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I. BASICS 

  As in the previous paper [8], we define a binary digital image to be a function  
2

: 0 , 1P Z . 

Alternatively, it is also defined as an array of 0/1 integer values. A coordinate system in 
2

Z  is chosen such that 
the first axis points downward (the row axis) and the second axis points to the right (the column axis). As usual, 

an element  
2

,i j  Z  can be regarded as a point (placed at row i  and column j ), or as a square placed with 

its center or with its upper-left corner at coordinates  ,i j ; such an element is usually called a pixel. If  

 , 0P i j  , the pixel  ,i j  is called a background point; otherwise, if  , 1P i j  , the pixel  ,i j  is called 

a foreground point. We assume the number of 1-pixels to be finite; we can therefore restrict each image to a 

digital rectangle. 

  Given a binary digital image P , the set of all pixels defines a graph  Pg r . The vertices of this 

graph are single pixels, represented as  p ; its faces are quadruples of pixels, represented as   
p q

r s
 
 

; and its 

edges are horizontal pairs    p q , vertical pairs 
p

r
 
 

, main diagonal pairs 
0

0
 

p

s
 
 

, and secondary diagonal pairs  

0

0
 

q

r
 
 

.  

 

II. RESOLUTION REFINEMENTS 

  Let P  be a binary digital image. The resolution refinement of P  is a binary digital image Q , 

obtained from P   by dividing each pixel into four smaller ones; this division is performed by cutting 

each square by a horizontal line and a vertical line, both passing through its center. 

 A convenient way to represent the resolution refinement of a binary image is to place the pixels 

of the original image P  with their corners at integral coordinates, then multiply all coordinates by 2 and 
perform the subdivision (and finally move back the pixels with their centers at integral coordinates, if 

desired). 

 A function   on the class of binary digital images will be called a resolution refinement 

invariant (or just a refinement invariant), if    Q P   whenever Q  is the resolution refinement of 

P . The aim of this paper is to characterize all linear, real valued, resolution refinement invariants of 

certain kinds, including the refinement invariants discussed in [8]. 

  In the following we will denote by  # ;P   the number of occurrences of the local pattern   

in the graph  Pg r . 
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III. TECHNICAL DETAILS                                                                                                             
  Consider the function   

         

      

1

1

0 1 1

1 1 1

1 1   1

0   1

# ; # ; # ;

# ; # ; # ;                               

v h i v i

h e v e sq

P P P P

P P P

   

  

     

     

 
 

   
   

 

where the coefficients , , , , ,
v h i v i h e v e s q

       are real numbers. 

  If  Q  is a resolution refinement of P , then 

- each vertex  1  of P  generates in Q : four vertices  1 , two horizontal edges  1   1 , two vertical 

edges 
1

1
 
 

, and one square 
1 1

1 1
  

 
; 

- each horizontal edge  1   1  of P  generates in Q , in excess: two horizontal edges  1   1 , and one square 

1 1

1 1
  

 
; 

- each vertical edge 
1

1
 
 

 of P  generates in Q , in excess: two vertical edges 
1

1
 
 

, and one square 

1 1

1 1
  

 
; 

- each horizontal edge  0   1  of P  generates in Q , in excess: two horizontal edges  0   1 ;  

- each vertical edge 
0

1
 
 

 of P  generates in Q , in excess: two vertical edges 
0

1
 
 

; 

- each square face 
1 1

1 1
  

 
 of  P  generates in Q , in excess: one square 

1 1

1 1
  

 
. 

Therefore, 

 

     

        

      

     

   

           

1 1

1 1

0 0

1 1

1 1 1 1 1

1 1 1 1 1

1 1

1   1 1 1   1

1

0   1 0   1

1 1   1

# ; 4 # ;

# ; 2 # ; 2 ;

# ; 2 # ; 2 ;

# ; 2 # ;

# ; 2 # ;

# ;  # ; # ; # ; # ;  

Q P

Q P P

Q P P

Q P

Q P

Q P P P P

 

   

   

 

 

  

   
   

   
   

     
     

  

and we get 

                

           

1 0 1 1

1 1 1 1

1

1

1 1   1 0   1

1 1   1

# ; # ; # ; # ; # ; # ;  

        ( 4 2 2 ) # ; # ; 2 # ;

