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ABSTRACT :In this paper, a new family of optimal eighth-order iterative methods for finding the roots of 

nonlinear equations is presented. This method is developed by modifying Bawazir’s method, using a linear 

combination to combine Bawzir and Ostrowski methods, and adding Newton’s method as the third step with an 

approximation of the derivatives. Some numerical comparisons were considered to demonstrate the performance 

of the proposed method. 
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I. INTRODUCTION  
Finding a simple root of nonlinear equations is one of the most important and the oldest problems in 

numerical analysis. These problems are common in engineering, applied mathematics, and scientific computing. 

In scientific departments, a need arises for solving nonlinear equations  

    (1)  

where f:D⊂ R→R for an open interval D [1-12].                      

Newton’s method (NM) is a fundamental method for solving the nonlinear equation, given by 

 

    (2) 

 

Newton’s method converges quadratically. The efficiency index [1] can be defined by I=p
1

d, such that p is the 

order of convergence and d is the number of total function evaluations per iteration. The optimal order can be 

calculated using Kung-Traub[2] conjectured which is given by 2d-1.The efficiency index of the optimal method 

(2) is I=2
1

2 ≈ 1.4142. 
There are many methods of the optimal two-step fourth-order for solving nonlinear equations which depend on 

Newton’s method in the first step. An optimal two steps method is proposed by Ostrowski[3], given by 

 
               (3) 

 

Ostrowski’s method is an optimal fourth order of convergence, and it has an efficiency index I=4
1

3 ≈ 1.5874. 

Recently, a fifth-order method depending on double Newton’s method has been developed by Bawazir [4] given 

by 
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In recent years, many eight-order schemes for finding the roots of nonlinear equations were improved see [5–9] 

and the references therein. 

In this paper, we will present a new family of optimal eighth-order methods which depends on Newton’s, Bawzir 

[4], Ostrowski [3], and derivative approximations. 

 

II. CONSTRUCTION OF NEW ITERATIVE METHOD 
Our aim is to construct a new family of optimal eighth-order of convergence, we designed this method 

by using a composition of three steps. In the first step, we will decrease the functional evaluations number of (4) 

by approximating f '(yn)[10], so the order will be reduced to four instead of five. 

 

                                 (5) 

 

 

By substituting (5) in (4) we will get 

 

 

 

 

                                 (6) 

 

This is considered as an optimal fourth-order of convergence. Then, we will combine (3) and (6) using a linear 

combination. 

 

 

(7) 

 

 

Where β ϵ R is the adjusting parameter. When β = 0, the method proposed above reduces to the method (3), and 

when β = 1, it gives the method (6). It is noticeable that the methods which are given in equations (3) and (6) are 

fourth-order convergence methods. The above method (7) is an optimal fourth-order convergence, and its 

performance depends on a suitable choice of β. 

To obtain an eight order of convergence we will add Newton’s Method as a third step 

 

 

 

 

 

 

 

 

 

 

(8) 

 

 

The above method (8) has eighth-order of convergence with five functions evaluations. Therefore, this method is 

not optimal. To decrease the functional evaluations number, we need to approximatef '(zn). Sivakumaret al[11] 

have proved an approximate value for f
'(zn). 

 
  (9) 

 

Where: 
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a3=
f[zn,xn,xn]-f[yn,xn,xn]

zn-yn
.                                                                                                                                    (12) 

 

Where the divided differences can be calculated by: 

 

        (13) 

 

 

        (14) 

 

        (15) 

 

 

        (16) 

 

Finally, by substituting the approximation (9) in the last step of (8), we will obtain the new family of optimal 

eight-order methods. 

 

 

 

 

 

 

 

 

 

 

(17) 

 

 

The Efficiency Index of the new method (17) is I=8 
1

4 ≈ 1.682. 

 

III. CONVERGENCE ANALYSIS AND PROOF 
In this section, we have used Maple (2018) scripts to prove the convergence order of the provided 

method (HSM), which is given by (17). 

 

3.1 Theorem 
Let α be a simple root of f(x)=0 in an open interval D. If 𝑥0is close enough to α then the method (17) 

has a convergence order of eight when β ϵ R, β≠0 and β≠1. 

 

3.2 Proof of Theorem 
Consider the en= x0-α to be the error at nth iteration.  

Expanding f(x) about α by Taylor expansion, we will have 
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Substituting (18), (19), (22), into second step of (17), we have 
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Substituting (10), (23), (29), and (30) into (9), we have 
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Finally, by substituting (23), (24), and (31) into the last step of (17), we have 
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This completes the proof. 

IV. NUMERICALEXAMPLES 
In this section, we investigate the validity and efficiency of the new proposed family of optimal eighth-order of 

convergence methods (17) by considering some nonlinear equations. We compare the performance of two cases 

of the optimal eighth-order method (17) for β = 2 (HSM1) and β = -2 (HSM2), with the following eighth-order 

methods for the purpose of comparison: 

Method proposed by Kung-Traub [2](KTM): 
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Method given by Liu et al [7] (LWM): 
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Method proposed by Al-Harbi et al [8] (TSM): 
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xn+1=zn-{-2βs1
3es1(s2

4+s2
4 sin(s3)+ sin(s3) +1)+(s2

4+1)(sin(s3)+1)}
f(zn)f[xn,yn]
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.                                         (35) 

Where s1=
f(yn)

f(xn)
 , s2=

f(zn)

f(yn)
 ,s3=

f(zn)

f(xn)
 , and β=0. 

