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ABSTRACT
RSA is one of the most popular and accepted cryptosystems in the his-
tory of eryptology. Let N = p"g be an RSA prime power modulus for r» > 2
and q < p < 2q. The study was present to factor the modulus N = p"¢
based on the RSA key equation ex — y¢(N) = 1 where ¢(N) =p"(p —

T— — re_p_ - re_pr
1)({1 — 1}. For (QT_-i-llqr'_-i-zll —p?ll) pTHT (p—|— 2?11qu$) <
%N)‘Jr” withd =N". Ifa < HT_" we shows that 2 is one of the conver-
gents of the continued fractions expansions of £

T r—1 T —1 T—1 "
N—|[27+T427+T |NTHL —27+1 Ny T+1 )
The second part of this research consider two cryptanalytic attacks on w
instances of RSA moduli N; = plq; for i = 1,....,w satisfying a variant
of the form e;x — y;¢(N;) = 1 or of the form e;z; — y¢(N;) = 1 for the
unknown positive integers x, z;, v, ¥:, applying the LLL algorithm on w
prime power public keys (N;,e;) we were able to factorize the w prime
power moduli N; = pjq; simultaneously in polynomial time.
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I.  INTRODUCTION

In the RSA cryptosystem, the modulus N = pgq is a product of two primes of
equal bit-size. Let e and = be two positive integers satisfying ex = 1 mod ¢(N)
where ¢(N) = (p—1)(g — 1) is Euler’s totient function. Commonly, N is called
the RSA modulus, e the encryption exponent and x the decryption exponent.
The modular equation exr = 1 mod ¢(N) is sometimes used as an equation
er — yp(N) = 1, where k is some positive integer, is called the RSA key equa-
tion. It is based on the dramatic difference between the ease of finding large
prime numbers and computing modular powers on the one hand, and the dif-
ficulty of factorizing a product of large prime numbers as well as inverting the
modular exponentiation [18].

In prime power, the modulus N is in the form N = p"q for + > 2. Takagi
showed how to use the prime power to speed up the deecryption process when
the public and private exponents satisfy an equation ex — yd(N) = 1 [20]. As
in the standard RSA cryptosystem, the security of the prime power depends on
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the difficulty of factoring integers of the form N = p"q.

As describe in Boneh, et al., (1999), the schemes with modulus of the form
N = p"g are more susceptible to attacks that leak bits of p than the origi-
nal RSA-scheme. Using Coppersmith’s method for solving univariate modular
equations, they showed that it suffices to know a fraction of ﬁ of the MSBs
of p to factor the modulus.

In 2007 Hinek, started to look at system of equations involving the moduli
N; = pig;, he showed that it is possible to factor the w modulus N; using w
equations of the form ¢;z — y;¢(N;) = 1 if o < N? with 6 = Q(kﬁ—l} — £ where ¢
is a small constant depending on the size of max N; [8].

Very recently, with w RSA public keys (N;,e;), Nitaj, et al. presented a
method that factor the & RSA moduli V; using w equations of the shape
eir — y;d(N;) = z; or of the shape e;x; — yéd(N;) = z; where N; = pqi,
&(N;) = (pi — 1)(g;: — 1) and the parameters x, x;, y, y;, z; are suitably small in
terms of the prime factors of the moduli [13].

Asbullah (2015) proved that by taking the term N — (2N?%/3 — N'/3) as a good
approximation of ¢(N) satisfying the RSA key equation ex — y¢(N) = 1, one
can vield the factorization of the prime power modulus N = p"q for r = 2 in
polynomial time.

Our contribution, The research, proposes two cryptanalytic attacks on the
prime power modulus N = p"q. First cryptanalytic attack, consider N —
((2,%1 + 2%) N1 — Z%I\-’:—;i) as a good approximation of ¢(N) with
public of exponent e satisfying the equation exr — yo(N) = 1 for some un-
known integers ¢(N), x,y. Hence using continued fraction we show that % can
be recovered among the convergents of the continued fractions expansions of
) which lead to the factorization of the mod-

r—1 r—1

[
T r—1 T
hr_((gr_-Ff+2r_-Fr)Jr\rr_-|?f_2r_-|:rJr\rr_-FT

ulus N = p"q in polynomial time.

