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ABSTRACT: -The present work deals with the presentation of an exact numerical solution to the large 

amplitude oscillations of a thick hyperelastic cylindrical shell of transversely isotropic incompressible material 

with help of Runge-Kutta method.The equations of motion and time period for the shell walls are obtained under 

the condition of incompressibility, considering that the applied pressure is constant in time. Here the 

comparison with isotropic material is also displaced through graphs for the free and forced oscillations due to 

Heaviside step load. 
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I. INTRODUCTION 
The first dynamic problem in finite elasticity of bounded media found its explicit solution in two 

research papers of Knowles [1, 2]. In these papers he discussed the solution to the problem of finite amplitude 

oscillation of an incompressible hyperelastic circular tube and discussed cases of free oscillations and of 

Heaviside loading. By following the same path Shahinpoor and Nowinski [3], Shahinpoor and Balakrishnan [4] 

presented some exact solutions in finite hyperelasticity by considering the material to be incompressible, 

homogeneous and isotropic.  

Further the problem of practical importance that is of cavitation or void formation in different materials 

is studied by many researchers of different fields like mechanics, material science and also applied mathematics, 

readers can refer to  Incompressible elastic material by Balakrishnan and Shahinpoor [5], Dielectric materials by 

Singh and Verma [6], Shahinpoor [7], Garg [8], Kuldeep and Rajesh [9], Neo-Hookean materials by Chou-

Wang and Horgan [10], Compressible materials by Haughton [11], Murphy and Biwa [12], Chun and Jun [13], 

Anistropic elastic materials by Polignone and Horgan [14], Elastic-Plastic solids by Hou and Abeyaratne [15], 

also stretches in cavitation are studied by Hou and Zhang [16] and Biwa[17]. 

The present paper deals with the large amplitude oscillations of the surface of a cylindrical cavity by 

employing the general theory of finite dynamic deformations of elastic bodies.Recently Buchanan and Ramirez 

[18] used finite element method to study the vibrations of transversely isotropic solid spheres. Ericksen and 

Rivlin [19] developed the theory of finite deformations of homogeneous anistropic materials. Huilgol [20] added 

few more results by considering the special strain energy function. The formulation of the present problem is 

based on the theory of finite elastic deformations [21-24]. It has been noted that in case of free oscillations the 

amplitude of oscillations during expansion is less than that during contraction in both isotropic as well as 

transversely isotropic materials. Also the time duration for contraction is less than that for expansion and the 

frequency of oscillations increases as we increase the initial velocity in both the cases. In case of forced 

oscillations the amplitude of oscillations is slightly more than that in the case of free oscillations. This is due to 

the forcing function. 

 

II. BASIC EQUATIONS 
According to Ericksen and Rivlin [19], stress-strain relations for transversely isotropic elastic materials are 

 𝑡𝑙
𝑘 = −𝑝𝛿𝑙

𝑘 + 2
𝜕𝛴

𝜕𝐼1
(𝑐−1)𝑙

𝑘 − 2
𝜕𝛴

𝜕𝐼2
(𝑐)𝑙

𝑘 + 2
𝜕𝛴

𝜕𝐼′
𝑕𝑘𝑕𝑙  



Large Amplitude Oscillations of Thick Hyperelastic Cylindrical Shell in a Transversely .. 

*Corresponding Author:  Rajesh Kumar                                                                                                     22 | Page 

   +2
𝜕𝛴

𝜕𝐼2
′ [(𝑐−1)𝑚

𝑘 𝑕𝑙 + (𝑐−1)𝑙𝑚𝑕𝑘 ]𝑕𝑚 , (𝑘, 𝑙 = 1,2,3),                                                    (2.1) 

where𝑡𝑙
𝑘  is the symmetric stress-tensor,𝑝is the hydrostatic pressure, 𝛴 = 𝛴(𝐼1 , 𝐼2 , 𝐼1

′ , 𝐼2
′ ) is the strain-energy 

function and 

(𝑐−1)𝑘𝑙 = 𝐺𝛼𝛽 𝑥,𝛼
𝑘 𝑥,𝛽

𝑙 ,                                                                                                                                    (2.2) 

where𝑥,𝛼
𝑘 =

𝜕𝑋𝑘

𝜕𝑥𝛼 ,𝑥𝛼and 𝑋𝑘being respectively material and spatial curvilinear coordinates in undeformed and 

deformed state respectively. Also 𝑐 is the inverse of 𝑐−1. 

