
Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 2 (2022) pp: 01-09 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org





# Approximation of the Inverse of Fine-Structure Constant Using Golden Ratio ( $\Phi$ ), Euler's Number (e) and Pi ( $\pi$ )

Nafish Sarwar Islam

(Department of Industrial and Production Engineering, American International University – Bangladesh)

**Abstract:** The fine-structure constant  $\alpha$  is a dimensionless number and very nearly equal to 1 / (137.036). For reasons of convenience, the reciprocal value of the fine-structure constant  $\left(\frac{1}{\alpha} = 10^2 + \frac{10^3 - 10^{-3}}{3^3} - 10^{-3}\right)$  is often specified. The 2018 CODATA recommended value of  $\alpha^{-1} = 137.035999084$  [1]. In this paper value of  $\alpha^{-1}$  was estimated using the equation  $\alpha^{-1} = \sqrt{e^{\pi + \pi \Phi + \Phi}} = \frac{\Phi}{2} + e\pi^3 \Phi = \frac{\pi^{12}}{5^3.e^4} + \Phi = (e + \pi + \Phi)\sqrt{6} - 1 = \left(\frac{\Phi\pi}{\log(e)}\right)^2$ **Keywords**: Fine-Structure Constant  $\alpha$ , Golden Ratio ( $\Phi = 1.618$ ), Euler's number (e = 2.7182), and  $\pi = 3.1416$ .

*Received 28 Jan, 2022; Revised 07 Feb, 2022; Accepted 09 Feb, 2022* © *The author(s) 2022. Published with open access at www.questjournals.org* 

## I. Introduction

The fine structure constant got its name from Arnold Sommerfield, who introduced it in 1916 [2]. It is noted that when an electron orbits the nuclei in different energy shells, the energy levels of each individual shell split into much finer ones. And the gaps between the fine layer of these energy levels are directly proportional to the square of number of protons in the nucleus multiplied by  $\alpha$  [3]. And thus it got its name. The value of fine structure constant can be derived from other constants like: G (Newton's constant), c (Einstein's constant), h (reduced Planck's constant), K<sub>B</sub> (Boltzmann's constant), K<sub>E</sub> (Coulomb's constant), & e (Charge of an electron).

| Sign           | Name                                  | Formula                   | Value                                                                               | Dimension               |
|----------------|---------------------------------------|---------------------------|-------------------------------------------------------------------------------------|-------------------------|
| G              | , , , , , , , , , , , , , , , , , , , |                           | $6.67408 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$                | $M^{-1}L^{3}T^{-2}$     |
| с              |                                       |                           | $299792458 \approx 3 \times 10^8 \text{ m s}^{-1}$                                  | $LT^{-1}$               |
| ħ              | The reduced Planck's constant         | $\hbar = h/2\pi$          | $1.0545718 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1} \text{ (J.s)}$             | $ML^2T^{-1}$            |
| K <sub>B</sub> | The Boltzmann's constant              | $K_{\rm B} = R/N_{\rm A}$ | $1.3806 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1} \text{ (J/K)}$ | $ML^2T^{-2}\theta^{-1}$ |
| K <sub>E</sub> | $K_E$ The Coulomb's constant          |                           | $8.9875517923 \times 10^9 \text{ m}^3 \cdot \text{kg.s}^{-2} \cdot \text{C}^{-2}$   | $ML^{3}T^{-2}Q^{-2}$    |
| e              | Charge of an electron                 | 96500/N <sub>A</sub>      | $1.60217662 \times 10^{-19} \text{ C}$                                              | Q                       |

 $N_A = Avogadro's$  number =  $6.023 \times 10^{23}$  mole<sup>-1</sup>. Named after the Italian scientist Amedeo Avogadro.

| Fundamental<br>Entity         | Planck's<br>Expression                  | Value in SI unit             | Stoney's<br>Expression                     | Value in SI unit                   |
|-------------------------------|-----------------------------------------|------------------------------|--------------------------------------------|------------------------------------|
| Length                        | $\cdot \sqrt{\frac{\hbar G}{c^3}}$      | 1.616255×10 <sup>-35</sup> m | $\cdot \sqrt{\frac{GK_e e^2}{c^4}}$        | $1.3807 \times 10^{-34} \text{ m}$ |
| Mass                          | $\cdot \sqrt{\frac{\hbar c}{G}}$        | $2.176434 \times 10^{-8}$ kg | $\cdot \sqrt{\frac{k_e e^2}{G}}$           | $1.8592 \times 10^{-9} \text{ kg}$ |
| Time                          | $\cdot \sqrt{\frac{\hbar G}{c^5}}$      | $5.391247 \times 10^{-44}$ s | $\cdot \sqrt{\frac{GK_e e^2}{c^6}}$        | 4.6054×10 <sup>-45</sup> s         |
| Temperature<br>(Absolute Hot) | $\cdot \sqrt{\frac{\hbar c^5}{GK_B^2}}$ | 1.416784×10 <sup>32</sup> K  | $\cdot \sqrt{\frac{K_e e^2 c^4}{G K_B^2}}$ | 1.2119522×10 <sup>31</sup> K       |
| Charge                        | $\cdot \sqrt{\frac{\hbar c}{K_e}}$      | 1.875546×10 <sup>-18</sup> C | .e                                         | 1.6021766×10 <sup>-19</sup> C      |

Now from the table above it can be seen that the ratio between the corresponding values of Planck's units & Stoney's units are also a constant, which is  $11.706237481 = \sqrt{137.036}$ . Means, the ratio has the value

of  $\alpha^{-1/2}$ . It can be observed that if we take square of each expressions and after that divide the Stoney's unit with corresponding Planck's unit then the ratio will always be  $\frac{K_e e^2}{\hbar c}$ . Hence, this is the fundamental expression for  $\alpha$ .

|   | Dimensional Analysis of Stoney's Units                                                                                                                                                                   | Dimensional Analysis of Planck's Units                                                                            |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| L | $\sqrt{\frac{GK_e e^2}{c^4}} = [M^{-1}L^3T^{-2}, ML^3T^{-2}Q^{-2}, Q^2, L^{-4}T^4]^{(0.5)} = \sqrt{L^2}$                                                                                                 | $\sqrt{\frac{hG}{c^3}} = [ML^2T^{-1}, M^{-1}L^3T^{-2}, L^{-3}T^3]^{(0.5)} = \sqrt{L^2}$                           |
| М | $\sqrt{\frac{k_e e^2}{G}} = [ML^3 T^{-2} Q^{-2} \cdot Q^2 \cdot ML^{-3} T^2]^{(0.5)} = \sqrt{M^2}$                                                                                                       | $\sqrt{\frac{hc}{g}} = [ML^2T^{-1}, LT^{-1}, ML^{-3}T^2]^{(0.5)} = \sqrt{M^2}$                                    |
| Т | $\sqrt{\frac{GK_e e^2}{c^6}} = [\mathbf{M}^{-1} \mathbf{L}^3 \mathbf{T}^{-2}, \mathbf{M} \mathbf{L}^3 \mathbf{T}^{-2} \mathbf{Q}^{-2}, \mathbf{Q}^2, \mathbf{L}^{-6} \mathbf{T}^6]^{(0.5)} = \sqrt{T^2}$ | $\sqrt{\frac{\hbar G}{c^5}} = [ML^2T^{-1}, M^{-1}L^3T^{-2}, L^{-5}T^5]^{(0.5)} = \sqrt{T^2}$                      |
| θ | $\sqrt{\frac{K_e e^2 c^4}{G K_B^2}} = [ML^3 T^{-2} Q^{-2}, Q^2, L^4 T^{-4}, ML^{-3} T^2, M^{-2} L^{-4} T^4 \theta^2]^{(0.5)}$                                                                            | $\sqrt{\frac{\hbar c^5}{GK_B^2}} = [ML^2T^{-1}, L^5T^{-5}, ML^{-3}T^2, M^{-2}L^{-4}T^4\theta^2]^{(0.5)}$          |
| Q | e = Charge of a single electron or a single proton                                                                                                                                                       | $\sqrt{\frac{\hbar c}{\kappa_e}} = [ML^2 T^{-1} \cdot L T^{-1} \cdot M^{-1} L^{-3} T^2 Q^2]^{(0.5)} = \sqrt{Q^2}$ |