The second cryptanalytic attacks consider the public key exponents (N;,e;)
for the unknown integers =, x; and w integers v, y;, and transform the equations
into a simultaneous diophantine problem e;r —y;o(N;) = 1 and e;x; —yo(N;) =
1, from which we apply lattice basis reduction techniques so as to enable us to
find the parameters (x,y;) or (y,r;) which leads to factorization of w moduli N;
in polynomial time if N = max; N; and

W — M — Kw

r< N y; < N®  where a=

Pw — Adw — Kw
(1+w)

The rest of the paper is organized as follows. In section 2, we present a brief
review of some preliminary result for the continued fraction and lattice basis

r; < N%, y< N where a=

reduction, simultaneous diophantine approximations with some useful results
needed for the attack. In section 3, 4 we put forward the first and second of our
cryptanalytic attacks. We conclude this paper in section 5.

*Corresponding Author:Sadig Shehu 21 | Page



VulnerableAttacksofN=p'q

2. Preliminaries

In this section we state some basics definition concerning the continued frac-
tion, lattice basis reduction techniques and simultaneous diophantine equations
as will as some useful lemmas needed for the attacks.

Definition 2.1 (Continued Fraction). The continued fraction of a real num-
ber I is an expression of the form

R=ap+

a; +
Ct,g-l—

1
as + ...

Where ag € Z and a; € ™ — 0 for ¢ = 1. The number ag, ay,az.... are called
the partial quotients. We use the notation R = [ag,aq,a5....]. For ¢ > 1 the
rational :—: = [ay, a1, az, ...] are called the convergents of the continued fraction
expansion of R. If R = % is a rational number such that ged(a,b) = 1, then the
continued fraction expansion is finite.

Theorem 2.2. (Legendre). Let = = [ag,a1,az,....... am,] be a continued frac-
tion expansion of x. If X and Y are coprime integers such that

1
[ ——

X| < 2x2

Then Y = p, and X = g, for some convergent f;—“ of x with n > 0.

| Y

2.3 Lattice
A lattice is a discrete (additive) subgroup of R™. Equivalently, given m < n
linearly independent vectors vy, ..., v € R?, the set

L=L(v1,.cc;Vm) = {Z v |y € Z}.
i=1

is a lattice. The v; are called basis vectors of £ and B = vy, ..., vy is called
a lattice basis for £. Thus, the lattice generated by a basis B is the set of all
integer linear combinations of the basis vectors in B.

Theorem 2.4 Let L. be a lattice of dimension w with a basis ¢1,...,c,. The
LLL algorithm produces a reduced basis vy, ...v,, satisfying

w—1)
ol < flvell < - < ] < 2T det L3575

forall 1 <i < w

As an application of the LLL algorithm is that it provides a solution to the
simultancous diophantine approximations problem which is defined as follows.
Let oy, ..., vn be n real numbers and £ a real number such that 0 < ¢ < 1. A
classical theorem of Dirichlet asserts that there exist integers py,....,p, and a
positive integer g < £~ ™ such that

lgo; —pi| <& for 1<i<n.

A method to find simultaneous diophantine approximations to rational numbers
was described by [10] In their work, they considered a lattice with real entries.
Theorem 2.5 (Simultaneous Diophantine Approximations). There is a
polynomial time algorithm, for given rational numbers e, ..., o, and 0 < £ < 1,

to compute integers pq, ..., p, and a positive integer ¢ such that
n(n—23
max; |ga; —pi| <& and g <27 3

Proof. See [13] Appendix A.
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3. First Cryptanalytic Attack on Modulus N = p"yg

We present our finding using continued fractions to factor the prime power
modulus N = p"q. Let (N,e) be a public key satisfying an equation satisfying
an equation ex — yo(N) = 1 for some unknown integers ¢(N), =,y.