𝑕𝑘 = 𝐻𝛼𝑥,𝛼
𝑘 ,                                                                                                                                                    (2.3) 

where𝐻𝛼and 𝑕𝑘are the directions of the an isotropic director in the undeformed  and deformed states, 

respectively. 

The principle invariants are 

𝐼1 = (𝑐−1)𝑘
𝑘 , 𝐼2 =

1

2
{[(𝑐−1)𝑘

𝑘 ]2 − (𝑐−1)𝑙
𝑘(𝑐−1)𝑘

𝑙 }, 𝐼1
′ = 𝑔𝑘𝑙𝑕

𝑘𝑕𝑙 , 𝐼2
′ = 𝑕𝑘𝑕

𝑙(𝑐−1)𝑘𝑙 .  (2.4) 

Equations of motion without body forces are 

𝑡;𝑙
𝑘𝑙 = 𝜌𝑓𝑙 ,                                                                                                                                                         (2.5) 

where the semi-colon stands for covariant differentiation, 𝑓𝑙  is the acceleration. 

 

III. FORMULATION OF THE PROBLEM 
Let us consider a cylindrical shell made up of an elastic, homogeneous, and incompressible material. Let 𝑥𝑖  and 

𝑋𝑖  to be the rectangular Cartesian co-ordinates of the typical particle at a time𝑡, and 𝑟1 and 𝑅1 be the radii of the 

cavity in the undeformed and deformed states respectively. Since the motion of the shell is cylindrical 

symmetric, the cylindrical symmetric motions that we are consider are of the form 

𝑟 = 𝑅 𝑟, 𝑡 .                                                                                                                                                     (3.1) 

We consider the direction of an isotropic director in the undeformed state as 

𝐻𝑋 = 1, 𝐻𝑌 = 0, 𝐻𝑍 = 0.                                                                                                                            (3.2) 
On using (3.1), (3.2) and (2.2) the principal invariants (2.4), and deformed anisotropic director (2.3) are obtained 

as  

𝐼1 = 𝐼2 = 𝑄2 + 𝑄−2 + 1,   𝐼3 = 1, 𝐼1
′ = 1,   𝐼2

′ = 𝑄4 ,                                                                             3.3  

𝑕1 = Q, 𝑕2 = 𝑕3 = 0,                                                                                                                                   (3.4) 
where 

𝑄 𝑅 = 𝑟 𝑅 .                                                                                                                                                  (3.5) 
Using (3.3), (3.4) and (2.5), the equation of motion, in the absence of body forces, reduces to 
𝜕

𝜕𝑄
[𝐿1 + 𝐿2 + 𝐿3𝑄

2 − 𝑝] = −[𝐿2 + 𝐿3𝑄
2]

𝑞

1−𝑄2 + 𝜌
𝑄

1−𝑄2 [(𝑅1𝑅 
1 + 2(1 −

𝑅1
2

𝑅2)𝑅 
1
2],                      (3.6)where𝑅 

1(≡

𝑑2𝑅1

𝑑2𝑡2 )is the acceleration, 𝑅 
1(≡

𝑑𝑅1

𝑑𝑡
) represents the velocity of the particles on the cavity surface and  

𝐿1 = 2𝑄−2
𝜕𝛴

𝜕𝐼1

− 2𝑄2
𝜕𝛴

𝜕𝐼2

 

𝐿2 = 2 𝑄2 − 𝑄−2 
𝜕𝛴

𝜕𝐼1

+ 2 𝑄2 − 𝑄−2 
𝜕𝛴

𝜕𝐼2

,  

𝐿3 = 2
𝜕𝛴

𝜕𝐼1
′ + 4𝑄2

𝜕𝛴

𝜕𝐼2
′ .                                                                                                                                  (3.7) 

