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I. Introduction 
Consider the following quadratic  random functional differential equation on unbounded intervals,
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(1.1)                        

Where ( ), : \{0}p CRB R f R R R    , : : .g R R C Rand h R R C R                                        

The problem(1.1)have been studied on closed and bounded intervals by many authors..The above problem (1.1 ) 

is not discussed  on  unbounded intervals .Here, we have discussed  on  unbounded intervals and prove the 

existence and attractivity  results by application of  hybrid fixed point theory. 

 

II. Auxiliary Results 

 Let 0 [ ,0]I   be a closed ,bounded interval in real line R for some real number 0   and let 0J I R  .  

We have use the following result for proving the main existence result.  

 Theorem2.1 (Dhage[10]). Let S be a non-empty, closed convex and bounded subset of the Banach algebra U 

and Let : :A U U and B S U   be two operators such that  

(i) ( )A   A 
 
is D-Lipschitz with D-function 𝜓, 

(ii) ( )B   B   is completely continuous, 

(iii) ,u Au Bv u S for all v S and     

(iv) 
   

( ) , ( ) sup{ : }M t r whereM B S Bu u S      

Then the operator equation Au Bu u
 
has a solution in S. 

 

We  have needed following definitions.  

Definition 2.1. The solutions of the operator equation ( ) ( )Qu t u t are locally attractive if there exists a closed 

ball 0( )rB u in 0( , )BC I R R  for some 0 0( , )u BC I R R  such that for arbitrary solutions 

( ) ( )u u t and v v t  of equation ( ) ( )Qu t u t  belonging to 0( )rB u
. 
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In the case when the limit is uniform with respect to the set 
0( )rB u , then say that solutions of equation

( ) ( )Qu t u t  are uniformly locally attractive on 0 .I R
 

Definition 2.2. A solution 𝑢 = 𝑢 𝑡,   of equation ( ) ( )Qu t u t  is said to be globally attractive if 

lim( ( ) ( )) 0
t

u t v t


   holds for each solution 𝑣 = 𝑣(𝑡) of ( ) ( )Qu t u t  in 0( , )BC I R R
.
  

 

III. Main Result 
Consider the following. 

 𝐴1 . There is a continuous function h : R R  such that         | ( , , ) | ( ) . .g t u v h t a e t R   

              for allu R  and v C . Also, let 
0

lim| ( ) | ( ) 0
t

t
p t h s ds


  

2( ) (0) 0A  
.
 

 𝐴3 . The function ( ,0,0)t f t is bounded on R  with  0 sup{| ( ,0,0) | : }.F f t t R   

(𝐴4) .The function :f R R R    is continuous and there exists a function  ( , )BC R R  and a real 

number K > 0 such that 
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  𝐴5 .  
 lim | ( , ) | ( , ) 0 .

t
f t u f t v for all u R


  

 

(𝐴6) . (0, (0)) 1f    

(𝐴7). Suppose 
(0, )

u
u

f u
  𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒. 

Theorem 3.1. Suppose that (𝐴1), (𝐴3), (𝐴4), (𝐴6) and(𝐴7)) holds. Further, assume  that 

max{|| ||,| (0) | || || } .L a W K   
                                                             (3.1)

 

Then problem (1.1) admits a solution and solution is uniformly globally attractive. 

Proof. Now, using hypotheses (𝐴6) and (𝐴7 ) it can be shown that the problem (1.1) is equivalent to    the 

functional integral equation

  0

0
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(3.2)

  

 

Set 0( , )U BC I R R  and define a closed ball (0)rB  in U centered at origin of radius r given by 

   0max 1, max || ||,| (0) | || ||r L F a W     

Define the operators A, B on X , (0)rB
 
 respectively by 
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And    
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Then the equation(3.2) is transformed into the operator equation as 

             0( ) ( ) ( ), .Au t Bu t u t t I R                                                                     (3.4) 
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We have to  Show that A and B satisfy all the conditions of  Theorem 2.1 on 0( , )BC I R R First we show 

that the operators A and B define the mappings : : (0) .rA U U and B B U    be arbitrary. Obviously, Au 

is a continuous function on 0I R . We show that Au is bounded on 0I R . Thus, if t R , then we obtain: 

                 

0 0

| ( )| | ( , ( ))| | ( , ( )) ( ,0) | | ( ,0) |

| ( ) |
( )
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Similarly, 0| ( ) | 1 .Au t for all t I 
 
Therefore, as supremum , 

 0| || max 1,Au L F N    0|| || max 1,Au L F N    

Thus Au is continuous and bounded on 0I R  . As a result 𝐴𝑢 ∈ 𝑈. It can be shown that 𝐵𝑢 ∈ 𝑈 and in 

particular, :A U U and
 

: (0) .rB B U  We show that A is a Lipschitz on U. Let 𝑢, 𝑣 ∈ 𝑈 be  arbitrary. 