Lemma 3.1. Let N = p"¢ be a prime power modulus with ¢ < p < 2¢. Then

™ 1 1 1 1
27TRNTT < g < N7 < p < 27 T N 7T

Proof. Let N = p"q and suppose q < p < 2q. Then multiplying by p" we get
1 1 1
p"g < p'p < 2p"q which implies N < p"t! < 2N thatis N75T < p < 27T N 7T,
r . . . . [ R 1
Also since N = p"q, then g = 2‘—, which in turn implies 27T N7 < g < N7+7.
Hence

™ 1 1 1 1
27N < g < N7 < p < 27 T N 7T

Let N = p"q therefore for ¢(N) = p"~!(p — 1)(q — 1) we compute the approxi-
mation of ¢(N) using p =~ 27T N+ and q =~ N7
¢(N)=p" " pg—p— q +1)

=plg—p —p gty

=N — (p'r _|_}:"r‘—1{‘_!r _pr—])

r—1

1

N — ( =T NFT)T 4 (27T N7#1) N7 — (2*1\“_3&)'"_1)

=N- ( TN ) {2:_111‘\-'% (N$) — {2:3 N ))
=N - ( TN ) 4 (27 Nt T ) — (20 N%))
=N — ( TN+ + 9FFI N7 — 2r+11\'f+1)
=N — ((2m + 2r_+1) N1 — 2%1\-'%)
Which is also a good approximation to ¢(IV).
O
Lemma 3.2 For ¢(N) =N — (p" +p" ¢ —1), If N = p"q is a prime power

N1 — Q%N%) —¢(N)| <

modulus with ¢ < p < 2¢, then ‘N — ((2 T+ 4+ 2f+1 )

rZ_r

rTor—1 P“;“ (p-i—z“*l'l T qr‘+1

Proof. Let N = p"q be a prime power modulus and suppose that
dN)=p" Hp—1)(¢g—1)=p'qg—p" —p " 'q+p" ' =N—-(p"+p"'q—p"")
Then

N - ((2T + 2\:3) N1 — 2%1\-':%11) — ¢(N)
- ‘N — $(N) — ((2«11 r2rt ) N 2%;‘\.%)‘

r— 1 r—1

r r—1 T r—1 r—1
27 + 2r+1) N 4+ 27/ N

r— 1 r—1 r r—1 r T r—1 . r—1
—p — (277 42771 ) (pTg)THT 4 27 g)

= |p" +p" 1 pr—l _ (21-_‘;_1 +2r+1)pr+1qr+1 +2,—+1p"‘.+_1‘"q:li ‘

*Corresponding Author:Sadig Shehu 23 | Page



VulnerableAttacksofN=p'q

_ | r—1 e N ,_21 T 1"711 ,.21 1 rii. ,.7,],— ,..,}
=|p +p q—p T 2P g 27 FpTHI g - 2R p T g
- 2 - r—1 2 r r—1 oy r_1
_ — r—1 r r—1
= 72r+1pr+1qr+l +p q72r+1pr+1qr+l +p +21"+1p1"+1 g™+t —p ‘
r r2 r r—1 -2 - =1 r2_¢ r—1
_ —1 — T . r—1
— 2r+]p1"+lqr+l —p q+2r+1pr+lqr T —p _2r+1pr‘+l g+ +p
2r+1 =1 r r2 r _ 2 r2-1 r41 r—1 2,41 r—1

r—1 r—1

< (2 g =y

_(r=1) r2_r_1
1 pT o1

Which terminate the proof.
Theorem 3.3 Suppose that N = p"q is a prime power modulus with ¢ < p < 2g,

and e < ¢(N) < N — ((Q'"TT + 2%) N7 — 2:;4-1}\'7%11) satisfylng an equa-

)

tion
ex — yod(N) = 1 for some unknown i11tegers o(N), z,y. If ¢(N) > 3N with
™ — 1"2—?'—
N > 4z and ( r+1q"+i —p l) prt (p—|—2f+1 r+1 q + ) < %NMLE
where A <1, k <1 and z < No. If a < 1= é £, then
€ Y 1
™ r—1 r r—1 r—1 - _. < ﬁ
N - ((2r+1 +2r—+L) N1 — 0% Nr+1) z| 2w
Proof. We write the equation ed — kd(N) =1 as
ex—y(p ' p-1)(g-1)) =1
ex —y(P " (pg—p—gqg+1) =1
ex —y(p " Ipg—p T Ip—p g +p ) =1
ex —y(pg—p" —p T lg+pTT) =1
ex —y(N—(p" +p"lq—p"7")) =1
ex —y(N — (N —¢(N))) =1
Since N — ¢(N) = p" +p" " lqg—p"~! then
ezf;—y(N— ((zril +2311) N7 —Qiﬁf\'ﬁli) — (N —@(N})) 1
ex—y (N, ((QF% +21111)Nr11 ,QCHNCIrI)) _ 1+y( _G(N) — (( 9ET JrQCI,}) N7 _ 95T N*E i))
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. r—

