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ABSTRACT: In this paper, For solving nonlinear fractional partial differential equations with Caputo 

fractional derivative, a fractional homotopy analysis approach is presented and applied. To exemplify the 

approach, examples were given, and the findings were compared to those produced using the fractional 

homotopy analysis approach. 
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I. INTRODUCTION  
Fractional differential equations are widely used to describe lots of important phenomena and dynamic 

processes in physics, engineering, electromagnetics, acoustics, viscoelasticity electrochemistry, material science, 

stochastic dynamical system, plasma physics, controlled thermonuclear fusion, nonlinear control theory, image 

processing, nonlinear biological systems and astrophysics, etc. [1-4]. 

In recent years, a many of approximate analytical methods have been utilized to solve the ordinary and 

partial differential equations in the Caputo sense such as the fractional variational iteration method, fractional 

differential transform method, fractional series expansion method, fractional Sumudu variational iteration 

method, fractional Laplace transform method, fractional homotopy perturbation method, fractional Sumudu 

decomposition method, fractional Fourier series method, fractional reduced differential transform method, 

fractional Adomian decomposition method, and another methods [5-69]. Our aim is to present the HPM, and to 
used it to solve the nonlinear FRDE. The remaining sections of this work are organized as follows. In Section 2, 

some background notations of fractional calculus are presented. In Section 3, the analysis of fractional HAM is 

discussed. Applications of fractional HAM are shown in Section 4. The conclusion of this paper is given in 

Section 5. 

 

II. PRELIMINARIES 

Definition 1.[3]  Areal function R  is said to be in the space R if there exists a real 

number  such that  where  and it is said to be in the space  

if N. 

 
Definition 2.[3]  The Riemann Liouville fractional integral operator of order  of a function 

 is defined as 

            
where  is the well-Known Gamma function. 

 

Definition 3.[3]  The Liouville-caputo operator (c) with order  of  is defined as follows: 

mailto:sahib_abdulkadhim.math@utq.edu.iq


Approximate Analytical Solutions of Partial Differential Equations with Caputo Fractional Derivative 

*Corresponding Author:  Sahib Abdulkadhim Sachit                                                                                 15 | Page 

           
for  N  

The following are the basic properties of the operator : 

1.  

2.  

3.  

 
Definition 4.[3]  The Mittag-Leffler function  with  is defined as. 

                              
 

III. ANALYSIS OF METHOD                                                                                                            
Let us consider a general ifractional nonlinear PDE of the form: 

       
Subject to the initial conditions 

         
where  is the CFD of the function  defined as: 

          
and R is the linear  differential  operator, N represents the general nonlinear differential operator, and  is the 

source term. 

We define the nonlinear operator 

              
where    is a real function  of   

 so-  zero-orderi deformation equation of  (6) has the form 

               
where  is the embedding parameter,  denotes a nonzero auxiliary function,  is an auxiliary 

parameter. 

 is an initial guess of  and  is an . 

 Obviously, when the parameter  and , it holds 

                    
respectively.  Thus as q increases  from 0 to 1 

the solution  varies from the initial guess  to the solution . 

Expanding  in Taylors serie's with respect to q, 

we have 

                       
Where 

                    
If the  auxiliary  linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are properly 

chosen. 

The series (9) converges at , then we has 
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which must be one of the solution of the original nonlinear equations. 

 According to the definition (11), the governing equation can be deduced from the zero-order deformation (7) 

Define the vectors 

      
 Differentiating the zero order deformation  equation (7) m-times with respect to q and then dividing by m! and finally 

setting q=0 we get the following  order deformation equation : 

         
Applying the Riemann Liouville fractional integral operator of order of order , we have 

      
where   

      
 

      
In this way, it is easily to obtain  for ,   - order, , we have 

    
 

IV. APPLICATIONS                                                                                               
Example 1:  Consider the following nonlinear  fractional Burger's equation. 

    
with the initial condition  

 
We now define a nonlinear operator is  

   
and thus 

        
The  order deformation Eq. (21) is 

          
Applying The  Riemann Liouville  fractional integral  operator  of order   we have  

          
Solving above the Eq.(23) for m=1,2,… and  choosing  H(x,y,τ)=1 
Let us take the initial condition 

 

      

                        

                 

          

       

     

       
                     

and so on. Then we have 



Approximate Analytical Solutions of Partial Differential Equations with Caputo Fractional Derivative 

*Corresponding Author:  Sahib Abdulkadhim Sachit                                                                                 17 | Page 

       
Put  to obtain 

  

         
The exact result of Example 1 when  is 

        
 

Example 2:  Consider the following nonlinear  fractional DEs. 

 
with the initial condition  

   
We  now define a nonlinear  operator is  

              
and thus 

              
The  order deformation Eq. (21) is 

                
Applying The  Riemann Liouville  fractional integral  operator   of order   we have  

                  
Solving above the Eq.(23) for m=1,2,… and  choosing  H(x,y,τ)=1 
Let us take the initial condition 

                  

                       

                                         

                                        

 

                  

                               

                                      

                                   
                                  

and so on. Then we have 

                
Put  to obtain  

                
The exact result of Example 2 when  is 
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V. CONCLUSIONS 
The successful implementation of method HAM yielded approximate solutions to nonlinear fractional 

order differential equations with temporal fractional derivatives. The answers discovered were in the form of 

infinite power series that could be stated in closed form. 
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