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l. INTRODUCTION

Fractional Calculus is centuries-old mathematical subject that involves the integration and
differentiation of arbitrary orders. It is the generalization of the classical calculus. However, applications of
Fractional Calculus have just recently developed in numerous fields of physics, chemistry, engineering, finance
and social sciences [11].

Most of the fractional differential equations do not have analytical solutions. Besides numerical
approaches, some approximate methods such as separation of variables [14], Variational iteration method [15],
Adomian decomposition method [10], Homotopy analysis method [4], Homotopy perturbation method [7] and
Finite difference method [8] are relatively new approaches to provide an analytical approximation to fractional
differential equations.

Recently, wavelet analysis has considerable attention in solving fractional differential equations.
Wavelets have applications in signal analysis, image compression, medical science and many other areas.

Here, we analyze the following different types of fractional electrical circuits, namely LC(Inductor-
Capacitor) circuit, RL(Resistor-Inductor) circuit, RC(Resistor-Capacitor) circuit and RLC(Resistor-Inductor-
Capacitor).

Fractional models for electrical circuits have already been proposed [6]. In this regard, Gomez et al.
[1] have obtained solutions of RL and RC circuits involving caputo derivatives using numerical Laplace
transform. Besides, they have also studied RLC circuit in time domain and found solution with respect to the
Mittag-Leffler function. Shah et al. [13] considered the Laplace transform of fractional derivatives in the caputo
sense to get the solutions of RL electrical circuit described by a fractional differential equation of the order
0<p<1.

Atangana et al. [3] examined RLC circuit model via the fractional derivative without singular kernel.
To study fractional electrical circuits, Legendre wavelet has been applied by Arora and Chauhan [2]. Recently,
Sahar Altaf and Sumaira Yousuf Khan have found the numerical solutions of electrical circuits described by
fractional derivatives [12].

The outline of this paper is as follows: In section 2, we discuss some basic definitions. In section 3, we
present Bernoulli wavelets and their properties. In section 4, we discuss the function approximation and derive
operational matrix of fractional integration. We discuss four fractional electrical circuit equations to illustrate
the applicability of the proposed method and compare the results with the classical solutions in section 5.
Finally, conclusion is given in section 6.
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Il.  PRELIMINARY CONCEPTS
In this section, some basic definitions and preliminaries of fractional calculus are presented.

Definition 2.1. The Riemann-Liouville fractional integral operator I* of order y > 0 is defined as

1 x B
I"g)) = {Tx) fo(x—f)y g@dr,  y>0

gx), y=0

.1

where g(x)eL*(R*) and Riemann-Liouville fractional derivative operator D,ZL is defined by

d n
Oh )0 = () 7D, n-1<y<n, neN
where g(x)eLl!(R*).
Some properties of IV are listed below.
1 (18g(0) = (1% () = I g (x), (22)

Xy — YZM — g)aty
1%(x — a) r(a+y+1)(x a)*ty, (2.3)

wherea, 8 = 0andy > —1.

Definition 2.2. The Caputo fractional derivative operator of order y > 0 is defined as
g™ ), ¥ = neN
g" (@) p (2.4)

D7g)(x) = 1 x
F(n—y)fo G—yn T, n—-1<y<n,

where g(x)eLl!(R*).

The relations between the Riemann-Liouville operator and the Caputo operator are given by the following
expressions.

(D117 g)(x) = g(x)

and

n-1
k
x
(I"D¥g)(x) = g(x) — Z g(")(0+)F, n—-1<y<n, (2.5)
k=0 '
where neN and g (0*) := lim,_ o+ D*g(x), k=012,..,n—1.

1. BERNOULLI WAVELETS

Wavelets consist of a family of functions generated from dilations and translations of a single function
Y(x), called the mother wavelet. If the dilation parameter ¢ and the translation parameter d change
continuously, we obtain the following continuous family of wavelets,

1 -d
PYea(x) = lcl™2 (tT) c#0,d€ER.

If the translation and dilation parameters are chosen to have discrete values, that is, ¢ = ¢;?,
d = ndycgt, ¢, > 1, dy > 0and [, n € N, we have the following family of discrete wavelets,

Y () = leo 29 (chx — ndy),

where {1,,,} forms a basis for L?(R). In particular, if ¢, = 2 and d, = 1, we can obtain orthonormal basis from

{1} for L?(R).