Divide by ((2r+1 e

R
2
.
+|+
_|_
[ ]
tl
=
4|4
|

S
=
]
)
D
=

€ Yy

€ €
= . — —1 1 T + 1 ™
N _ (gril n gili)j\rrll LomiNTT ¢(N)  o(N) =

< € € n ’ e 1Y
TN (2P e N o G| BN e
- T r—1 T r—1 _r—1

- E@(j\)—ﬂ(f\" —(21—4.1 _|_2r+1)j\r+1 _|_2r+1j\r+1) ea:—yqz')(N)’
T ey (V= (27 42 ) N 2N (V)
_ N — (Qﬁ + Q?li)}\nil LTI N _ ®(N) N 1
- € — - r— ,._ T =

O(N) (N — (2r-T—1 + 2r+i ) N + Qr+ij\’r+1l) o(N)x

N — (2"11 —I—Q:IJL) N1 + 2;1“\:’;1{ — ¢(N) 1
se N +—

o(N) d(N )z

r

Fore < 6(N) < N— (2r+1 + 2%) NTT 425 N5 —¢(N) and ez —yp(N) =
1, ¢(N) > gf\-" with N > 4z, then we have (V) > %N > g x dr > 3z from

== Tza—_rl_l el ‘)rll- rf_lr ] 1pA+e
QrFigrHl —p ot pH | p+ 27 ip T g < 7N and

the theorem

x < N® then

N_(Qril +2:11)N$ +2%j\r%_¢(j\r) N 1
d(N) (N )z
‘( r—1 r—1 9"2—7—1)‘ r ( 1 r2_y L)
2r+1qr+1 —p prHI p+27+lpr+l g+ 1
< - +
o(N) o(N)z
A1
3N T 322
1 ) 1
< _j\;’)\-’—h—l _j\,r—?cx
3 T3

For the Theorem 2.2, to satisfy it is suffice to shows that if A+ kx — 1 < -2«
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then a < HT_" that is if

%j\,’)ﬁl‘h‘,*] + %A.T*ZCE < %A}')ﬂ‘l’ﬁ*l 4 %j\erxw
1 1 i
747\.7.\{—:{—] 7}\;‘)\-}—.«—1
<3 T3
- 1
2x2

Hence ¥ among the convergent of the continued fraction expansion of
N— (

The following algorithm is designed to recover the prime factors for prime power
modulus N = p”¢ in polynomial time.

Algorithm 1
Input: N = p"gq, with g < p < 2¢ and public key (e, N) and Theorem (3.3).
Output: the prime factors p and q.

1: Compute the continued fraction expansion of

€

P r—1 r r—1 r—1 =
N— (gm +2m)wm+gmwm

2: For each convergent % of - e . compute £2=1
N—(zm+2r+l )Nr_+1—|-2r+1 N7FT
3: Compute p" ! = ged (I\-“, %)
4: If 1 < p"~ ' < N, then ¢ = pl
Example 1. As an example to illustrate our attack for » = 3, & = 8033,

y = 3700, let us take for NV and e the numbers
N = 45849558982338131447154427660571123

e = 21118307871812793190408095636001697

Suppose that N and e satisfy all the condition stated in Theorem 3.3, then tak-
ing the continued traction expansion of — — —0—————1 we get,
N— (Qm +2m)xm+2mxm
:3,2,1,2,6,2,5,2,1,1,2,1,1,4,1,1,5,2,2,6,1,1,7,2,]
1,2,4,1,16,3,1,6,1,1,9,5,2,2,29,10, 2, 2]

»1,1,1,1,4,1,
1.1

Applying the factorization algorithm with the convergent £ = gggg, we obtain

er —1  (21118307871812793190408095636001697)(8033) — 1
y 3700
= 45849558684938423702310333038919360

Hence we compute

er — 1

p=4/ged (N, ) = 605174881.
Finally for p = 605174881 we compute g = %\; = 206867603, which leads to the
factorization of N.