                                                    

2

v h i v i h e v e sq

v h i v i sq v i sqh i sq

Q Q Q Q Q Q Q

P P P

      

      

           

         

     
     

 
 

      
1 1

1 1

0

1
 + # ;                     2 # ; 0   1 2 # ;

sqh e v e
PP P            

  

  In the sequel we will need the difference 

        

        

    

1

1

0

1

1

1   1

0   1

3 2 2 # ;

                     # ; # ;

# ; # ;                    +

v h i v i sq

h i sq v i sq

h e v e

Q P P

P P

P P

     

   

 

     

   



  
 

  
 

  

If    Q P  , then for each binary digital image P , 

 D

             

    

1

1

0

1

1 1   1

0   1

 3 2 2 # ; # ; # ;

                              # ; # ; 0 +

v h i v i sq h i sq v i sq

h e v e

P P P

P P

       

 

       

 

  
 

  
 

 

If we extend the function   to one of the following three functions 
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0 0

1 1

1 1

1 1

1 0

0 1

1 0   1 0   1# ; # ; # ; # ; # ;

# ;                                 # ;

v h i v i h e v e

sq m d

P P P P P P

P P

     

 

         

 

   
   

    
   

 

              

   

0 0

1 1

1 1

1 1

0 1

1 0

1 0   1 0   1# ; # ; # ; # ; # ;

# ;                                 # ;

v h i v i h e v e

sq s d

P P P P P P

P P

     

 

         

 

   
   

    
   

 

and 

              

     

0 0

1 1

1 1

1 1

1 0 0 1

0 1 1 0

1 0   1 0   1# ; # ; # ; # ; # ;

# ;                                  # ; # ;

v h i v i h e v e

sq m d sd

P P P P P P

P P P

     

  

         

 

   
   

        
     

, 

where the coefficients ,  
m d s d

   are real numbers as well, then we easily see that each of the bit-quads  

1 0

0 1
  

 
 and 

0 1

1 0
  

 
 in P  generates just one bit-quad of the same kind in Q ; therefore, there will be no changes 

in  D  .  

 

IV. EULER NUMBERS                                                                                                
 

 We consider the following well known, linear, integer valued functions on the class of binary digital 

images: 

the 4-adjacency Euler number 

           
1 1 1

1 1 1

( 4 )

1 1   1# ; # ; # ; # ;  P P P P P       
   

 

the main diagonal 6-adjacency Euler number 

     

           
1 0

0 1

1 0

0 1

1 1 1

1 1 1

( 6 ) ( 4 )

1 1   1  

 

# ;

# ;

              # ; # ; # ; # ;  

m

P

P P P

P P P P

 



 

   

 
 

         

 

the secondary diagonal 6-adjacency Euler number 

     

           
0 1

1 0

0 1

1 0

1 1 1

1 1 1

( 6 ) ( 4 )

1 1   1  

 

# ;

# ;

              # ; # ; # ; # ;  

s

P

P P P

P P P P

 



 

   

 
 

         

 

and the 8-adjacency Euler number 

       

             
1 0 0 1

0 1 1 0

1 0 0 1

0 1 1 0

1 1 1

1 1 1

( 8 ) ( 4 )

1 1   1   

  

# ; # ;

# ; # ;

              # ; # ; # ; # ;  P P

P P P P

P P P P

 

 

  

   

   
   

             

 

For the 4-adjacency and 8-adjacency Euler numbers, see the references [1], [3], [4]; for the two 6-adjacency 

Euler numbers see the references [1], [2]. 

