mnjk} > \frac{2}{3}$

In a manner similar to the first part, we obtain $R\{A\Im\} > d$. In the case when ω is the point at infinity, $\omega \notin d$ $\mathcal{F}[\lambda,\mu]$ -coreq{3} is bounded for j, k > q. We may assume that [|x|]<A for some positive number A without loss of generality. Thus for m and n large, we obtain the following:

$$\left|\frac{1}{\lambda_{m\mu_{n}}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}x_{j,k}\right| \leq \frac{1}{\lambda_{m\mu_{n}}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk}\left|x_{j,k}\right| \leq \frac{|x_{j,k}|}{\lambda_{m\mu_{n}}}\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk} \leq A\sum_{j\in J_{m}}\sum_{k\in I_{n}}a_{mnjk} < \infty.$$

Hence there exists a p such that the point at infinity is outside of $\omega \notin \mathcal{F}_{[\lambda,\mu]} - core_q\{\Im\}$.

This completes the proof of the theorem.

REFERENCES

- [1]. K. Knopp (1930), "Zur theorie der limiteirungsverfahren", Mathematiche Zeischrift, vol. 31, no. 1, 97 – 127,
- B. E. Rhodes (1960), "Some properties of totally regular matrices", Illinois Jour. Math. 4, 518-525 [2].
- [3]. Maddox, I. J. (1979) "Some analogues of Knopp's Core Theorem", Int. Jour of Math & Mathematical Sci., vol. 2, no. 4, 605-614.
- Richard F. Patterson (1999), "Double Sequence Core Theorems", Int. Jour of Math & Mathematical Sci., vol. 22, no. 4, 785-793. [4].
- A. Pringsheim (1900), "Zur theorie der zweifach unendlichen Zahlenfolgen", Math. Annalen, vol. 53, no. 3, 289 321. [5].
- M. Mursaleen and O. H. H. Edely (2004), "Almost convergence and a core theorem for double sequences", J. Math. Anal. Appl., [6]. 293 (2), 532 - 540.

*Corresponding Author: Zakawat U. Siddiqui

- [8]. (2010), "Invariant mean and some core theorems for double sequences", Taiwanese Journal of Mathematics, vol.14, no.1, 21 33.
- [9]. S. Mishra, B. Satapathy and N. Rath (1994), "Invariant means and σ -core", The Jour. of Indian Math. Soc. vol. 4, no. 1 4,151 158.
- [10]. K. Kayaduman and C. Çakan (2011), "The Cesáro core of double sequences", Abstract and Applied Analysis, vol.2011,Art. ID 950364, 9 pages
- [11]. S. A. Mohiuddine, and A. Alotaibi (2014), "Generalized Almost Conservative and Core Theorems of Double Sequences", *Abstract and Applied Analysis*, 2014, Article ID 152910, 7pages
- [12]. M. Başarir (1995), "On the strong almost convergence of double sequences", *Periodica Mathematica Hungarica*. vol. 30 no. 3, pp 177–181.
- [13]. G. M. Robison (1926), "Divergent double sequences and series", Transactions of the American Mathematical Society, vol. 28, no. 1, pp.50–73.