| (Stoney Length ÷ Planck Length)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | So (1) $E = mc^2$ (2) $E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-hf(3)c = f\lambda$                                      | For an electron of first orbital-                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | Let's say, $r_e = Bohr's radius n = 1$                                                                                                                                                                                                                                                                                                 |
| $= \sqrt{\frac{GK_e e^2}{c^4}} \div \sqrt{\frac{\hbar G}{c^3}} = \sqrt{\frac{K_e e^2}{\hbar c}} = \sqrt{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4) $\hbar = \frac{h}{2\pi}$ (5) $2\pi r = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $i\lambda$ (6) $c^{-} = \frac{1}{\mu_{o}\varepsilon_{o}}$ | $\lambda_{\rm e} = ({\rm h/mc}) = {\rm Compton wavelength}$                                                                                                                                                                                                                                                                            |
| $= 1.3807 \times 10^{-34} \div 1.61625 \times 10^{-35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E = mc^2 = hf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Energy:                                                   | So, $2\pi r_e = n\lambda$                                                                                                                                                                                                                                                                                                              |
| $= 1/\sqrt{137.036}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Rightarrow$ mc.c = hf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $E = mc^2$                                                | $\Rightarrow 2\pi r_e = \lambda$ (For n = 1)                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow$ p.c = hf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Rightarrow$ E = mc.c                                    | $\Rightarrow 2\pi r_e = h/p$                                                                                                                                                                                                                                                                                                           |
| (Stoney Mass ÷ Planck Mass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Rightarrow$ p.f $\lambda$ = hf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Rightarrow E = pc$                                      | $\Rightarrow 2\pi r_e = h/mv_e$                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow p.\lambda = h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Rightarrow E = \frac{p}{\sqrt{\mu_0 \epsilon_0}}$       | $\Rightarrow 2\pi r_e = h/mc\alpha$                                                                                                                                                                                                                                                                                                    |
| $= \sqrt{\frac{k_e e^2}{G}} \div \sqrt{\frac{\hbar c}{G}} = \sqrt{\frac{K_e e^2}{\hbar c}} = \sqrt{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Rightarrow$ (mv). $\lambda = h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | $\Rightarrow 2\pi r_e = \lambda_e/\alpha$                                                                                                                                                                                                                                                                                              |
| $= 1.8592 \times 10^{-9} \div 2.176434 \times 10^{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Rightarrow$ h = (mv). $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | $\therefore \alpha = \lambda_{\rm e}/2\pi r_{\rm e}$                                                                                                                                                                                                                                                                                   |
| $= 1/\sqrt{137.036}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Rightarrow$ h = (mv).(2 $\pi$ r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Rightarrow E = h(c/\lambda)$                            | Velocity of the electron:                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Considering $n = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Rightarrow E = h/t$                                     | $v_e = c\alpha = 3 \times 10^8 / 137.036 \text{ m/s}$                                                                                                                                                                                                                                                                                  |
| (Stoney Time $\div$ Planck Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Rightarrow$ h/2 $\pi$ = (mv).(r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Rightarrow E = \frac{h}{2\pi} \cdot \frac{2\pi}{t}$     | $\therefore$ v <sub>e</sub> = 2.2×10 <sup>6</sup> m/s                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow \hbar = mvr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Rightarrow E = \hbar \omega$                            | Charge of the electron:                                                                                                                                                                                                                                                                                                                |
| $=\sqrt{\frac{GK_ee^2}{c^6}} \div \sqrt{\frac{\hbar G}{c^5}} = \sqrt{\frac{K_ee^2}{\hbar c}} = \sqrt{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\therefore \hbar = L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\therefore E = L\omega$                                  | $e = Faraday Const./Avogadro N_A.$                                                                                                                                                                                                                                                                                                     |
| $= 4.6054 \times 10^{-45} \div 5.39124 \times 10^{-44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Attractive force bet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ween electron                                             | $\Rightarrow$ e = [(96500)/(6.023×10 <sup>23</sup> )] C                                                                                                                                                                                                                                                                                |
| $= 1/\sqrt{137.036}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & proton of a hydrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           | $\therefore e = 1.875546 \times 10^{-18} C$                                                                                                                                                                                                                                                                                            |
| - 1/\(137.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Rightarrow$ F <sub>1</sub> = K <sub>e</sub> .e <sup>2</sup> /r <sub>e</sub> <sup>2</sup> , P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | Mass of the electron:                                                                                                                                                                                                                                                                                                                  |
| (Stoney Temp. $\div$ Planck Temp.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centripetal force per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           | $\frac{\text{The Mass of a Proton } (H^+)}{\text{The Mass of an Electron } (m_e)} = 1836$                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | same electron in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                        |
| $= \sqrt{\frac{K_e e^2 c^4}{G K_B^2}} \div \sqrt{\frac{\hbar c^5}{G K_B^2}} = \sqrt{\frac{K_e e^2}{\hbar c}} = \sqrt{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Rightarrow$ F <sub>2</sub> = m <sub>e</sub> v <sub>e</sub> <sup>2</sup> /r <sub>e</sub> , K.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | $m_e = gm$ atomic mass of                                                                                                                                                                                                                                                                                                              |
| $ = \frac{\sqrt{GK_B^2} - \sqrt{GK_B^2} - \sqrt{hc}}{1.211952 \times 10^{31} \div 1.41678 \times 10^{32} } $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Now, $F_1 = F_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (/==_2 ····e).                                            | $H_2/1837N_A$                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow$ K <sub>e</sub> .e <sup>2</sup> /r <sub>e</sub> <sup>2</sup> = m <sub>e</sub> v <sub>e</sub> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /r.                                                       | = $[1.00784/(1837 \times 6.023 \times 10^{23})]$ gm<br>= $9.11 \times 10^{-28}$ gm = $9.11 \times 10^{-31}$ kg                                                                                                                                                                                                                         |
| $= 1/\sqrt{137.036}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Rightarrow$ K <sub>e</sub> .e <sup>2</sup> = m <sub>e</sub> v <sub>e<sup>2</sup></sub> .r <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | <b>Radius of the orbital</b> :                                                                                                                                                                                                                                                                                                         |
| $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Rightarrow$ K <sub>e</sub> .e <sup>2</sup> = (m <sub>e</sub> .v <sub>e</sub> .r <sub>e</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ve                                                        | Now, $2\pi r_e = h/mc\alpha = 2\pi\hbar/mc\alpha$                                                                                                                                                                                                                                                                                      |
| (Stoney charge ÷ Planck charge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow$ K <sub>e</sub> ·e <sup>2</sup> = L·v <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c                                                         | $\therefore r_e = \hbar/mc\alpha = 5.3 \times 10^{-11} \text{ m}$                                                                                                                                                                                                                                                                      |
| $= e \div \sqrt{\frac{\hbar c}{K_e}} = \sqrt{\frac{K_e e^2}{\hbar c}} = \sqrt{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Rightarrow$ K <sub>e</sub> .e <sup>2</sup> = ħ.v <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | $r_e = 0.000 \text{ m}$<br><b>The Lagrange Equation</b> :                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow v_e = K_e \cdot e^2/\hbar$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           | $\mathcal{L} = \text{KE} - \text{PE} = (\frac{1}{2})\text{m}_{e}\text{v}_{e}^{2} - \text{K}_{e}\text{e}^{2}/\text{r}_{e}$                                                                                                                                                                                                              |
| $= 1.60217 \times 10^{-19} \div 1.8755 \times 10^{-18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Rightarrow v_e/c = K_e \cdot e^2/\hbar c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | $\mathcal{L} = KE - FE = (\frac{1}{2})III_{e} V_{e} = K_{e} e^{1}/I_{e}$ $\therefore \mathcal{L} = (\frac{1}{2})II_{e} (c\alpha)^{2} - K_{e} e^{2}/(\hbar/mc\alpha)$                                                                                                                                                                   |
| $= 1/\sqrt{137.036}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\therefore v_e/c = \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | $\mathcal{L} = (\frac{1}{2})\mathrm{m}_{\mathrm{e}}\cdot(\mathrm{ca}) - \mathrm{K}_{\mathrm{e}}\mathrm{e}^{-1}(\mathrm{m}/\mathrm{mca})$ $= (\frac{1}{2})\mathrm{m}_{\mathrm{e}}\mathrm{c}^{2}\mathrm{a}^{2} - \mathrm{m}_{\mathrm{e}}\mathrm{c}^{2}\mathrm{a}^{2} = (\frac{1}{2})\mathrm{m}_{\mathrm{e}}\mathrm{c}^{2}\mathrm{a}^{2}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ů                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-                                                        |                                                                                                                                                                                                                                                                                                                                        |
| $\alpha = \frac{K_e e^2}{1} = \frac{\mu_o}{1} \frac{e^2}{1} = \frac{e^2}{1} $ | $\frac{\mu_o c e^2}{e^2} = \frac{\mu_o c}{e^2} = \frac{e^2 Z_o}{e^2} = \frac{e^2 Z_o}$ | $\frac{e^2 Z_o}{e} = \frac{v_e}{e} = ($                   | $\left(\frac{e}{Q_p}\right)^2 = \frac{\lambda_e}{2\pi r_e} = \frac{\lambda_e}{\lambda} = \frac{2^{256}}{N_{Edd}} = \sqrt{\frac{r_0}{r_e}}$                                                                                                                                                                                             |
| $\pi = \hbar c = 4\pi \hbar = 2\varepsilon_o hc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2\square  2R_{K}  2h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4\pi\hbar$ $c$ $($                                       | $Q_p \int 2\pi r_e - \lambda - N_{Edd} - \langle r_e \rangle$                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | N                                                                                                                                                                                                                                                                                                                                      |