The Bernoulli wavelets for x € [0,1) are defined as

u—-1

—_ u—1 _ p—1 14
l,l’pq(x):{z 2 Vvq(z X p+1)’ sx<

2u-1 = 2u-1’ (3.1)
0, otherwise,

for p=1,2,..,2*1,¢=0,1,..,0 —1andu, Q € N, where
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1, q=0,

(
I 1
M/Q(x) = {j(_l)q%q!)z

W, (x), q>0,

|~ @ T
the dilation parameter is 2-(“~1, the translation parameter (p — 1)2~®~1, and the coefficient

IEET is used for orthonormal condition. Here W, (x),q = 0,1, ..., @ — 1, denote Bernoulli
Gar Y24

polynomials of order q.

3.1 Function approximation
A function h(x = L?[0,1)) can be expanded as

B = D Gyt () (3.2)

p=0 q€Z
where the coefficients a,,, are given by

g =< h(x),Ppq(x) >= fo h(x) 4 (x)dx.

If the infinite series in equation (3.2) is truncated, then it can be written as
2u-1Q-1

R~ D) g 0. (33)

p=1 =0

For simplicity, equation (3.3) is written as
ql

h(x) = Z a; Pi(x) = AT¥ (x), (3.4)
where a; = ap;,zllpi =Ype ' =2471Q, A=[ay,a,...,a,]", (3.5)
W) = [y (), 1, (), . gy (), 17 and 356)

the index i is determined by the relationi = Q(p — 1) + q + 1.

We define the Bernoulli wavelet coefficient matrix ¢ /.47, q' = 2%~1(, at the collocation points x, = Zr—;,r =
1,2,..,q9" as

1 3 2q'-1
o =¥ (5) ¥ () ¥ ()] 3.7)
Specifically, the Bernoulli wavelet coefficient matrix for u = 2 and Q = 3 becomes

1.4142 14142 1.4142 0 0 0
/—1.6330 0 1.6330 0 0 0 \
I 0.5270 —1.5811 0.5270 0 0 0o I
Poxe =1 0 0 14142 14142 14142 | (38)
\ 0 0 0 —1.6330 0 1.6330/
0 0 0 0.5270 —1.5811 0.5270

Here, we have
hyr = [R(y), h(xy), o R )] = AT g1 g

Since the Bernoulli wavelet coefficient matrix ¢, is invertible, it is possible to obtain the Bernoulli wavelet

. . T = _1
coefficient vector A" by hgr i, .-
3.2 Operational matrix of fractional order integration
In this section, we explore the basic idea of finding the operational matrix of fractional order integration for the
Bernoulli wavelets.

On [0,1), we define q'- set series of Block pulse functions (BPFs) as

(1, r—1/q9' <x<r/q,
b, (x) = {0, otherwise (3.9)
where r = 1,2,3,...,q". Forx € [0,1), h(x) € L?[0,1) can be approximated by using BPFs as
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q
R = D kb, () = hTB (), (3.10)
r=1
where h = [hy, by, ...,hqr]T, h, for r = 1,2, ..., q" are given by
1 r/d
h,=— h(x)b, (x)dx.
4 Jer-1)/q'

Bernoulli wavelets can be expanded into g'-term BPFs as
W(x) = pgruq' By (%), (3.11)
where B s (x) = [by(x), by (x), ..., by (0]
The block pulse operational matrix H5, 8 > 0 of fractional integration of order 8 > 0 is defined
as [9],

(IBqu)(x) =~ HBqu(x), (3.12)
where
1 ¢ & o {q'—l
1 1 | 01 ¢ ¢ .. {q’—z\l
0o 0 1 . '
)] I ? : (qf3 ¥
o 0 .. 0 1 € /
0o 0 .. 0 O 1

with ¢, = (u + 1P — 2uP*1 4 (u — 1)F+1,
The fractional integration of Bernoulli wavelets can be expanded as
IPW)(x) ~ P, W), (3.13)

where Pf,xq, is operational matrix of fractional integration of order § = 0 based on the Bernoulli wavelets.
From Equations (3.12) and (3.13), we have

(IPW) () ~ (1P grq By ) (%) = bgrq (IPByr) () = grqr HP By (%), (3.14)

Thus combining Equations (3.13) and (3.14), we attain

Pﬁ, s P = (IPR)(x) = g HP By () = pgriqr HP ¢ 5 (W (%), and s0 (3.15)
Pf "xq' i ¢ql><quﬁ¢q'1><q" (3.16)
For example, letting u = 2, Q = 3, and 8 = 0.5, the operational matrix Pq, , becomes
0.5282 0.1819 —0.0298 0.4438 —0.0871 0.0256
/—0.1452 0.2243 0.1329 0.0799 —0.0449 0.0198 \
pos — I —0.0598 —0.0964 0.1688 —0.0417 —-1.8589e¢e —04 0.0029 | (3.17)
oxe =| g 0 0 0.5282 0.1819 ~0.0298 | '
\ 0 0 0 —1.1452 0.2243 0.1329 /
0 0 0 —0.0598 —0.0964 0.1688

Since the operational matrix P>, contains several zeros, the proposed technique reduces the computation
greatly.