4. Second Cryptanalytic Attacks on w Moduli N; = plg;

Suppose that N; = plgi, i = 1,...,w, for w > 2, r > 2, with w instances (V;,¢;)
satisfying e;x — y;6(N;) = 1, or relation of the form e;z; — yo(N;) = 1, with
unknown parameters x;, y, z, ¥;. We shows that the w moduli N; fori =1, ..., w,

can be factored in polynomial time if N = maxz N; and
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_ . w— Aw — Kw
r< N 1y, <N% where o =———,
(w+1)

. . Bw — Adw — Kw
z; < N%, y<N% a= T+w)

Theorem 4.1 Suppose that N; = plg;, 1 <i < w for w > 2, be w moduli. Let
N =min N; and e;, i = 1, ..., w, be w public exponents. Define a = £=2w—rw

@D
where 0 < A < 1. Let ¢; < ¢(N;) < N; — H where H = (Qr"ﬁ + Qﬁ) N7 4

r—1 r—1
27T N,"*' . If there exist an integer z < N® and w integers y; < N such that

eix — yid(N;) = 1

for i = 1,...,w, then one can factor the w moduli Ny, ..., N, in polynomial time.

Proof. Suppose that N; =plg;,1 <i <wbewmoduliforw > 2, andr > 2,. Let

N = min N;, and y; < N®. Then we can rewrite the equation e;z —y;0(N;) = 1
as

e —yi(N; — (NV; = o(IV;))) = 1
eix —yi(N; —H + H — (N; — ¢(N;)) =1
eir —yi(Ni —H) =1—yi(N; — ¢(N;) — H)

o — : i 1
A;."T' o H T . ( )
Let N = min N;, and suppose that y; < N%, and |[(N; — &(N;) — H)| <

g r—1 r2or—1
1 1
21_ T q;— _pz_ -

L —yiNi —o(Ny) —H)| _ L +5:(Ni — o(N:) — H)|

T =Y

-

B P 1
p; (Pe‘ + Q%HPJH q{“)- Then

N, — 1T = N_1T
T . r—1
1+ N« (1\-2 - (241 - 2?1i) N7+ 4 257N — @(N))
< —
o(N)
1 r—1 o —r—1 r 1 rn—r 1
< ——
O(N)
_ NN
3 AT
N
1
< _A-Q+)\+P€—]
3
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Plugging in to (1), to get

e | S
— x| < S NaTAE
‘A-z- —H y*‘ 3
Hence to shows the existence of the integer z, we let € = %NQ"H‘"""'_I, with

a = YTAYTEW  Then we have

(w+D)
1 w _ 1 w
Nogw — - Arct-i—caw-i—)\w—nw—w — -
“-(3) (3)

. . L wlw—3) . o wlw—3)
Therefore since (%)N <27 .3% for w > 2, we get N%e¥ <277 . 3“ It
follows that if 2 < N® then z < 2° T gw . o summarizing for i =1, ...., w,
we have

e; ww=8)
’ﬁ&?—yi(é", <27 1 }'3“\)'6“}
-
Hence Theorem 2.5, is satisfy and the unknown integers z and y; fori =1, ....,w
can be obtain. Next from the equation e;z — y;d(N;) = 1 we get
€T — 1 I T r—1
= o(Ni)=p" " (p—1)(g—1)
Therefore by computing p:_l = gcd (ef‘:rfl,f\rf) leads to factorization of w
moduli N;,...,N,. O
Let e
51 = T —1 r—1

€2
§o = - T—1
N ovET 4 97 | N7 L 95T L
o — |27 Jr ™ -2 + ™ -2
€3
&3 = —1

r r—1 R e r=1 =
Ny — (2 1 2,,—4_1) A.-3r+1 4 QmA;SrH

Example 2. Mlustration to our attack on w moduli, we consider the following
three prime power and three public exponents

N1 = 92834119990999429073245536523494297321763270978398588874997

N = 11749016530491923830405230757290917349625387966959106999984 7
N3 = 102235600930811107391144009182291734021580872831279350764643
e; = 76473543004215018137847653981615831498947074060457493021857
ez = 1571110809941992486405873410115969813108779185422778705137
ez = 67932776190579064838099853544904570490719774400054762770017

