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ABSTRACT

The convergence of double sequences was a natural extension of the convergence of sequences. The transform
of a sequence by a matrix A gives rise to the A-summability. It is natural that in order to find analogue of A-
summability for double sequences, the matrix A is taken four-dimensional. It is pertinent to find the analogue of
core of sequences for the double sequences. The aim of this paper is to use the generalized double de la Vallée-
Pousin mean to find analogues of some results related to the Pringsheim P-core of double sequences.
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l. INTRODUCTION

The concept of the core of a sequence was first introduced by Knopp [1], now known as the Knopp
core. Let x = {x; } be a sequence in C, the set of all complex numbers and C,, be the least convex closed region
of complex plane containing x;, Xy 1, Xi42, --- - The Knopp core of x (K-core of x or core of x) is defined by the
intersection of all €, (k = 1,2,..). In the real case the K-core of x is reduced to the closed interval [lim inf x,
lim sup x]. If A'is a non-negative regular matrix, then the core of x is contained in the core of Ax, provided that
Ax exists. Rhoades [2] gave a slight generalization of Knopp’s core theorem in 1960. In 1979, Maddox [3] gave
some analogues of Knopp’s core theorem.

In 1999, Patterson [4] extended the Knopp core for the double sequences using the convergence of
double sequences defined by Pringsheim [5], called it Pringsheim core (shortly, P-core) which is given by
[P — liminf x, P — lim sup x], and proved some result on them. In 2002, the M-core and o-core for double
sequences were defined and studied by Mursaleen and Edely [6] and Mursaleen and Mohiuddine ([7] and [8]),
respectively. The ag-core for single sequences was given by Mishra et al [9]. Kayaduman and Cakan [10]
presented the concept of Cesaro core of double sequences.

Mohiuddine and Alotaibi [11] presented a generalization of the notion of almost convergent of double
sequence with the help of de la Vallée-Poussin mean and called it [1,pu] -almost convergent. Using this

concept, they defined the notions of regularly of [1,p] -almost conservative and [, u] -almost coercive four-
dimensional matrices and obtain their necessity and sufficient conditions. Further, they introduced the
space £, of all absolutely convergent double series and characterize the matrix class (L£;,F,;), Where
Fa, denotes the space of [ 1, u] -almost convergence for double sequences.

Definition 1.1 [5]: A double sequence x = (Xj) is said to be convergent to L in the Pringsheim’s sense (or P-
convergent to L) if for a given € > 0 there exists an integer N such that |x]-k - L| < & whenever j, k > N. The
space of P-convergent sequences is denoted by Cp.

Su
Definitions 1.2 [5]: A double sequence x = (x;) is said to be bounded if [|x|| =k f 0 |xjk| < oo, We denote

the space of all bounded double sequences by J,.

The space of double sequences which are both bounded and P-convergent are denoted by Cpp.
Let {A = ayqmn,p,q = 0,1,2, ...} be a doubly infinite matrix of real numbers for all m,n =0, 1, 2,... . Forming
the sums

Ypq = (Ax)pq = Z?f:o m=0 Apgmn Xmn »
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called the A-mean of the sequence x = {x;}, yield a method of summability. More exactly, we say that a
sequence x = {x;; } is A-summable to the limit [ if the A-mean exists for all j, k =0, 1, 2, ... in the sense of
Pringsheim, i. e.,

limy, ;500 Z;’;OZ};:O Apqjk Xjk = Ypq and limyg o ypg = 1
We say that a matrix A is bounded regular if every bounded and convergent sequence x = {x;,.} is A-summable
to the same limit and the A-means are bounded, Basarir [12].
Definition 1.3 [11]: A double sequence x = {x;} of real is said to be [4,u]-almost convergent (briefly,
Frau — convergent) to some number [ if xeF, ,;, where

Fiauw = {x ={xp 0 — limp e Qg () = L exists,uniformly ins, t; L = Fjy ) — lim x},
1
Q'mn,s,t‘(x) = mzjejm Zkeln Xjtsk+t o

Denote by F; 1, the space of all [4, u]-almost convergent sequence {x;,}. Note that Czp © Fy ) € oo
Definition 1.4 [4] Let x = {x; , } be a double sequence of real numbers and for each n, let a, = sup,{x;,:j, k =
n} The Pringsheim limit superior of {x} is defined as follows:

(1) If a,, = +oo for each n, then P — lim sup{x} := +oo;

2 If @, < oo for some n, then P — lim sup{x} = inf,{a,}

Similarly, let B, = inf,{x;:Jj, k = n} then the Pringsheim limit inferior of {x; , } is defined as follows:
(3) If B, = —oo for each n, then P — lim inf{x} := —oo;

4) If B, > —oo for some n, then P — lim inf{x} = sup, {B,}

LetA=,;;m=0,12,..)and u = (u,:n = 0,1,2,...) be two nondecreasing sequences of positive real with
each tending to co such that 4,,,.; <A, + 1,4, = 0, 4,1 < 4, + 1,11, = 0 and define
Sn(®) = 7= jej,, Tkern Nk (1)
called the double generalized de la Vallée — Poussin mean, where J,, =[m—A4,+1m] and [,, = [n —
U, + 1,n]. We denote the set of all A and p type sequence by using the symbol [4, u]. We wish to study the
core of double sequences via the generalized double de la VVallée-Poussin mean.
Define the following sub-linear functional on L.
lim su

ORI o
Then the F, ) — core of a real-valued bounded double sequence {x;,} is defined to be the closed interval
[-T'(—x),T'(x)]. Since BP-convergent double sequence is Fi, ,-convergent, we have, I'(x) < L(x), where
L(x) = P — limsup x and hence it follows that F, ,; — core{x} € P — core{x} for all x € L.

Zje]m Zkeln Xj+sk+t

1. MATERIALS AND METHOD
The following results are used in our work to establish the results in the next sections.
Theorem 2.1 [13]: The four-dimensional matrix A = (apqmy) is RH-regular if and only if:

(RHy) P-lim,, ;e @y gmn = 0, for each mand n
(RHy) P _pl(ilgloo Zf;l:l ZZ=1 Apgmn = 1
(RH3) P —lim, o X0 1| @pgmn| = 0, for each n,
(RHy) P—lim,, X7  |apgmn | = 0, for each m,
(RHs) X% X7%0| @mnji | is P-convergent; and
(RH) there exist positive numbers A and B such that X2 5 X% p| @y | < 4
Theorem 2.2 [4] If A is a non-negative RH-regular summability matrix, then P — C{Ax} < P — C{x} for any
bounded sequence {x} for which {Ax} exists.
Lemma 2.1 [4] If A = (aynji) is a four-dimensional matrix, such that (RH,), (RHz), (RH,) and
P —lim SUp mn ZT:O Z?:Olamnjkl =M,
holds, then for any bounded double sequence x = {x;;.},
p —limsup {|Ax[} < M(p —lim sup {|x|}),
where,
Ymn = Zf}ﬁo,o Amnjk Xj k
In addition, there exists a real-valued double sequence {x} such that if a,; is real with
0 < P —lim sup {|x|} < o, then
limsup{|y|} = M(P — limsup{|x|}).
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I1l. RESULTS
Lemma 3.1. If A = (@) is a four-dimensional matrix, such that (RH;), (RHs), (RH4) and
p —limsup X5 Xio|anjic| = M
holds, then for any'bounded double sequence x = {x; }, we obtain the following:
p — lim sup {AS} < M(p — lim sup {3}),
where,

1
3= Sm,n (X) = Ambin Zje]m Zkeln xj,k
1

A3 = A3 mn x) = mzjam Zkeln AmnjiXj k
In addition, if there exists a real — valued double sequence x = {x; } such that, a,,y, ; is real with 0 <p —
lim sup{J} < oo, then
p — lim sup{|A 3|} = M(p — lim sup {AJ}),
where J is the generalized double de la Vallée-Pousin mean.
Proof
Let x = Sup; x|x k| < oo and let f == P — lim,, ,, Sup|xj,k| < oo, for any € > 0, there exists a positive integer