  Some more linear, integer valued functions on the class of binary digital images were discussed in [9]; 

this work was inspired by [5], [6], [7]: 

the 4-adjacency Euler number 

           

         

         

         

0 1 1

1 1 1

1 1 1

0 1 1

0 1 1

1 1 1

1 1 1

0 1 1

( 4 )

1 0   1

1 0   1

1 1   0

1 1   0

# ; # ; # ; # ;  

# ; # ; # ; # ;  

             # ; # ; # ; # ;  

             # ; # ; # ; # ;  

           

P P P P P

P P P P

P P P P

P P P P

     

   

    

    

   
   

   
   

   
   

   
   

 

the main diagonal 6-adjacency Euler number 
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1 0

0 1

0 1 1 1 0

1 1 1 0 1

1 1 1 1 0

0 1 1 0 1

0 1 1

1 1 1

( 6 ) ( 4 )

1 0   1

1 0   1

1 1   0

 

 

 

# ;

              # ; # ; # ; # ;  # ;

# ; # ; # ; # ;  # ;

# ; # ; # ; # ;  

            

            

m

P P P

P P P P P

P P P P P

P P P P

  

     

     

    

 
 

     
     

     
     

   
     

           

1 0

0 1

1 1 1 1 0

0 1 1 0 1
1 1   0

 

 

# ;

# ; # ; # ; # ;  # ;            

P

P P P P P



     

 
 

     
     

 

the secondary diagonal 6-adjacency Euler number 

     

           

           

       

0 1

1 0

0 1 1 0 1

1 1 1 1 0

1 1 1 0 1

0 1 1 1 0

0 1 1

1 1 1

( 6 ) ( 4 )

1 0   1

1 0   1

1 1   0

 

 

 

# ;

              # ; # ; # ; # ;  # ;

              # ; # ; # ; # ;  # ;

              # ; # ; # ; # ;  

s

P P P

P P P P P

P P P P P

P P P P

  

     

     

    

 
 

     
     

     
     

 
     

           

0 1

1 0

1 1 1 0 1

0 1 1 1 0
1 1   0

 

 

# ;

              # ; # ; # ; # ;  # ;

P

P P P P P



     

   
   

     
     

 

and the 8-adjacency Euler number 

       

             

             

1 0 0 1

0 1 1 0

0 1 1 1 0 0 1

1 1 1 0 1 1 0

1 1 1 1 0 0 1

0 1 1 0 1 1 0

( 8 ) ( 4 )

1 0   1

1 0   1

  

  

  

# ; # ;

              # ; # ; # ; # ;  # ; # ;

              # ; # ; # ; # ;  # ; # ;

         

P P P P

P P P P P P

P P P P P P

   

      

      

   
   

       
       

       
       

             

             

0 1 1 1 0 0 1

1 1 1 0 1 1 0

1 1 1 1 0 0 1

0 1 1 0 1 1 0

1 1   0

1 1   0

  

  

     # ; # ; # ; # ;  # ; # ;

              # ; # ; # ; # ;  # ; # ;

P P P P P P

P P P P P P

      

      

       
       

       
       

 

  It is enough to use the first formula in each of the four quadruples.   
  Each of these Euler number functions is a refinement invariant. For a proof, it is enough to replace in 

 D  

1,     1,     0 ,
s q h i v i h e v ev

              

or 

1,     0 ,     1,
h i v i h e v e s qv

             

and we get     Q P   .  

  The four Euler numbers are not independent, since 

       
( 4 ) ( 8 ) ( 6 ) ( 6 )m s

P P P P        

On the other hand, as shown in [8], every three of them are independent. 

  The aim of this paper is to prove some uniqueness results, according to which these four Euler number 

functions are, essentially, the only extended linear, real valued refinement invariants on the class of binary 

digital images, generalizing thus the results proven in [8]. 

  But first, we derive an alternative version of identity  D . By an argument similar to that in [9], it can 

be easily shown that 

        

      
0 1

1 1

0   1 1 1   1

1

# ; # ; # ;

# ; # ; # ;

P P P

P P P

 

    
   

 

Replacing in  D , we get the identity 
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e

D    
             

            

1

1

1

1

1 1   1

1 1   1 1

 3 2 2 # ; # ; # ;

                              # ; # ; # ; # ; 0 +

v h i v i sq h i sq v i sq

h e v e

P P P

P P P P

       

 

       

   

  
 

  
 

 

or 

 
e

D    
    

        
1

1

1

1   1

 3 2 2 + # ;

                          # ; # ; 0

v h i v i h e ve sq

h i h e sq v i ve sq

P

P P

     

     

    

         
 

 

 

 

 

V. UNIQUENESS THEOREMS 
Theorem 1. Every refinement invariant of the form 

                
1 0 1 1

1 1 1 1
1 1   1 0   1# ; # ; # ; # ; # ; # ;  

            , , , , ,

v h i v i h e v e s q

v h i v i h e v e s q

P P P P P P P

R

      

     

                
     



can be expressed in a unique way as a linear combination 

 
 

 
4

,    P P R      . 