Expressing 𝑅in terms of𝑄, we integrate (3.6) to get 

𝑝 = 𝑝0 + 𝐿1 + 𝐿2 + 𝐿3𝑄
2 + 2   𝐿2 + 𝐿3𝑄

2 
𝑄

1 − 𝑄2
𝑑𝑄

𝑄

𝑄1

− 𝜌
𝑅1

𝑅
 𝑅1𝑅 

1 + 𝑅 
1
2  

              −
𝜌

2 𝑅1
2 − 𝑟1

2 
[1 +

𝑟1
2 − 𝑅1

2

𝑅2
−

𝑟1
2

𝑅1
2)]𝑅 

1
2𝑅1

2 ,                                                                                       (3.8) 

where𝑄1 = 𝑟1 𝑅1 and 𝑝0 is a constant of integration. If𝐹(𝑡) is the uniform pressure applied to the cavity 

wall𝑅 = 𝑅1, we have 

𝐿1 + 𝐿2 + 𝐿3𝑄
2 − 𝑝 = −𝐹 𝑡 .                                                                                                                   (3.9) 

From (3.8) and (3.9), we get𝑝0 = 𝐹(𝑡). Using this relation and (2.1) and (3.8), we obtain 

𝑡𝑘𝑙 = [−𝐹 𝑡 + 𝜌ln⁡(
𝑅1

𝑅
) 𝑅1𝑅 

1 + 𝑅 
1
2 ] +

𝜌

2 𝑅1
2 − 𝑟1

2 
[1 +

𝑟1
2 − 𝑅1

2

𝑅2
−

𝑟1
2

𝑅1
2)]𝑅 

1
2𝑅1

2𝛿𝑙
𝑘

+  𝐿1 + 𝐿2 + 𝐿3𝑄
2  1 − 𝛿𝑙

𝑘 − 2𝛿𝑙
𝑘   𝐿2 + 𝐿3𝑄

2 
𝑄

1 − 𝑄2
𝑑𝑄

𝑄

𝑄1

 3.10  
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For fixed 𝑡, 𝑡𝑘𝑙  should approach to zero as 𝑅 → ∞from physical considerations. It is noticed from (3.5), (3.7) 

that𝑄 → 1as 𝑅 → ∞and 𝐿2 → 0 as 𝑄 → 1. Therefore 𝐼1
′ , 𝐼2

′ also tends to zero as 𝑅 → ∞and so𝐿3 → 0. The 

stresses given by (3.10) satisfy all these conditions if and only if 

𝐹 𝑡 = 𝜌ln⁡(
𝑅1

𝑅
) 𝑅1𝑅 

1 + 𝑅 
1
2 ] +

𝜌

2 𝑅1
2 − 𝑟1

2 
[1 −

𝑟1
2

𝑅1
2)]𝑅 

1
2𝑅1

2

− 2   𝐿2 + 𝐿3𝑄
2 

𝑄

1 − 𝑄2
𝑑𝑄

1

𝑄1

.                                                                                    3.11  

This differential equation determines the cavity radius 𝑅1(𝑡) as a function of time.  

By introducing the function 

𝑔 𝑥 = −
1

𝜌𝑟1
2   𝐿2 + 𝐿3𝑄

2 
𝑄

1 − 𝑄2
𝑑𝑄

1

1 𝑥 

                                                                                                (3.12) 

where 

𝑥 𝑡 =
𝑅1 𝑡 

𝑟1

=
1

𝑄1

, 𝑓 𝑡 =
𝐹 𝑡 

𝜌𝑟1
2 .                                                                                                               (3.13) 

We rewrite the differential equation (3.11) in the form  

ln  
𝑅1

𝑅
  𝑥𝑥 + 𝑥 2 +

1

2
𝑥 2 + 𝑔 𝑥 = 𝑓(𝑡).                                                                                              (3.14) 

We assume that initially the medium is unstressed and at rest so that𝑥 0 = 1, 𝑥  0 = 0. Thus we consider the 

motion set up by the sudden application of a constant outward pressure which is maintained at the cavity wall, 

so that 𝑓 𝑡  is positive constant. Under these conditions we integrate (3.14) to obtain 
1

2
𝑥2𝑥 2 ln  

𝑅1

𝑅
 +  𝑥𝑔 𝑥 𝑑𝑥 =

1

2

𝑥

1

 𝑥2 − 1 𝑓 𝑡 .                                                                                 (3.15) 

This equation represents the trajectory of the motion of the cavity wall in the  𝑥, 𝑥   plane.  