| <b>E</b> 0     | is the electric constant or permittivity in vacuum or free space                   | 8.854 187 8128×10 <sup>-12</sup> F/m         |
|----------------|------------------------------------------------------------------------------------|----------------------------------------------|
| $\mu_0$        | is the magnetic constant or permeability in vacuum or free space                   | $1.25663706212 \times 10^{-6} \text{ N/A}^2$ |
| $Z_0$          | is the vacuum impedance or impedance in free space $E/H = \mu_o c = 1/c\epsilon_0$ | 376.730313668 Ω.                             |
| R <sub>K</sub> | is the Von Klitzing constant = $h/e^2$                                             | 25812.80745Ω                                 |
| λ              | is the De Broglie's wavelength = $h/mv_e$                                          | $3.33 \times 10^{-10} \text{ m}$             |
| $\lambda_{e}$  | is the Compton's wavelength = h/mc                                                 | $2.43 \times 10^{-12} \text{ m}$             |
| Qp             | is the Planck charge (Ref: first page)                                             | $1.87555 \times 10^{-18} \mathrm{C}$         |

\*Corresponding Author: Nafish Sarwar Islam

| N <sub>Edd</sub> | Is the Eddington's Number, Total number of protons in the universe                                                                                                                                                           | $1.57 \times 10^{79}$                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $\mathbf{r}_0$   | Classical Electron Radius (Not same as Bohr's radius as discussed later)                                                                                                                                                     | $2.818 \times 10^{-15} \text{ m}$                                                                          |
|                  | Again, P.E. $=\frac{K_e \cdot e^2}{r_0^2} \times r_0 = mc^2 \Rightarrow r_0 = \frac{K_e \cdot e^2}{mc^2} = \frac{h \cdot K_e \cdot e^2}{h \cdot mc^2} = \frac{K_e \cdot e^2}{hc} \times \frac{h}{mc} = \frac{h\alpha}{mc}$ . | Now, $\frac{r_0}{r_e} = \frac{\hbar\alpha}{\mathrm{mc}} \div \frac{\hbar}{\mathrm{mc}\alpha} = \alpha^2$ . |

One of the prominent issue with the expression of Bohr's radius of orbital  $r_e = \hbar/mc\alpha$  is, its discrepancy with the expression of the classical radius of orbital  $r_0$ . Although the size of the electron is beyond the scope of ordinary quantum mechanics, one can think of its size as something the electron would need to have if its rest energy were only due to its electrostatic potential energy P.E. =  $(F_1 \times r_0)$  instead of  $(F_1 \times r_e)$ . Also,  $F_1 = K_e \cdot e^2/r_0^2$  instead of  $K_e \cdot e^2/r_e^2$ . But, P.E. =  $mc^2$ . So, P.E. =  $\frac{K_e \cdot e^2}{r_0^2} \times r_0 = mc^2 \Rightarrow r_0 = \frac{K_e \cdot e^2}{mc^2} = \frac{\hbar K_e \cdot e^2}{\hbar mc^2} = \frac{K_e \cdot e^2}{\hbar c} \times \frac{\hbar}{mc} = \frac{\hbar \alpha}{mc}$ . Now,  $\frac{r_0}{r_e} = \frac{\hbar \alpha}{mc} \div \frac{\hbar}{mc\alpha} = \alpha^2$ . Thus, the ratio of the classical radius of electron to the Bohr's radius is  $\alpha^2$ .