Proof: We use identity  
e

D , since   is a refinement invariant.  

By choosing the image  1P   (only one foreground pixel in the image), we get   1# ; 1P  , 

  1   1# ; 0P  ,  
1

1
# ; 0P  

 
,   0   1# ; 1P  ,  

0

1
# ; 1P  

 
; therefore, 

3 2 2 0
v h i v i h e v e s q

            . 

By choosing the image  1   1P   (only two foreground pixels in the image, forming a horizontal edge), we get 

  1# ; 2P  ,   1   1# ; 1P  ,  
1

1
# ; 0P  

 
; therefore, 6 5 4 3 02

v h i v i h e v e s q
            . 

By choosing the image 
1

1
P  

 
 (only two foreground pixels in the image, forming a vertical edge), we get 

  1# ; 2P  ,   1   1# ; 0P  ,  
1

1
# ; 1P  

 
; therefore, 6 4 5 3 02

v h i v i h e v e s q
            . 

We derived the following system of equations 

3 2 2 0

            0

            0

v h i v i h e v e s q

h i h e s q

v i v e s q

     

  

  

     

 

 





  

and from these it turns out that 

v h e v e s q
        ,  

h i h e v i v e
         ,  for some R  . We can now rewrite the 

invariant formula as 

                

       

            

1 0 1 1

1 1 1 1

1

1

1 1

1 1 1

1 1   1 0   1

1 1   1

1 1   1 1

# ; # ; # ; # ; # ; # ;  

# ; # ; # ;

# # ; # # ; # ;  

         

                              ; ;

v h i v i h e v e s q

v h i v i

h e v e s q

P P P P P P P

P P P

P P PP P

      

  

  

           

    

     

     
     

 
 

  
   

               

1

1 1 1

1 1 1
1 1   1# ; # ; # ; # ;            

v h e v e s qh i h e v i v e
P P P P            

 
 

       
   

Therefore,   
 

 
4

P P    . 

Theorem 2. Every refinement invariant of the form 
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1 0

1 1

1 1

1 1

1 0

0 1

1 1   1 0   1# ; # ; # ; # ; # ;

                                  # ;   # ;

            , , , , , ,

v h i v i h e v e

sq

v h i v i h e v e sq m d

m d

P P P P P P

P P

R

     



      



         

 

   
   

    
   



 

can be expressed in a unique way as a linear combination 

 
 

 
 4 6

,   ,
m

P P R           . 

Proof: The parameter 
m d

  does not appear in  
e

D , so it is independent. As in the proof of Theorem 1, we get 

v h e v e s q
        ,  

h i h e v i v e
         ,  for some R  . Therefore, 

 
 

   
1 0

0 1

4

 # ;
m d

P P P        
 

  

or   
 

 
 4 6 m

P P        ,  

where 
m d

    , 
m d

   . 

Theorem 3. Every refinement invariant of the form 

              

   

1 0

1 1

1 1

1 1

0 1

1 0
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                                  # ;   # ;
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can be expressed in a unique way as a linear combination 

 
 

 
 4 6

,   ,
s

P P R           . 

Proof: Similar to that of Theorem 2. 

 

Theorem 4. Every refinement invariant of the form 

              

     

1 0

1 1

1 1

1 1
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0 1 1 0
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                                  # ;    # ; # ;
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can be expressed in a unique way as a linear combination 

 
 

 
   4 6 6

,   , ,
m s

m s m s
P P R                . 

Proof: As in the proofs of Theorems 2 and 3, we get 
v h e v e s q

        ,  

h i h e v i v e
         ,  for some R  . Therefore,  

 
 

     
1 0 0 1

0 1 1 0

4

  # ; # ;
m d sd

P P P P            
   

 

or   
 

 
   4 6 6m s

m s
P P            ,  

where 
m d sd

      , 
m m d

   , 
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   . 
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