It is well known that the motion is periodic if and only if the trajectory (3.15) is a closed curve 𝐶 in the  𝑥, 𝑥   

plane with a finite time period given by 

𝑇 =  
𝑑𝑥

𝑥 
,

𝐶

                                                                                                                                                   (3.16) 

where𝑥  is given by (3.15). 

If we write 

𝐺 𝑥 =  𝑥𝑔 𝑥 𝑑𝑥
𝑥

1

,                                                                                                                                 (3.17) 

the time period 𝑇 in (3.16) becomes 

𝑇 =  [ 𝑥2 − 1 𝑓 𝑡 − 2(𝐺 𝑥 ]
−1

2

𝑥

1

[𝑥2 ln  
𝑅1

𝑅
 ]

1

2𝑑𝑥,                                                                         (3.18) 

where𝑧is the maximum dimensionless radius. 

Now we shall show that the trajectory (3.15) is a closed curve. This curve is at the initial point 𝑥 = 1, 𝑣 = 0 at 

time 𝑡 = 0. The point  𝑥, 𝑥   moves in the region 𝑥 > 1, 𝑥 > 0 if 𝑓(𝑡) is positive so that the net pressure on the 

surface is outward. For positive 𝑓 𝑡 , 𝑥  passes through a maximum and returns to zero as 𝑥 increases from unity, 

thus the curve will be a closed one. According to (3.15) this will happen if there is a root 𝑥 = 𝑧 ≠ 1 of the 

equation 

𝐺 𝑥 =
1

2
 𝑥2 − 1 𝑓 𝑡 ,                                                                                                                             (3.19) 

so that 𝑥 = 0 for 𝑥 = 𝑧 . 

For a given𝑓 𝑡 , we assume that (3.19) possesses such a root. 

Since 

𝐺 𝑥 −
1

2
 𝑥2 − 1 𝑓 𝑡 = 0,                                                                                                                    (3.20) 

vanishes both at 𝑥 = 1 and 𝑥 = 𝑧, and 

𝐺 ′ 𝑥 = 𝑥𝑔 𝑥 = 𝑥𝑓 𝑡 ,                                                                                                                          (3.21) 

it is clear that the existence of a root 𝑥 = 𝑧 of (3.19) implies the existence of a root 𝑥 = 𝑧  between 𝑥 = 1 and 

𝑥 = 𝑧 of the equation  

𝑔 𝑥 = 𝑓 𝑡 .                                                                                                                                                (3.22) 

A solution 𝑥 = 𝑧  of (3.22) represents a static equilibrium state about which the cavity wall will oscillate; the 

period of oscillation is given by (3.18). 
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IV. LARGE AMPLITUDE OSCILLATIONS VIBRATION OF THICK HYPERELASTIC 

CYLINDRICAL SHELL  
Let 𝑟1 and 𝑟2(𝑟2 > 𝑟1) be the radii in the unstressed state and 𝑅1and𝑅2(𝑅2 > 𝑅1) be the radii in the stressed state 

at time𝑡. We assume that the motions of the shell are finite, of arbitrary magnitude and induced by time 

dependent hydrostatic surface pressures 𝐹1(𝑡) and 𝐹2(𝑡) on the inner and outer surfaces of the shell respectively. 