The Bohr radius uses the center of the proton as center, while the classical radius includes the fact that both the electron and the proton have mass, putting the center little away from the geometric center of the proton. If the electron clouds observed around the nuclei of atoms are purely statistical phenomena, then there should be no need for a radius. On the other hand, if the electron is moving in an orbit, like a moon around a planet, then the radius should be used on its own. The electron orbit is in other words neither a purely statistical phenomenon nor a conventional orbit. This is exactly what we should expect if the electron is bouncing on the atomic nucleus. Hence, electron would neither orbit, nor be entirely random it would be something in between.

The  $\alpha^2$  is also the ratio between the Harte energy (27.2 eV = 2 × Rydberg energy = 2 × its ionization energy) and the electron rest energy (511 keV).  $\alpha$  is also the ratio of other two energies: (i) the energy needed to overcome the electrostatic repulsion between two electrons at a distance d, & (ii) the energy of a single photon of a wavelength  $2\pi d$ . if  $\lambda = 2\pi d$ , then  $\left[\frac{e^2}{4\pi\epsilon_0 d} \div \frac{hc}{\lambda} = \frac{e^2}{4\pi\epsilon_0 d} \times \frac{2\pi d}{hc} = \frac{e^2}{4\pi\epsilon_0 hc} = \frac{e^2}{4\pi\epsilon_0 hc} = \frac{K_e e^2}{hc} = \alpha\right]$ . Thus, the fine structure constant is not only the square root of the ratio of the classical radius of electron to the Bohr's radius, but also the ratio of the velocity of the electron in the first circular orbit of the Bohr model of the atom, to the speed of light in vacuum (v<sub>e</sub>/c). This was the Summerfield's original physical interpretation. Therefore,  $\alpha$  can similarly be expressed, as the ratio between the Compton's wavelength (h/mc) to the De Broglie's wavelength (h/mv<sub>e</sub>) at ground state [4]. Enos Øye made the discovery that the Fine-structure constant is equal to the wavelength of the electron of a hydrogen atom, divided by half the wavelength of the photon required to kick it out of orbit, thus ionizing the hydrogen atom. The fine structure constant relates the energy of an electron in orbit around a proton with the energy of the photon required to free it from its orbit. Hence,  $\alpha$  actually represents the probability that an electron will emit or absorb a photon.

We have already seen that  $\sqrt{\alpha}$  is the conversion factor of Stoney units to Planck units. In this context, it must be pointed out that more than 25 years before Planck introduced his quantities, the Irish physicist Johnston Stoney in 1881 introduced the quantities of mass, length and time [5]. Thus, Stoney units came out in classical era while on the other hand Planck units introduced the quantum era.

#### **II.** Literature Review

Now question arises, what then determines the value of  $\alpha$ , are there hidden dimensions in nature that somehow fix its value? Some scientists think so. But the enigma of  $\alpha$  remains. As one of the students of Sommerfeld, Wolfgang Pauli wrote about  $\alpha$  in 1948: "The theoretical interpretation of its numerical value is one of the most important unsolved problems of atomic physics". Scientists began to mystify the number 137.

137 is the 33<sup>rd</sup> prime number after 131 and before 139. It is also a Pythagorean prime: a prime number of the form 4n + 1, where n = 34 ( $137 = 4 \times 34 + 1$ ) or the sum of two squares  $11^2 + 4^2 = (121 + 16)$ . Also, 137 is the only known primeval number whose sum of digits equals the number of primes "contained", it is the largest prime factor of 123456787654321 and also divides 11111111. It is the smallest prime with 3 distinct digits that remains prime if any one of its digits is removed. But we need to keep in mind the inverse of fine structure constant is almost 137.036, not 137 the full number. Again,  $\alpha = 1/\sqrt{\pi^2 + 137^2} = 1/\sqrt{6\zeta(2) + 137^2}$ . Which means, a triangle with base 137 and height  $\pi$  has the hypotenuse of a length that's very close to the measured inverse of the fine structure constant. Its close connection with  $\pi$  is uncanny as the sum of the squares of the first seven digits of  $\pi$  is also 137. As,  $(3^2 + 1^2 + 4^2 + 1^2 + 5^2 + 9^2 + 2^2 = 137)$  [6]. Sum of the first 16 natural number is also one less than 137.

$$\alpha = \frac{1}{4\pi^3 + \pi^2 + \pi} = \left(\frac{9}{16\pi^4}\right) \left(\frac{\pi^5}{5!}\right)^{\frac{1}{4}} = \left[\frac{3^2}{(2\pi)^4}\right] \left(\sqrt[4]{\frac{\pi^5}{5!}}\right) \approx \frac{1}{\sqrt{2}\pi^4} \approx \frac{7\pi}{\pi^7} \approx \frac{5e\phi}{\pi^7} = \frac{1}{20\phi^4} = \frac{(5e)^4}{20(7\pi)^4} = \frac{36}{500\pi^2} = \frac{6}{500.\zeta(2)} \approx \frac{\phi^2}{360}$$
$$ie, \alpha = \frac{(2 \times 8 \times 18 \times 32)(\pi - 1) + 8}{8^2[(2 \times 8 \times 18 \times 32)(\pi - 1)^2 + 8(\pi - 1) - 8]} = \frac{1}{\frac{126 - \frac{3}{200}}{1 - \frac{5}{2\pi^3}} + \left[\frac{1}{10}\left\{\frac{1}{2} - \left(\frac{1}{5}\right)^2\right\}\right]^2 + \left[\frac{1}{2}\left(\frac{1}{5}\right)^4\right]^2} = \frac{-137 + \sqrt{137^2 + 16}}{8}$$

\*Corresponding Author: Nafish Sarwar Islam

So,  $\alpha$  is the positive root of the quadratic equation:  $4x^2 + 137x - 1 = 0$  or,  $x^2 + \left(2\sqrt{3}\pi^2 + \frac{1}{16}\right)x - \frac{1}{4} = 0$  [7]. Again,  $\sqrt{e} \approx \Phi \approx 2^{\ln 2}$ , hence,  $\sqrt{e}/\Phi \approx 1 + \alpha \cdot \Phi^2$ . Here,  $\Phi$  is the golden ratio and e is the Euler's number [8, 9, 10].

Although it was Arnold Sommerfeld who formally introduced the fine structure constant in 1916, its history can be traced back to Max Planck, as discussed previously in this article. Planck had noticed that the combination of  $K_{e}$ .e<sup>2</sup>/c has the same dimensions as the Planck constant h. He wondered if h was identical to  $K_{e}$ .e<sup>2</sup>/c and if this could somehow explain the value of the elementary charge. In 1909, while reviewing the status of the theory of blackbody radiation Albert Einstein tried to predict the value of "hc" from the value of  $K_{e}$  and e<sup>2</sup>, but few decimals were missing. Lorentz reacted to Einstein's notes saying that, three missing decimals were too much and concluded that h had nothing to do with e. However, this agreement of prediction with the observed fine-structure splitting was bit accidental and led to considerable confusion in the early days of quantum theory. Although relativistic mass and momentum were used, the computed energy using classical mechanics led to a correction much larger than that actually due only to relativistic effects. Since, the fine structure is associated with a completely nonclassical property of the electron called spin. As  $\alpha$  is a dimensionless number formed of universal constants, all observers will measure the same value for it. Therefore, several numerological experiments continued for some time, and these attempts are probably a measure of how desperate physicists were in their pursuit of a fundamental reason for the value of  $\alpha$  [11].