N such that |x; | < €2 ) , for eachj k>N

1
143, ()] < —22|amn,k||xk|

]OkO

1
t— " " Jmmllrad
Amlin

0<j<N N<k<oo

Z Z |amn1k|| k|+ Z Z |amn1k||

N<j<oo 0sksN ] =N+1k=N+1

m:un

N N
1
<7 D D el
n] 0 k=0
1 B+¢
o 2 O el S5

A
mHn 0<j<N N<k<co

+/1ml'un Z Z |amn]k|(‘8+£) llu i i |amnjk|(ﬁ—;g)

N<j<co 0sk<N j=N+1k=N+1

which yields
P —lim sup{l Sm,n(x)l} =M +¢)
Therefore, the following holds:
P —lim sup{| Sy (¥)|} = M(p — lim sup [|x[])
Since P — lim sup,, ,, X7 Zf=0|amnjk| =M
We may assume that M > 0 without loss of generality. Using RH-regularity conditions, we choose
mg, Ny, jo and kg, so large that
oo 1 1
Ozk 0|am0n010k0| >M—- Zo<]<]0 Zk0<k<oo|am0n0]0k0| < "
20<]<10 Zk0<k<°°|amo"o}oko| = ] Jo Zk kolam0"010k0| =7
Let [m,_4], [ng_1], [jp_1]and q—l] be four chosen strictly mcreasing index sequences with p,q = 1,2, ..., i —
1,..,r — 1 with j, = k, > 0. Using the RH-regularity conditions we now choose m; > m;_; andn, >n,_,
such that
1
Zosjsji_lzosksm|aminrjk| < J&r Zoskskr_lZkr_1<ksoo|aminrjk| < o

1
il Zlc:):O'aminrjkl >M-—=

Let us define {x} as follows:

Ay jk .. . ..
=) T if i <J <y keoy <k <y and Qg e # 0;
Xjk = Amn,jk
0, otherwise.

Consider the following:
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|43, ()| =

o 2 2

Jj=0k=

1
2 Y Zlmm/kl

mibtnr o<iFi s 0%kzer

mlunrk Z Z [l = Amgbn,

_1<k<ky ji<jso

Z Z |aminrjk|

JSJi1 kr_1<ksoo

Z Z m; nr]k| 21+r

Ji—1<j<oo kysksoco

.Unr o<

1
+A aminrijgn(aminrjk)
mibtne ;. < i<k
1 11 1 1 1
= T omr Qi ghw g M—5<21+T) M =95

This implies that
P —lim sup{| S ()|} = M = M(p — lim sup [|x]])
Thus, if A'is real-valued then so is [x] with 0 < limSup[x] < o
P —lim sup{| Sy ()|} = M(p — lim sup [|x[])
This completes the proof.
We use the above lemma to prove the following theorem.

Theorem 3.2
If A = (apnji) is a four—dimensional matrix, then the following are equivalent
(M For all real — valued double sequences x = {x; }
p —limsup {A 3} < p — lim sup {x}
(i) A'is an RH — regular summability matrix with
b— lirﬂm,n Zﬁo Zlio=0|amnjk| =1 (31)

Proof (i) = (ii)
Let x = {x;,} be a bounded p—convergent double sequence.
Then p — lim inf{3} < p — lim sup{3} = p — lim {3}
And also,
p — lim sup{|A(=3)|} < —(p — liminf {3})
These imply that
p — liminf{3} < P — lim inf {AS} <p — limsup {AS} < p — lim sup {J}
Hence {A3} is p—convergentand p — lim {AJ} = p — lim{J}.
Therefore, A is an RH — regular summability matrix. By Lemma 3.1, there exists a bounded double sequence
x = {x;;} such that lim sup {|3[} = 1 and p — lim sup {AJ} = A, where A is defined by (RHj). This implies
that
1< p— lim infm,n ZT;O ZI?:O Amnj k =p-— lim SUPmn Zjio ZI?:O Amnjk <1
whence

(i) = (i)

Here we show that if { 3 } is a p— convergent sequence and A is an RH — regular matrix satisfying (3.1), then
p — lim {AJ} < p — lim sup{J}

For p g > 1, we obtain the following

| ]E]m Zkeln amn}k x]k |

Z Z [amnjk Xjk |~ @mnjk Xjk _I_Z Z |amnjk Xjk |+ @mnjk Xjk
J€Jm &kely 2 JEJm &~k€]n 2
1