The equation of motion, in this case may be written in the form 

−
𝑑𝐹

𝑑𝑄
= −[𝐿2 + 𝐿3𝑄

2]
𝑄

1 − 𝑄2
+ 𝜌

𝑄

1 − 𝑄2
[(𝑅1𝑅 

1 + 2(1 −
𝑅1

3

𝑅3
)𝑅 

1
2],                                                           (4.1) 

where F is the radial pressure per unit area of the actual surface. Expressing 𝑅in terms of𝑄, we integrate the 

above equation with respect to 𝑄 over the interval 𝑄1 = 𝑟1 𝑅1 to 𝑄2 = 𝑟2 𝑅2 to get  

𝐹1 𝑡 − 𝐹2 𝑡 = −  𝐿2 + 𝐿3𝑄
2 

𝑄

1 − 𝑄2
𝑑𝑄 +

𝑄2

𝑄1

𝜌 ln  
𝑅1

𝑅
  𝑅1𝑅 

1 + 𝑅 
1
2  

+
𝜌

2 𝑅1
2 − 𝑟1

2 
[1 +

𝑟1
2 − 𝑅1

2

𝑅2
−

𝑟1
2

𝑅1
2)]𝑅 

1
2𝑅1

2 .                                         (4.2) 

Now the strain energy function is considered to be the form 

𝛴 = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼2 − 3) + 𝑐3(𝐼1
′ − 3)2 + 𝑐4(1 + 𝐼2

′ − 2𝐼1
′ ),                                                          (4.3) 

which is a special case of 𝛴 due to Huilgol [20] and is consistent with that for a Neo-Hookean solid in the 

isotropic case. 

Now using (4.3), (3.7), we can rewrite (4.2) after neglecting higher order terms in the form 
2

𝜌𝑟1
2
 𝐹1 𝑡 − 𝐹2 𝑡  = 𝑥𝑥 ln 1 + 𝜇𝑥−2 + [ln 1 + 𝜇𝑥−2 −

𝜇

𝜇 + 𝑥2
]𝑥 2 

+
𝑐1 + 𝑐2

𝜌𝑅1
2 [ 1 + 𝑥−2 (

𝜇

𝜇 + 𝑥2
) − ln(

1 + 𝜇𝑥−2

1 + 𝜇
)] 

+
𝑐3

2𝜌𝑅1
2 [(1 + 𝑥−2)(

𝜇

𝜇 + 𝑥2
) − ln⁡(

1 + 𝜇𝑥−2

 1 − 𝑥2
)] +

𝑐4

4𝜌𝑅1
2 [(

1 + 𝜇

𝜇 + 𝑥2
)2 −

1

𝑥4
],          (4.4) 

where𝜇 is the measure of wall thickness of the shell and defined as  

𝜇 = (
𝑟2

𝑟1

)2 − 1.                                                                                                                                               (4.5) 

For the case of cylindrical cavity in an infinite medium, we let 𝜇 → ∞ as𝑅2 → ∞, then (4.4) becomes 

𝑥𝑥 ln 1 + 𝜇𝑥−2 + [ln 1 + 𝜇𝑥−2 −
𝜇

𝜇 + 𝑥2
]𝑥 2 

+𝛼1[ 1 + 𝑥−2 (
𝜇

𝜇 + 𝑥2
) − ln(

1 + 𝜇𝑥−2

1 + 𝜇
)] 

+𝛼2[(1 + 𝑥−2)(
𝜇

𝜇 + 𝑥2
) − ln⁡(

1 + 𝜇𝑥−2

 1 − 𝑥2
)] + 𝛼3[(

1 + 𝜇

𝜇 + 𝑥2
)2 −

1

𝑥4
] = 𝛼4F(t).      (4.6) 

where 

𝛼1 =
𝑐1 + 𝑐2

𝜌𝑟1
2 , 𝛼2 =

𝑐3

𝜌𝑟1
2 , 𝛼3 =

𝑐4

4𝜌𝑟1
2 , 𝛼4 =

2

𝜌𝑟1
2 and𝐹 𝑡 = 𝐹1 𝑡 − 𝐹2 𝑡 ,                                            (4.7) 

and we impose the following initial conditions 

𝑥 0 = 𝑥0, 𝑥  0 = 𝑥 0 ,                                                                                                                                     (4.8) 

where the dot represents the time derivative, 𝑥0 and𝑥 0 are the initial displacement and velocity at the inner 

surface of the cavity. 