Even before Bohr formally announced his model of hydrogen atom 1913, an Austrian physicist Arthur Erich Haas in 1910, observed that the different spectral red lines was actually a doublet, which was termed the 'fine structure' of lines. It means, the size of a hydrogen atom is a factor  $\alpha^{-2} \approx 20000$  times the size of an electron. Arnold Sommerfeld thought he could improve upon the Bohr model by assuming that the orbits can be elliptical. In addition, he considered the effect of variation of mass with speed. He presented his calculations at the Bavarian Academy of Sciences in December 1915 & January 1916. The spectroscopist Friedrich Paschen soon set to work on comparing the prediction with observations. By May 1916 he reported to Sommerfeld that "my measurements are now finished, and they agree everywhere most beautifully with your fine structures". One month later, Paschen determined the value of  $\alpha^{-1}$  as 137.9. This was when  $\alpha$  got its name 'fine structure constant'. Sommerfeld's model was praised as a great progress. Einstein wrote to him a year later that, "Your investigation of the spectra belongs among my most beautiful experiences in physics. Only through it do Bohr's ideas become completely convincing." Planck went to the extent of comparing this work with that of the prediction of Neptune's orbit in astronomy [12].

However, all this work was superseded by the advent of wave mechanics of Schrödinger when the classical picture of fixed orbits of electrons was abandoned in favor of a probabilistic wave function. The uncertainly principle pointed out that the classical way of calculating the electron orbit was wrong because the position and velocity could not be determined at any given time. These models could explain the fine structure and much more, without referring to elliptical orbits. For the fine structure of spectral lines, a new quantum number was invoked, that of the electron 'spin', which took the place of Sommerfeld's 'k' quantum number. But the role of the fine structure constant in the scheme of the subatomic world was already secured, and it keeps appearing in all expressions of energy levels in atoms. It is now viewed as one of the 'coupling constants' of Nature. The force of gravity couples all particles with the Newton's gravitational constant G. Similarly, one can think of the fine structure constant being a parameter that couples all charged particles [13].

Since the value of  $\alpha$  is important for the electronic energy levels in atoms, scientists have wondered what would have happened if its value had been different. In the 1950s, astronomers Fred Hoyle and others worked out the detailed process with which stars produce heavy elements such as carbon, oxygen etc. They found that the abundance of carbon in the Universe could be explained only if the fine structure constant had this value. Hence, Richard Feynman famously quoted about  $\alpha$  saying, "It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the hand of God wrote that number, and we don't know how He pushed his pencil. We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the calculation to make this number come out" [14].

Arthur Stanley Eddington (1882–1944) argued that the value of the fine-structure constant,  $\alpha$ , could be obtained by pure deduction. He related  $\alpha$  to the Eddington number, which was his estimate of the number of protons in the observable universe. This led him in 1929 to conjecture that  $\alpha$  was exactly 1/137. Other physicists did not adopt this conjecture and did not accept his argument [15]. In the late 1930s, the best experimental value of the fine-structure constant,  $\alpha$ , was approximately 1/136. Eddington then argued, from aesthetic and numerological considerations, that  $\alpha$  should be exactly 1/136. He devised a "proof" that N<sub>Edd</sub> = 136 × 2<sup>256</sup> or about 1.5747×10<sup>79</sup>. Current estimates of N<sub>Edd</sub> point to a value of about 10<sup>80</sup> [16]. These estimates assume that all matter can be considered to be hydrogen and require assumed values for the number and size of galaxies and stars in the universe. During a course of lectures that he delivered in 1938 as Lecturer at Trinity College, Cambridge, Eddington averred that: I believe there are  $1.5747 \times 10^{79}$ , protons in the observable universe and the

same number of electrons [17]. This large number was soon named the "Eddington number". Shortly thereafter, improved measurements of  $\alpha$  yielded values closer to 1/137, whereupon Eddington changed his proof to show that  $\alpha$  had to be exactly 1/137 [18].

In 2000, Kosinov suggested the more complex but more accurate formula  $\alpha^{20} = (\pi \cdot \Phi^{14})^{1/13} \cdot 10^{-43}$ . He followed the footsteps of two American electrochemists, Lewis and Adams, who proposed back in 1914 that "all of the universal constants involve only integral numbers and  $\pi$ ". After applying cube root to the solution of Stefan-Boltzmann law (as it involves a 3D volume), Lewis derived [19]:

$$\alpha^{-1} = 32\pi \left(\frac{\pi^5}{5!}\right)^{\frac{1}{3}} = 137.35.$$

The Lewis–Adam's conjecture was discussed among physicists. In 1935, Heisenberg wrote to Dirac: "I do not believe at all any more in your conjecture that the Sommerfeld fine-structure constant may have something to do with the concept of temperature; that is, neither do I any more believe in the Lewis value". Indeed, Lewis' value is wrong, but his idea led to another dimensionless constant, involving the continued spectra of blackbody radiation [20]. Heisenberg wrote to Bohr with a joke formula suggested by Lunn in 1922,  $\alpha^{-1} = 2^4.3^3/\pi$ . Bohr replied,  $\alpha^{-1} = 360/\Phi^2$ . So back in 1935, after Heisenberg's letter to Dirac came into Pauli's notice, he then suggested that the five-dimensional Kaluza–Klein theory might help to understand the problem [21]. Following Pauli, Wyler came up with another formula in 1969 exposing a similar pattern with the Lewis formula, but in 4th root and in the reciprocal way [22].

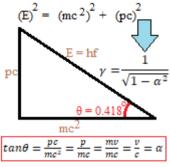
$$\alpha^{-1} = \sqrt[4]{\frac{1^0 4^0 5^1 8^0 9^0}{2^{19} 3^7 6^0 7^0 10^0}} \pi^{11}$$

In 1989, Bailey and Ferguson used a supercomputer to check Wyler's formula, and automatically produced several "other relations of comparable complexity with even better accuracy". One example is  $\alpha^{-5} = 150\pi(6^{5}5^2\pi^3)^8$ , ie,  $\alpha^{-1} = 137.036048362143$  [23]. This clearly showed that a Wyler-type formula could not be the unique answer for the fine structure constant. Wyler's formula is later discussed in the E8 lie groups. In 2006, Castro reviewed the coupling constant with the Complex Domains [24]. However, Wyler's work made people devise simpler ways to obtain the magic number, with no more care given to physical dimensional analysis. In this article a similar approach has been followed. Aether Theory in 1972 [25], Stoyan 2004 [26], Heyrovska 2005 [27], Naschia 2006 [28] Gilson 2007 [29], Lestone 2008 [30], Markovich 2009 [31], Rhodes 2010 [32], Kirakosyan 2011 [33], Code 2012 [34], Schonfeld 2013 [35–36], suggests that the pursuit never ended. Nevertheless, among all the approximations, Michael J. Bucknum and Eduardo A. Castro came up with the most elegant solution in last year 2020 [37] with a convergent series, within a few terms, to better than 99999 parts in 100,000 of the true value of  $\alpha$ . They suggested:

$$\sqrt{\alpha} = \sum_{n=0}^{\infty} \left(\frac{2n+1}{2n+3}\right)^{2n} \frac{(e\pi)^{n+1}}{10^{4n+2}} = \left(\frac{1}{3}\right)^0 \cdot \frac{(e\pi)^1}{10^2} + \left(\frac{3}{5}\right)^2 \cdot \frac{(e\pi)^2}{10^6} + \left(\frac{5}{7}\right)^4 \cdot \frac{(e\pi)^3}{10^{10}} + \left(\frac{7}{9}\right)^6 \cdot \frac{(e\pi)^4}{10^{14}} + \dots \infty$$