IV. APPLICATIONS

This section deals with the applicability and the simplicity of the proposed technique in solving fractional
differential equations of the electrical circuits LC, RL, RC and RLC.

4.1 LC Circuit

Consider the fractional differential equation of an LC Circuit with charged capacitor and inductor,

DPR(t) + p2R(t) = 0, Bel1,2], where p? = — (4.1)
with R(0) = R, and R’(0) = 0.

The classical solution for 8 = 2 is R(t),c = R, cos(pyt). 4.2)
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Table 1: Numerical results of LC circuit (L=1,C=1,R, = 0.01 and for 8 = 2)

t u=2,Q=2 u=3,0=2 u=4,Q0=2 CS

1/16 1.0050x 103 9.9740x 1073 9.9740x 1073 9.9805x 103

3/16 9.7439x 1073 9.8186x 1073 9.8184x 1073 9.8247x 1073

5/16 9.4378x 1073 9.5101x 1073 9.5096x 1073 9.5157x 1073

7/16 9.1317x 1073 9.0535x 103 9.0525x 1073 9.0581x 103

9/16 8.5201x 1073 8.4557x 1073 8.4542% 1073 8.4592% 1073

11/16 7.6764x 1073 7.7262x 1073 7.7240% 1073 7.7283%x 1073

13/16 | 6.8327x 1073 6.8762x 1073 6.8733x 1073 6.8769% 103

15/16 | 5.9890% 1073 5.9191x 1073 5.9154x 103 5.9181x 1073
Approximating DR (t) as CT(t), we have 4.3)
R(t) = CTPPY(t) + tR'(0) + R(0) (4.4)
Using the initial conditions, R(t) = CTPPy(t) + R, (4.5)
Thus CTy(t) + p3[CTPP(t) + Ry| = 0 (4.6)

Valkage O]

Time t

Figure 1: Current versus Time graph (L=1, C=1, R, = 0.01 and 8 = 2)

Solving the equation (4.6) at the collocation points, we get the Bernoulli coefficient vector CT. The
numerical solutions of the LC circuit for § = 2 and various values of g’ are given in Table 1. Also, from Fig 1,
it is graphically shown that the proposed Bernoulli wavelet based numerical approach reaches a higher precision
of accuracy.

4.2 RL Circuit
Consider the fractional differential equation of an RL Circuit with only charged capacitor and resistor

DFQ() +kQ(t) = p, pe(0,1], (4.7)
with the initial state Q(0) = Q, where k = %,p =2
The classical solution for § = 1 is

L

Q) = [Qo —Z] e + 2 (48)
Table 2: Numerical results of RL circuit ( R=10, L=1,Q, = 0.01,V =10andforf =1)

t u=2,Q=2 u=3,Q=2 u=4,Q=2 CS

1/16 4.3778x 1071 3.9077x 1071 4.2531x 1071 4.7009x 1071

3/16 6.8222 x 1071 | 8.5941x 107! 8.423x 1071 8.4818x 1071

5/16 9.2667 x 1071 | 9.6756x 107! 9.5674x 1071 9.5650x 1071

7/16 11.7111 9.9251x 1071 9.8813x 1071 9.8754x 1071

9/16 9.9306x 1071 9.9827x 1071 9.9674x 1071 9.9643x 1071

11/16 9.9607x 1071 9.9960x 1071 9.9911x 1071 9.9898x 1071

13/16 9.9909x 101 9.9991x 1071 9.9975x 1071 9.9971x 1071

15/16 10.0212 9.9998x 1071 9.9993% 1071 9.9992x 1071
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Approximating DfQ(t) as CT(t), we have (4.9)
Q) = CTPPY (1) + Q(0) (4.10)
Using the initial conditions, we attain

Q(t) = CTPPY(t) + Qo (4.11)
Thus CT(t) + k[CTPPY(t) + Qo] = p (4.12)

By solving the above matrix equation at the collocation points, we obtain Bernoulli coefficient vector
CT. The Table 2 shows the numerical solutions of the RL circuit for # = 1 and various values of g'. As it is
clearly seen in Fig. 2, the graphical behavior of the fractional RL circuit is similar to the classical solution for

g =1

urrent Q{t)