Then N = max(Ny, Ny, N3) = 117490165304919238304052307572009173496253879669591 069999847 .
For w = 3 and » = 3 with A = 0.6927, k = 0.12243 we get § = “’E;ﬁ%}"“’ =
0.1386525000 and ¢ = %NQ""H"‘_I = 0.0006205988269. Using Theorem 2.5, we
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obtained. _
(wtl)(w—4
4

C =[3t1.2 .e7«~1] = 273030536100000

Consider the lattice £ spanned by the matrix

1 —[Ce1/(N1—H)] —[Ce2/(N2—H)] —[Ces/(N3—H)]
0 C 0 0
M=
0 0 C 0
0 0 0 C

Therefore applying the LLL algorithm to £, we obtain the reduced basis with
following matrix

10051167073 11435870083 8947157134 7987573842
—21757124738 45676506202 9014673796  —51529437252

86233011652  —58001813108 20484851416 —33435255192
—46334050577 —28503478067 129626888434 —34165974258

Next we compute

10051167073 8279804424 134406971 6678727146
—21757124738 —17922768207 —290942257 —14457017633
86233011652 71035777854 1153131553 57299490857
—46334050577 —38168391209 —619591670 —30787716404

K-M~'=

Then from the first row we obtained x = 10051167073, 1 = 8279804424, 45 =
134406971, y;3 = 6678727146. Hence using = and y; for i = 1,2,3, define
Gi=2=t =o(N)=p" '(p—1)(g—1)

Yi
G =92834119990998411838722932954909418147596219715510850957440
Gy = 117490165304917971251477089931324030038448862267338759574000
G5 = 102235600930810457352952823240949203742711193627765364 761440

Therefore for i =1, 2,3 we compute p; = 4/ ged (%_11 Ne-) , that 1s

p1 = 973230535413133, po = 1049228426328463, p3 = 805770174557867
And finally for i =1,2,3 we find ¢; = %} hence

q1 = 100704388509281, g2 = 101716491133001, g3 = 195419811496561

Which leads to the factorization of three moduli N;,N5,and Nj.

Theorem 4.2. Suppose that N; = plq;, 1| < i < w be w moduli with the
same size N. Let e;, i = 1,...,w, be w public exponents with min e; = N7,
0< <1 Let a= Where 0 < A < 1. If there exist an integer y < N¢
and w integers z; < N such that e;z; — yo(N;) =1 for i = 1, ...,w, then one
can tactor the w moduli Ny, ...V, in polynomial time.

Proof. Suppose that N; = plg;, 1 <7 € w be w moduli for w > 2, and r = 2.
Then we transform e;z; — y@(N;) = 1 as

‘M _ [1—y(N; — o(N;)) — H

[} €

(2)

y—x;
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Let N = max N;, and suppose that y < N%, mine; = N and |(N; — ¢(N;) — H)| <
sy Tl 2 _r_1 2or 1
‘ (Qﬂr_qu;H —p, ) pret (pi + 27T H g7 ) Then

L= y(Ni = 6(N)) = ID)| _ |1 +y(N; = 6(N:) — H),

€; - A‘rﬁ
. b =1 P | r P |
1+ N° (2v+1q§+1 -p; ) p (pe 4 9mTp, qu+1)
< R
_ A,T&(ihr)\-i—:{)
NB
1
< _A,-'a+h+nﬁﬁ
4
Plugging in to (2), to get
’Ni - T'i’y < 1 otatn—s
For the unknown integers y, z;, we let £ = lf\'““““‘ ? with o = W.
Then we have
1\ yatawtro—s 1"
A,rcxgw — - A,rct iy w—Gw — -
) . w w(w=3) 3)
Therefore since (%) < 27T : -3¥ for w > 2, we get N%c¥ < 2~ -39 Tt
wo—3) _
follows that if ¥y < N® then y < 2 - 3% . £7% summarizing for i =1, ..., w,
we have N "
; — ,)(.,. 3) . _
Ly —=zi| <e, y <2 T ge Lo
€;

Which satisty Theorem 8, and we can obtain the unknown integers y and z; for
i =1,....,w. Next from the equation €;z; — y¢(N;) = 1 we get