Even after these countless efforts, Pauli's simplest question still remains unanswered: "Why 137?" [38–42]. In his Nobel Lecture delivered in Stockholm on 13 December 1946, Pauli expressed his goal was to establish a theory, "which will determine the value of the fine-structure constant and will thus explain the atomistic structure of electricity, which is such an essential quality of all atomic sources of electric fields actually occurring in nature" [43]. As the initialization, "from a physical point of view, that the existence of atomicity, in itself so simple and basic, should also be interpreted in a simple and elementary manner by theory and should not, so to speak, appear as a trick in analysis" [43]. His lifelong search for 137, a millennium puzzle, ended in hospital room 137 [44]. The difficulty of finding the correct  $\alpha$  formula is partly due to the uncertainty of the experimental values - approximately 137.036. Some experimental data of the inverse of the fine structure constant is listed in the Table below [45–53].

| Year | 1/a                   | Source               | Year | 1/α                 | Source                |
|------|-----------------------|----------------------|------|---------------------|-----------------------|
| 1916 | 137.360563948         | A. Sommerfeld        | 2000 | 137.03599976(50)    | CODATA 1998           |
| 1929 | $137.29\pm0.11$       | R. Birge             | 2002 | 137.03599911(46)    | CODATA 2002           |
| 1930 | $136.94 \pm 0.15$     | W. Bond              | 2007 | 137.035999070(98)   | G. Gabrielse          |
| 1932 | $137.305 \pm 0.005$   | R. Birge             | 2008 | 137.035999679(94)   | CODATA 2006           |
| 1935 | $137.04 \pm 0.02$     | F. Spedding et al.   | 2008 | 137.035999084(51)   | G Gabrielse D Hanneke |
| 1941 | $137.030 \pm 0.016$   | R. Birge             | 2010 | 137.035999037(91)   | R. Bouchendira        |
| 1943 | $137.033 \pm 0.092$   | U. Stille            | 2010 | 137.03599913296(33) | T. Kinoshita          |
| 1949 | $137.027 \pm 0.007$   | J. DuMond, E. Cohen  | 2011 | 137.035999074(44)   | CODATA 2010           |
| 1949 | $137.041 \pm 0.005$   | H Bethe, C Longmire  | 2015 | 137.035999139(31)   | CODATA 2014           |
| 1957 | $137.0371 \pm 0.0005$ | J.Bearden, J.Thomsen | 2017 | 137.035999150(33)   | Aoyama et al.         |
| 1969 | 137.03602(21)         | CODATA 1969          | 2018 | 137.035999046(27)   | Parker et al.         |


| 1973 | 137.03612(15)    | CODATA 1973  | 2019 | 137.035999084(21) | CODATA 2018       |
|------|------------------|--------------|------|-------------------|-------------------|
| 1987 | 137.0359895(61)  | CODATA 1986  | 2020 | 137.035999206(11) | Morel et al. 2020 |
| 1998 | 137.03599883(51) | T. Kinoshita |      |                   |                   |

# **III. Results and Discussion**

The theory does not predict its value. Therefore,  $\alpha$  must be determined experimentally. In fact,  $\alpha$  is one of the empirical parameters in the Standard Model of particle physics, whose value is not determined within the Standard Model. The true value of the fine structure constant can be approximated using the following mathematical equation:

| $\alpha^{-1} = \sqrt{e^{\pi + \pi \Phi + \Phi}} = \frac{\Phi}{2} + e\pi^3 \Phi = \frac{\pi^{12}}{5^3 \cdot e^4} + \Phi = (e + \pi + \Phi)^{\sqrt{6}} - 1 = \left(\frac{\Phi\pi}{\log(e)}\right)^2$ |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $\pi = 3.14159265358979323846264338327950288419716939937510\dots$                                                                                                                                  |   |
| e = 2.71828182845904523536028747135266249775724709369995                                                                                                                                           | F |
| $\Phi = 1.6180339887498948482045868343656381177203091798058\dots$                                                                                                                                  |   |
| The difference between the engenine and loss and the engeneric stad solve from                                                                                                                     |   |

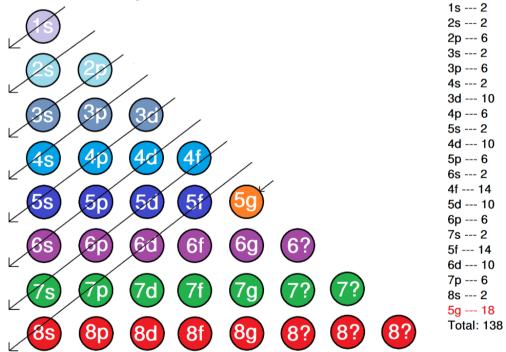
The difference between the experimental value and the approximated value from the formula above is less than 0.00001. Means, the error between the actual & the calculated value is about + 0.11%. So,  $\alpha_{actual} = \alpha_{approx.} \times P(-3.25 < Z < +3.25)$ . Yet, the measurement of  $\alpha$  has a relative standard uncertainty of  $2.5 \times 10^{-10}$ . Also, it is evident from the diagram,  $\theta = \tan^{-1}(\alpha) = 0.418^{\circ} = 0.007297$ rad = ( $\alpha$ ) rad [54]. A simple VISUAL BASIC computer program was written to generate the factors for various particle



A simple VISUAL BASIC computer program was written to generate the factors for various particle pairs. The table below shows the largest common factors and multiples for electron-proton bonds that produce fine structure constants within a  $\pm 3$  standard error window of the measured fine structure constant value. All of the components are considered to be integer. The factor analysis is periodic, with several  $\alpha$  candidates appearing within the search window. The factor analysis also shows that the  $\alpha$  candidates with the highest common factors, all exhibited the same multiple, 472. This means that at every 472<sup>nd</sup> electron wave period, the electron and proton total energy waves overlap.