Ci

u=3.0=2

u=4,0-2
—b—u=5,0=2
—%— Exact

05 L L L i L n L
0.1 02 0.3 0.4 05 0.6 07 08 0.9
Time t

Figure 2: Current versus Time graph (R=10, L=1,Q, = 0.01,V=10and f = 1)

4.3 RC Circuit
Consider the fractional differential equation of an RC Circuit with resistance and charged capacitance
DEQ(t) +uQf(®) =0,  Be[0,1] (4.13)
with the condition Q(0) = Q,, where u = Rl—c.
The classical solution for 8 = 1is Q(¢t) = Qe ** (4.14)
Table 3: Numerical results of RC circuit (R=10, C=1, Q, = 20 andfor§ = 1)

t u=3,Q=2 u=4,Q=2 u=5,0=2 CS

1/16 19.8758 19.8756 19.8753 19.8754

3/16 19.6289 19.6287 19.6284 19.6285

5/16 19.3850 19.3849 19.3846 19.3847

7/16 19.1443 19.1440 19.1438 19.1439

9/16 18.9064 18.9062 18.9060 18.9061

11/16 18.6715 18.6714 18.6711 18.6712

13/16 18.4396 18.4394 18.4392 18.4394

15/16 18.2105 18.2104 18.2102 18.2102
Approximating DfQ(t) as CT(t), we have (4.15)
Q(t) = CTPP(t) + Q(0) (4.16)
Using the initial condition, we attain
Q) = C"PP(t) + Qq (4.17)
Thus CTy(t) + u[CTPEY(E) + Qo]=0 (4.18)
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20

Voltage Q(t)

. L .
0.2 04 06 08
Time t

Figure 3: Voltage versus Time graph ( R=10, C=1, @, = 20,8 = 1)

Solving this system at the collocation points, we obtain Bernoulli coefficient vector CT. The numerical
solutions of the RC Circuit for § = 1 and different values of q' are given in the Table 3. Also graphical analysis
for different values of g’ is shown in Fig.3. As it is seen in Fig 3, the graphical behavior of fractional RC circuit
is close to the classical solution for g = 1.

4.4 RLC Circuit

Consider the fractional differential equation of an RLC Circuit with resistance, inductance and charged
capacitance

D*FQ(t) + pQf (t) +1Q(t) = 0, Be[1/2,1] (4.19)
with the conditions Q(0) = Q, and Q'(0) = 0, wheren = i andp = %

The classical solution for § =1 is

QD) = 2 [=hpehat + kyeet], (4.20)

—p++/p2—4 —p— 2_4
where kl =%’k2 =%

Table 4: Numerical results of RLC circuit ( R=10, L=10, C=10, Q, = 0.01 andfor § =1)

t u=2,0=2 u=3,0=2 u=4,Q=2 CcS

0.1 0.01096 0.01093 0.01095 0.0099991

0.2 0.01174 0.01181 0.0118 0.0099981

0.3 0.01253 0.01259 0.01259 0.0099959

04 0.01331 0.01328 0.01329 0.0099930

0.5 0.01409 0.01396 0.01393 0.0009989

0.6 0.01451 0.01449 0.01450 0.0099953

0.7 0.01498 0.01502 0.01501 0.010006

0.8 0.01545 0.01548 0.01547 0.010005

0.9 0.01592 0.01589 0.01590 0.010009
Approximating D2£Q(t) as CTy(t), we have (4.21)
DEQ(t) = CTPPY(t) + Q(0) (4.22)

B

Q) = CTPPY(0) + Q(0) iy + o (423)
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tB
rg+1)

Thus CTp(t) + p[CTPPY(E) + Qo] + 1 [CTP2Pp(t) + Q(0) +Qo] =0 (4.24)

0.2

018

Current Qft)

—_— L i " L i
01 02 0.3 04 05 06 07 08 08
Time t

Figure 4: Current versus Time graph ( R=10, L=10, C=10, Q, = 0.01 and 8 = 1)

Solving the equation (4.24) at the collocation points, we obtain Bernoulli coefficient vector CT. The
numerical solutions of the RLC circuit for § = 1 and different values g’ are given in the Table 4. Also the
graphical analysis for different values of q' is shown in Fig.4. As it is seen in Fig.4, the graphical behavior of
fractional RLC circuit is close to the classical solution for 8 = 1.

IV.  CONCLUSION
The proposed numerical technique based on Bernoulli wavelets is employed to find the approximate
solutions of fractional electrical circuit models namely, LC, RL, RC and RLC. The graphs in Figures(1-4)
represent the numerical solutions of such models which behave similar to the classical solutions. Thus the
proposed method gives the fast convergence to the solutions and so can be further applied to other physical
models in real-life problems.
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