 

V. NUMERICAL SOLUTIONS TO THE PROBLEM 
The numerical solutionto the large amplitude oscillations of a thick hyperelastic cylindrical shell of transversely 

isotropic incompressible material with help of Runge-Kutta method.algorithm for solving a system of n first-

order differential equations [25]. 

𝑦𝑗 ,𝑖+1 = 𝑦𝑗𝑖 + 𝑕(𝑘𝑗1 + 2𝑘𝑗2 + 2𝑘𝑗3 + 𝑘𝑗4)/6 

𝑘𝑗1 = 𝑓𝑗 (𝑥𝑖 , 𝑦1𝑖 , 𝑦2𝑖 , . . . , 𝑦𝑛𝑖 ), 𝑦 ∗𝑗𝑖 = 𝑦𝑗𝑖 +
1

2
𝑕𝑘𝑗1  

𝑘𝑗2 = 𝑓𝑗 (𝑥𝑖 +
1

2
𝑛, 𝑦 ∗1𝑖 , 𝑦 ∗2𝑖 , . . . , 𝑦𝑛𝑖 ), 𝑦 𝑗𝑖 = 𝑦𝑗𝑖 +

1

2
𝑕𝑘𝑗2 

𝑘𝑗3 = 𝑓𝑗 (𝑥𝑖 +
1

2
𝑕, 𝑦 1𝑖 , 𝑦 2𝑖 , . . . , 𝑦 𝑛𝑖 ), 𝑦 ∗𝑗𝑖 = 𝑦𝑗𝑖 + 𝑕𝑘𝑗3  

𝑘𝑗4 = 𝑓𝑗  𝑥𝑖 + 𝑕, 𝑦 ∗1𝑖 , 𝑦 ∗2𝑖 , . . . , 𝑦 ∗𝑛𝑖  ,                                                                                                    (5.1) 
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which is the algorithm for solving a system of n first-order differential equations, where 𝑗 = 1,2, . . . . . . 𝑛 number 

of first-order differential equations 𝑖 = 𝑖thstep of integration. 

First we rewrite (4.6) in the following  

𝑦 = 𝑥,                                                                                                                                                               (5.2) 
 

𝑥𝑦 ln 1 + 𝜇𝑥−2 + [ln 1 + 𝜇𝑥−2 −
𝜇

𝜇 + 𝑥2
]𝑦2 

+𝛼1[ 1 − 𝑥−2 (
𝜇

𝜇 + 𝑥2
) − ln(

1 + 𝜇𝑥−2

1 + 𝜇
)] 

   

 +𝛼2[(1 − 𝑥−2)(
𝜇

𝜇+𝑥2) − ln⁡(
1+𝜇𝑥−2

 1−𝑥2
)] + 𝛼3[(

1+𝜇

𝜇+𝑥2)2 −
1

𝑥4] = 𝛼4F(t).      (5.3) 

 The initial conditions are 

𝑥 0 = 𝑥0 , 𝑦 0 = 𝑥 0                                                                                                                                  (5.4) 

The numerical solutions are then presented graphically for different forcing functions. 

 

Case-1. Free Oscillations 

 

𝐹𝑇 = 0, 𝑡 ≥ 0.                                                                                                                                                (5.5) 

Fig.-1 shows the numerical solution for the case of free oscillations. The curves are plotted for 𝑥0 = 1.0with 𝑥 0 

as a parameter. It has been noted that the amplitude of oscillations during expansion is less than that during 

contraction in both isotropic as well as transversely isotropic materials but the amplitude of oscillations in 

transversely isotropic is less as compared to that in case of isotropic materials.  

 
Fig-1 Free Oscillations  

 

Case-2. Forced oscillation-Heaviside step load 

 

𝐹𝑇 =  
0, for𝑡 ≤ 0,
𝐹0, for𝑡 > 0.

                                                                                                                                    (5.6) 

The numerical solutions for this case are given in Fig-2. This shows the same trend as Fig.-1, but the amplitude 

of oscillations is slightly more than that in the case of free oscillations. This is due to the forcing function. 

 
Fig-2 Forced Oscillations – Heaviside Step Loading  
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