| Table: Largest common factors for electron-proton bond & Fine Structure Constant (Brian Dale Nelson) [55 | 5] |
|----------------------------------------------------------------------------------------------------------|----|
|----------------------------------------------------------------------------------------------------------|----|

| Proton Mass<br>Component<br>(Np)                                                               | Electron Mass<br>Component<br>(Ne) | Proton Electron<br>Mass Ratio<br>(Np/Ne = $6\pi^5$ ) | Kinetic Energy<br>Component Nv<br>$= 1.45 \times 10^{-10}$<br>$^{8} \times Np$ | $\frac{1}{\alpha} = \sqrt{\frac{Ne}{2N\nu}}$ | Largest Common<br>Factor | Multiple |  |
|------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|--------------------------|----------|--|
| 553900587503                                                                                   | 301663688                          | 1836.<br>15267444121                                 | 8032                                                                           | 137.<br>035999065357                         | 639135                   | 472      |  |
| 434872647725                                                                                   | 236839046                          | 1836.<br>15267444119                                 | 6306                                                                           | 137.<br>035999080312                         | 501791                   | 472      |  |
| 810231325561                                                                                   | 441265771                          | 1836.<br>15267444118                                 | 11749                                                                          | 137.<br>035999110981                         | 934910                   | 472      |  |
| 375358677836                                                                                   | 204426725                          | 1836.<br>15267444117                                 | 5443                                                                           | 137.<br>035999124446                         | 433119                   | 472      |  |
| 691203385783                                                                                   | 376441129                          | 1836.<br>15267444116                                 | 10023                                                                          | 137.<br>035999140230                         | 797566                   | 472      |  |
| 315844707947                                                                                   | 172014404                          | 1836.<br>15267444115                                 | 4580                                                                           | 137.<br>035999158988                         | 364447                   | 472      |  |
| 572175446005                                                                                   | 311616487                          | 1836.<br>15267444113                                 | 8297                                                                           | 137.<br>035999181648                         | 660222                   | 472      |  |
| 828506184063                                                                                   | 451218570                          | 1836.<br>15267444113                                 | 12014                                                                          | 137.<br>035999190287                         | 955997                   | 472      |  |
| 256330738058                                                                                   | 139602083                          | 1836.<br>15267444111                                 | 3717                                                                           | 137.<br>035999209569                         | 295775                   | 472      |  |
| 709478244285                                                                                   | 386393928                          | 1836.<br>15267444110                                 | 10288                                                                          | 137.<br>035999232087                         | 818653                   | 472      |  |
| 453147506227                                                                                   | 246791845                          | 1836.<br>15267444109                                 | 6571                                                                           | 137.<br>035999244824                         | 522878                   | 472      |  |
| 649964274396                                                                                   | 353981607                          | 1836.<br>15267444108                                 | 9425                                                                           | 137.<br>035999258728                         | 749981                   | 472      |  |
| 846781042565                                                                                   | 461171369                          | 1836.<br>15267444107                                 | 12279                                                                          | 137.<br>035999266169                         | 977084                   | 472      |  |
| $\frac{\sqrt{e^{\pi + \pi \Phi + \phi}}}{2} = 137.19$ $\frac{\Phi}{2} + e\pi^{3}\Phi = 137.18$ |                                    |                                                      |                                                                                |                                              |                          |          |  |


$$(e + \pi + \Phi)^{\sqrt{6}} - 1 = 137.14$$

$$\frac{\pi^{12}}{5^3 \cdot e^4} + \Phi = 137.04$$
$$\left(\frac{\Phi\pi}{\log(e)}\right)^2 = 137.00$$

#### **IV.** Conclusion

To realize the significance of the value of  $\alpha$  we need to look into the 137th element of the periodic table. The element is Feynmanium, an undiscovered hypothetical element with the symbol Fy & atomic number 137. It is named in honor of Richard Feynman. The outer most electron of this element of the periodic table is supposed to move nearly at the speed of light. The idea is quite simple, as 1/137 is the odds that an electron will absorb a single photon. Protons and electrons are bound by interactions with photons. So when we get 137 protons, we get 137 photons, and we get  $(137/137.036)\times100\%$  chance of absorption and electron in the ground state is supposed to orbit at the speed of light. This is the electromagnetic equivalent of a black hole. But for the element number 138 the g orbital get fully occupied for the very first time. For this reason it is the most unstable and a temporarily observable hypothetical element. There is  $(138/137.036)\times100\%$  probability that an electron will absorb or emit a photon. As per the Aufbau principal when the g orbital gets fully occupied for the first time then it is supposed to get an atomic number of 138. The maximum occupancy level of s, p, d, f, & g orbitals are 2, 6, 10, 14, & 18 respectively, [2(2n + 1)]; where n = 0, 1, 2, 3, & 4.

According to the Aufbau principal till the element number 120 we do not observe the presence of g orbital. Unbinilium, is the hypothetical chemical element in the periodic table with atomic number of 120. After this hypothetical 120th element for the first time the g orbital comes into existence. Which means, even the g orbital itself is a hypothetical one. When it gets fully occupied with the allotted 18 electrons, then the total number of electrons in the element becomes (120 + 18) = 138. Hence, more than 100% probability that an electron will absorb or emit photon. So,  $\alpha$  is directly related to the coupling constant determining the strength of the interaction between electrons.



### References

- Mohr, P. J.; Taylor, B. N.; Newell, D. B. (2019). "Fine structure constant". CODATA internationally recommended 2018 values of the fundamental physical constants. National Institute of Standards and Technology.
- [2]. Fujii, Yasunori (2004). "Oklo Constraint on the Time Variability of the Fine-Structure Constant". Astrophysics, Clocks and Fundamental Constants. Lecture Notes in Physics. 648. pp. 167–185. ISBN 978-3-540-21967-5.
- [3]. King, J. A.; Mortlock, D. J.; Webb, J. K.; Murphy, M. T. (2009). "Markov Chain Monte Carlo methods applied to measuring the fine structure constant from quasar spectroscopy". Memorie della Societa Astronomica Italiana. 80–864.
- [4]. Fine-structure constant, Wikipedia. Available at: https://en.wikipedia.org/wiki/Fine-structure\_constant (Retrieved: 2022)
- [5]. M. Planck. "The Theory of Radiation". International Journal of Theoretical Physics (1959) (translated from 1906).