 
Method proposed by Sharma et al [5] (SAM): 

 

 

 

 

 

 
                          (36) 

 

Method proposed by Parimala et al [6] (PMJ): 
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The test functions and their exact root are shown in Table1with only fifteen decimal digits as follows. 

 

Table 1. Test functions and their exact root 

Functions Roots 

f1(x)= sin x2-x2 +1 α = 1.40449164821534 

f2(x)=(x-1)3-1 α =2.0 

f3(x)=sin
-1(x2-1)-

x

2
+1 α = -0.296550195139443 

f4(x)= cos(x)-x α =0.739085133215161 

f5(x)=10xe(-x
2)-1 α =1.67963061042845 

f6(x)= x3+ log(1+x) α =0 

 

All computations were done by Matlab (R2018a) software, using 1000 digits. The stopping criteria 

|xn-α| ≤ 10-300, 

|f(xn)| ≤ 10-300. 

As shown in Table2, the number of iterations (IT), the absolute value of the function |f(xn)|, and the absolute 

error |xn-α|. Furthermore, the computational order of convergence (COC)[12] which approximated by 

 

 

 

 

Table 2. Comparison of various iterative methods 

Method IT |𝑓(𝑥𝑛)| |𝑥𝑛 − 𝛼| COC 

f1(x)= sin x2-x2 +1 x0=1.3    
PMJ 3 1.06388e-482 4.28557e-483 8 

TSM - - - - 

KTM 3 1.77865e-473 7.16484e-474 8 

SAM 3 3.08327e-420 1.24202e-420 8 
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Method IT |𝑓(𝑥𝑛)| |𝑥𝑛 − 𝛼| COC 

LWM 3 1.25968e-470 5.0743e-471 8 

HSM1 3 5.81726e-430 2.34333e-430 8 

HSM2 3 8.67307e-448 3.49372e-448 8 

f2(x)=(x-1)3-1 x0=2.2    
PMJ 3 5.65132e-358 1.88377e-358 8 

TSM 3 1.2849e-382 4.28301e-383 8 

KTM 3 2.05589e-341 6.85298e-342 8 

SAM 3 2.31099e-321 7.70331e-322 8 

LWM 3 1.61685e-342 5.38949e-343 8 

HSM1 3 4.28696e-308 1.42899e-308 8 

HSM2 3 1.94936e-341 6.49788e-342 8 

f3(x)=sin
-1(x2-1)-

x

2
+1 x0=-0.48    

PMJ 3 8.46194e-756 4.34755e-756 8 

TSM 3 3.13618e-761 1.6113e-761 8 

KTM 3 5.44064e-788 2.79528e-788 8 

SAM 3 4.87452e-728 2.50441e-728 8 

LWM 3 2.77271e-719 1.42455e-719 8 

HSM1 3 9.12729e-743 4.68939e-743 8 

HSM2 3 4.07989e-723 2.09615e-723 8 

f4(x)= cos(x)-x x0=0.6    

PMJ 3 1.13203e-655 6.76397e-656 8 

TSM 3 1.01004e-673 6.03511e-674 8 

KTM 3 2.97301e-646 1.7764e-646 8 

SAM 3 9.31564e-622 5.56619e-622 8 

LWM 3 2.73271e-626 1.63282e-626 8 

HSM1 3 4.28048e-644 2.55763e-644 8 

HSM2 3 

 

 

 

4.6892e-685 2.80184e-685 8 

f5(x)=10xe(-x
2)-1                                x0=1.5 

PMJ 3 4.49239e-381 1.62539e-381 8 

TSM 3 7.53701e-399 2.72696e-399 8 

KTM 3 9.10897e-369 3.2957e-369 8 

SAM 3 3.18862e-347 1.15367e-347 8 

LWM 3 7.00539e-355 2.53461e-355 8 

HSM1 3 7.26037e-357 2.62687e-357 8 

HSM2 3 1.70714e-391 6.1766e-392 8 

f6(x)= x3+ log(1+x) x0=0.25    

PMJ 3 1.70259e-422 1.70259e-422 8 

TSM 3 1.98495e-426 1.98495e-426 8 

KTM 3 1.29102e-432 1.29102e-432 8 

SAM 3 1.34383e-358 1.34383e-358 8 

LWM 3 1.28561e-415 1.28561e-415 8 

HSM1 3 2.83948e-460 2.83948e-460 8 

HSM2 3 3.72441e-434 3.72441e-434 8 
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V. CONCLUSION 
In this paper, we have proposed a new family of optimal eighth-order of convergence for finding the 

roots of non-linear equations. The newly proposed family is obtained by approximating f
'(y

n
), using the technique 

of linear combination, and approximating f
'(zn). Numerical results were presented to illustrate the performance 

and efficiency of the newly proposed method. 
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