€l — 1 ‘ - r—
= $(N) =p  (pi—1)(gi — 1)

Yy
Therefore by computing p; ~ - (6 eiwi—l N) leads to factorization of n prime
power moduli N;, ..., N,,. O

Let
r—1

h.'"] — (2 r-rl;]. + 2%) A.'—]-"T + Q%A.Tlr—l—l

§1=

€1

r—1
-

‘[F\F—Z_(zr"_l +2%)A7+1 —|—21"+1_E\ T+T

& =

€2
r—1
-

Ny — (zm n 2%1) NIFT 4 9FE N7t

§a =

€3
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Example 3. As an illustration to our attack on j moduli, we consider the
following three prime power and three public exponents

Ny = 57636885428607255273299367629216296899309046639072214026487

N = 125540335187551827855109380266951398925768981505296611543087
N3 = 240186170434146331525450410273159000180343864860931245777863
€1 = 769023589883942484484013625385529960256346369870428118313690
ez = 753983599731561399576153151492532227137545413538055121385040
e3 = T7373699880226743444867053000404444090208478594590974303851

Then N = maxz(Ny, No, N3) = 240186170434146331525450410273159000180343864860931245777863.
Also min(ey, es,e3) = NP with 8 = 0.9990 For w = 3 and r = 3 with k = 0.3432,

A = 0.4327, we get a = 3“1% = 0.1680000000 and & = INo+ATH=F —

0.0001182032236. Using Theorem 8, with n = j = 3, we obtained.

(ntl)(n—4)
3

C=[3"t.2 e = 207461608400000000
Consider the lattice £ spanned by the matrix

I —[C(N1—H)/er] —[C(N2—H)/ezs] —[C(Nz—H)/es]
0 c 0 0
M=
0 0 c 0
0 0 0 c

Therefore applying the LLL algorithm to £, we obtain the reduced basis with
following matrix

—5532261737 948039897921 313793070313 7531989267121
—3320877029800 —1353380776600 —4633361459800 —3021047096600
2401296503990 0342022006330  —5290000899510 —2962293677670
15375269038166 —6714117170278 —7611550523734 3970888144122

Next we compute

K-M~'=

—5532261737 —414632711 —921136737 —17173442171
—3320877029800 —248893546839 —552935124300 —10308783701763
2401296503990 179972699539 399822447203 7454189372656
15375269038166 1152347771439 2560024421403  47728452890173

Then from the first row we obtained y = 5532261737, x1 = 414632711, x5 =
0921136737, ©3 = 17173442171. Hence using z; and y for ¢ = 1,2,3, define
Gi= —e’-x;_l =o(N;) =pi "pi —1)(g; — 1)

G1 = 57636885428606258241769446790463866947156182660268145123560

G5 = 125540335187551258029122944400939831305892068355651575680096
G5 = 240186170434145459686893635756705659314071968044721498433640

Therefore for i = 1,2, 3 we compute p; = \/gcd (% Nz-), that is

p1 = 978044784719861, py = 736406367949009, p; = 836146835627221

And finally for i = 1, 2,3 we find ¢; = ‘;—r:_f, hence
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q1 = 61436421782227, go = 314362459443103, g3 = 410866134500483

Which leads to the factorization of three prime power moduli N;y,Nz,and Nj.

6. Conclusion
In this research we proposed cryptanalytic attacks using the modulus N = p'q,
r > 2 to we show that £ can be recovered among the convergents of the continued

fraction expansion of ——— which lead factorization of prime

2r+1 T
N—27FT N7 —27F1 N7 H1

r . C e - 24l 1 et
power modulus N = p"q in polynomial time as N — (2 =TT N7 _ 9737 N r—+1)

as a good approximation of ¢(V;). Furthermore, it has been shows that by trans-
forming the generalizing key equations e;x — y;0(N;) = 1, e;x; — yo(N;) = 1,
where the parameters x, x;, vy, y;, are unknown, 7 = 1, ...., w into a simultaneous
Diophantine approximations and applied the LLL algorithm with lattice basis
reduction techniques for w > 2, » > 2, yield the factorization of w prime power
moduli N; = pl'g;, i =1,....,w simultaneously in polynomial time
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