- [6]. Mohamed El Naschie (2007). "Estimating the Experimental Value of the Electro Magnetic Fine Structure Constant α Alpha = 1/137.036 Using the Leech Lattice in Conjunction with the Monster Group and Sphere's Kissing Number in 24 Dimension". Chaos Solitons & Fractals 32:383-387
- [7]. R. Heyrovska and S. Narayan (2005). "Fine-structure Constant, Anomalous Magnetic Moment, Relativity Factor and the Golden Ratio that Divides the Bohr Radius". World Year of Physics, WYP 2005
- [8]. Michael A. Sherbon (2018), "Fine-StructureConstantfromGoldenRatioGeometry" retrieve from the following webpage: < https://www.researchgate.net/publication/322797654\_Fine-Structure\_Constant\_from\_Golden\_Ratio\_Geometry >
- [9]. Michael A. Sherbon (2014), "Fundamental nature of the fine-structure constant" retrieve from the following webpage: < https://www.sciencepubco.com/index.php/IJPR/article/download/1817/1082>
- [10]. Michael A. Sherbon (2016), "Fundamental Physics the Fine-Structure Constant" retrieve from the following webpage: < https://osf.io/xfrh3/download>
- [11]. Helge K (2003), Magic number: a partial history of fine-structure constant, Archive for History of Exact Sciences, V.57, p.395–431,
- [12]. Generalic, Eni. (2018) "Paschen series" Croatian-English Chemistry Dictionary Glossary. https://glossary.periodni.com
- [13]. Sommerfeld, A. (1916). "Zur Quantentheorie der Spektrallinien". Annalen der Physik. Series 4 German. 51 (17): 1–94.
- [14] Hoyle, Fred (1981). "The Universe: Past and Present Reflections", Engineering and Science, Volume 45:2, pp. 8–12
- [15]. Whittaker, Edmund (1945). "Eddington's Theory of the Constants of Nature". Mathematical Gazette. 29 (286): 137–144
  [16]. H. Kragh (2003). "Magic Number: A Partial History of FSC". Archive for History of Exact Sciences. 57 (5): 395–431
- [16]. H. Kragh (2003). "Magic Number: A Partial History of FSC". Archive for History of Exact Sciences. 57 (5): 395–431
   [17]. Arthur Eddington (1928). The Nature of the Physical World. London: Cambridge University Press. Eddington (1939), lecture titled "The Philosophy of Physical Science". The sentence appears in Chapter XI, "The Physical Universe".
- [18]. Nafish Sarwar Islam (Apr. 2021). "Is the fine-structure constant actually a constant?", IOSR Journal of Applied Physics Vol 13, Issue 2, Ser. II, PP 56-59 [https://www.iosrjournals.org/iosr-jap/papers/Vol13-issue2/Series-2/II302025659.pdf].
- [19]. Ke Xiao (2013), "Dimensionless Physical Constant Mysteries" retrieve from the following webpage: <a href="https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.936.8365&rep=rep1&type=pdf">https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.936.8365&rep=rep1&type=pdf</a>>
- [20]. K. Xiao (2011), Dimensionless Constants and Blackbody Radiation Laws. EJTP 8(25) 379
- [21]. W. Pauli, a letter to Klein, Sept. 7, 1935, in Karl von Meyenn ed, Wolfgang Pauli. Wissenschaftlicher Briefwechsel, 2, NewYork: Springer-Verlag, 430 (1985)
- [22]. A. Wyler, L'espace symetrique du groupe des equations de Maxwell. C. R. Acad. Sc. Paris, 269A 743 (1969); Les groupes des potentiels de Coulomb et de Yukawa. 271A 186 (1971)
- [23]. D. H. Bailey, et. al, (1989), "Numerical Results on Relations Between Numerical Constants Using a New Algorithm". Mathematics of Computation, 53, 649
- [24]. C. Castro (2006), "On Area Coordinates and Quantum Mechanics in Yang's Noncommutative Spacetime with a Lower and Upper Scale". Progress in Physics, 2, 46
- [25]. H. Aspden and D. M. Eagles (1972), "Aether Theory and the Fine Structure Constant". Physics. Letter. A 41(5), 423
- [26]. S. Stoyan (2005), "Beyond the Visible Universe". Helical Structure Press, Toronto
- [27]. R. Heyrovska, et. Al (2005), "Fine-structure Constant, Anomalous Magnetic Moment, Relativity Factor and the Golden Ratio that Divides the Bohr Radius". arXiv:physics/0509207v1
- [28]. M. S. El Naschie (2006), "A derivation of the electromagnetic coupling 137.036". Chaos, Solitons, Fractals, 31, 521-526
- [29]. J. Gilson (1996), "Calculating the Fine Structure Constant". Physics Essays, 9, 342-353
- [30]. J. P. Lestone (2007), "Physics based calculation of the fine structure constant". arXiv:physics/0703151v6
- [31]. J. S. Markovitch (2009), "Approximation of the fine structure constant reciprocal". JM-PH2009-78d; The Fine Structure Constant Derived from the Broken Symmetry of Two Simple Algebraic Identities. viXra:1102.0012
- [32]. C. K. Rhodes, et. al (2010), "Unique Physically Anchored Cryptographic Theoretical Calculation of the Fine-Structure Constant α Matching both the g/2 and Interferometric High-Precision Measurements". arXiv:1008.4537v4
- [33]. G. Kirakosyan (2011), "Modeling the Electron at a Stable Quantum Wave-vortex: Interpretation  $\alpha \approx 1/137$  As a Wave Constant". Hadronic J. 34 1-22
- [34]. H. Code (2011), "The Divine Origin of the Fine Structure Constant (1/137.036)" < https://cupdf.com/document/numerusmysticorum-the-divine-origin-of-the-fine-structure-constant.html>
- [35]. E. Schonfeld (2012), "A New Theoretical Derivation of the Fine Structure Constant". PROGRESS IN PHYSICS, 1, 3-5
- [36]. Wesley Long (2020), < https://weslong.medium.com/fine-structure-constant-mathematical-55dc8b09bb0d>
- [37]. Michael J. Bucknum and Eduardo A. Castro (2020), "Improved approximation of Sommerfeld's fine structure constant as a series representation in e and  $\pi$ " < https://vixra.org/pdf/1908.0313v1.pdf >
- [38]. W. Pauli (1985), Scientific Correspondence II, Springer Verlag, Berlin, 366
- [39]. S. L. Glashow (1979), "An estimate of the fine structure constant". Nature 281, 464
- [40]. J. Ellis (1981), "A refined estimate of the fine structure constant". Nature 292, 436
- [41]. M. Buchanan (2010), "Think of a number". Nature Physics, 6, 833
- [42]. D. M. Eagles (1976), "A Comparison of Results of Various Theories for Four Fundamental Constants of Physics". International Journal of Theoretical Physics, 15, 265-270
- [43]. W. Pauli (1958), "Exclusion Principle: Quantum Mechanics". Nobel Lecture; Theory of Relativity. Pergamon Press 205
- [44]. D. Gross (1989), "On the Calculation of the Fine Structure Constant". Physics Today, 42, 9
- [45]. H. Kragh (2003), "Magic Number: A Partial History of the Fine-Structure Constant". Arch Hist Exact Sci, 57, 395-431
- [46]. G. Gabrielse (2007), Antiproton Confinement in a Penning-Ioffe Trap for Antihydrogen. Phys. Rev. Lett. 98, 113002
- [47]. P. J. Mohr (2012), CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys. 80, April-June (2008); CODATA, (1969-2010); Current advances: The fine-structure constant and quantum Hall effect
- [48]. Kinoshita (2003), "Improved  $\alpha^4$  Term of the Electron Anomalous Magnetic Moment". arXiv:hep-ph/0507249v2 (1998); Everyone makes mistakes-including Feynman. Journal of Physics G 29, 9-21
- [49]. D. Hanneke (2008), "New Measurement of the Electron Magnetic Moment & the Fine Structure Constant". Physics Rev. Letter 100, 120801-4
- [50]. T. Kinoshita (2010), "Fine Structure Constant, Electron Anomalous Magnetic Moment, and Quantum Electrodynamics". presented at Nishina Hall, RIKEN, Nov. 17 p53
- [51]. Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko (8 February 2018). "Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment". Physical Review D. 97 (3): 036001. arXiv:1712.06060.
- [52]. Parker, Richard H.; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger (13 April 2018). "Measurement of the finestructure constant as a test of the Standard Model". Science. 360 (6385): 191–195. arXiv:1812.04130

- [53]. Morel, Léo; Yao, Zhibin; Cladé, Pierre; Guellati-Khélifa, Saïda (December 2020). "Determination of the fine-structure constant with an accuracy of 81 parts per trillion". Nature. 588 (7836): 61–65
- [54]. Introduction to fundamental physics <a href="https://books.google.com.bd/books?id=YWCjAgAAQBAJ>page:134">https://books.google.com.bd/books?id=YWCjAgAAQBAJ>page:134</a> (50)
- [55]. Brian Dale Nelson (2020), < http://quantumpulse.com/>