S Wzlefm Zkelnlammk”x}k | + Z}E]m Zke]ndamn]k' = G )Xk |

<
||x||

x| x|
Z}E]mzk€1n|amn]k|+ | | Z}E]mzkejnlamn]k|+ | | Z]E]mzkeln|ammjk| +

llxIl |x|

sup Z]E]m Zkelndamn]k' Amnjk ).

a +
]k>pql Un Z}E]mzkelnl mm}k'

Using (RHy)- (RH,) and (3.6), we take the Prlngshelm I|m|t to get the required result.
Theorem 3.3:
If A = (amn,ji) is @ non-negative RH-regular summability matrix, then
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Fiau) — corefAI} € Fy ) — core{S})
For any bounded i, ,;-double sequence {x} for which A exist.
Proof:
We have

1
J= Sm,n (X) = Ambn Zje]m Zkeln xj,k

o~ o~ 1
AI =AJ (X)) = mz‘je]m Dket,, @mnjk¥Xj
If Fj,u — core{3} is the complex plane, then the result is trivial. Now we consider the case where {x} is
bounded or unbounded and establish the required result. In both cases, the result will be established by proving

the following:
If there exists a g such that w & F; ;) — core,{J}, then there exist a p such that w & Fy; ,) — core,{JI}. When

{x} is bounded w & Fy; ,; — core{J} is not in the complex plane, thus there exists an w & Fy ,; — core{J}.
This implies that there exists a g for which w & F; ;) — core,{3}. Since o is finite, we may assume that ©=0
by linearity of A. Since we are also given that w ¢ F, ,; — core,{J} is a convex set, we can rotate w & F ) —

coreq {3} so that the distance from zero to w & Fiy ) — core {3} is the minimum of {ISI: S€wé&Fu—
coregJ; and is on positive real axis; say that this minimum is 3d. Since w@&F/4u]—coreg{3}is convex, all

points on w & Fp, ) — core, {3} have real part which is at least 3d. Let M = max {%} By regularity
mHn
conditions (RH;) - (RH,) and assumption a,,, ;, = 0, there exists an N such that for m,n>N, the following hold:
da da
Zj,keal Amnjk < 3_M:Zj,k€zx2 Amnjk < M

d d
Zj,keag Amnjk < 3_M'Zj,kea4 Amnjk < FYy
where,
a, ={(,k):0<j<j,and 0 < k <k},
a, ={(,k):jo <j <oand 0 < k < ko},
a3 ={(],k):0 <J S]O andko < k< 00},
a, ={(,k):jo <j<ooandky < k < oo}.
Therefore, form, n > N,
1 1
R {Amﬂn Zje]m Z"'Eln amnkaf,k} = R {Amﬂn Zjeal Zkeal amnjkxj,k} +
1 1
R {Amﬂn Zjeaz z“"750‘2 amn]'kx]'.k} + R {Amﬂn Zjea3 Zkea3 amnjkxj,k} +
1
Amiin Zjeoq Zkea4 amnjkxj,k}
> _M{Zj,keal amnjk} - M{Zj,keaz amnjk} - M{Zj,kea3 amnjk} + 3d{zj,kea4 amnjk}

>-MZo+3d=d.
Therefore, R{AJ} > d, which implies that there exists a p for which »=0 is also outside w & F|, ,; — core,{3I}.

Now suppose that {x} is unbounded. Then ® may be the point at infinity or not. If ® is not the point at infinity,
then choose N such that for m, n > N, the following hold:

da 2
{Zj,keal amnjk} < 3m’ Zj,keazuzxgua4 Amnjk > 3
In a manner similar to the first part, we obtain R{AJ} > d. In the case when o is the point at infinity, w &
FlAu]—coreg{I}is bounded for j, k > g. We may assume that [|x|]<A for some positive number A without loss

of generality. Thus for m and n large, we obtain the following:

1 1
|m Y jesm Dkl AmnjiXi | < mzjejm Yket, Amnjk |xj,k | <

|2kl
Amiin 2 je jy Ziketn Gmnjic S A Xjejy, Licety, mnjk < ©-

Hence there exists a p such that the point at infinity is outside of w & F; ,; — core,{J}.
This completes the proof of the theorem.
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