Then, by hypothesis  𝐴3 , 

0
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for all u, 𝑣 ∈ 𝑈. This shows that A is a D-Lipschitz on U with D-function 𝜓 ( )
Lr

r
K r




 next, it can be 

shown that B is a compact and continuous operator on U and in particular on (0)rB Next , we estimate the 

value of the constant M.By definition of M, as 
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for all 𝑢 ∈  𝐵 𝑟(0). Next , let 𝑢, 𝑣 ∈ 𝑈 be arbitrary. Then, 
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For all 𝑡 ∈ 0I R . Therefore, we have: 

   0|| || max 1, max || ||,| (0) | || ||u L F p W r      

This shows that 𝑢 ∈ (0)rB  and hypothesis (iii) of Theorem 2.1 is satisfied. Again,  

         

 max || || | (0) | || ||
( )

L p W r
M r r

K r

 
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
 


 

For r>0, because  max || || | (0) | || || .L p W K     

Therefore, hypothesis (iv) of Theorem 2.1 is satisfied. Now we apply Theorem 2.1 to the operator equation 

𝐴𝑢 𝐵𝑢 = 𝑢 to yield that the problem (1.1) has a solution on 0I R  Moreover, the solutions of the 

problem(1.1) are in (0)rB  Hence, solutions are global in nature. 

Finally, let 𝑢, 𝑣 ∈ (0)rB be any two solutions of the problem(1.1) on 0I R  . Then

    
    

0

0

| ( ) ( ) | | ( , ( )) (0) ( ) ( ) ( , ( ), ) ( , ( ), ) ( , ( ), )

( , ( )) (0) ( ) ( ) ( , ( ), ) ( , ( ), ) ( , ( ), )

| ( , ( )) ( , ( )) | (0) ( ) ( ) ( , ( ), ) ( , ( )

t

s s s

t

s s s

s

u t v t f t u t p t p t g s u s u h s u s u k s u s u ds

f t v t p t p t g s v s v h s v s v k s u s v ds

f t u t f t v t p t p t g s u s u h s u s







    

   

   





  
 

   

0

0

, ) ( , ( ), )

( , ( ), ) ( , ( ), )
| ( , ( )) ( )

( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )

t

s s

t s s

s s s s

u k s u s u ds

g s u s u g s u s u
f t v t p t ds

h s u s u h s v s v k s u s u k s v s v



    
   
      





 

                    

 
 

0

0

| ( , ( )) ( , ( ))| | (0)|| ( ) | | ( ) | ( )

2 | ( , ( )) ( ,0) | | ( ,0) | ( )

| ( ) ( ) |
( ) (| (0) | || || )

| ( ) ( ) |

( ) | ( ) |
2 ( )

| ( ) |

(| (0) | || || ) | ( ) ( ) |

| ( ) (

t

f t u t f t v t p t p t h s ds

f t u t f t f t r t

u t v t
t p R

K u t v t

t v t
F r t

K v t

L p R u t v t

K u t vy t







  

  


 

 

 
  

 

 


 







02( ) ( )
) |

L F r t 

 (3.5)                              

Taking the limit superior as 𝑡 → ∞ in the above, we get 

                       
lim | ( ) ( )| 0
t

u t v t


   

Hence, there is a real number T > 0 such that  𝑢 𝑡 − 𝑣 𝑡  < ∈ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥  𝑇. Obviously, the solutions of 

problem(1.1) are uniformly globally attractive on 0I R
. 

 

 



Existence Theory For Quadratic Random Differential Equation 

*Corresponding Author:  D. S. Palimkar                                                                                                       5 | Page 

Acknowledgement 
The paper is outcome result of Minor Research Project funded by Swami Ramanand Teerth Marathwada 

University,Nanded[MS] India.        

                                                                                                                                                                                                                                                                                                                       

References 
[1]. J. Banas, B.C. Dhage, Global asymptotic stability of solutions of a functional integral equeations, Nonlinear Analysis 69 (2008), 

1945-1952. 
[2]. T.A. Burton, A fixed point theorem of Krasnoselskii, Appl.Math. Lett. 11(1998),85-88. 

[3]. T.A. Burton, B. Zhagng, Fixed points and stability of an integral equations: nonuniqueness,Appl. Math. Letters 17(2004), 839-846. 

[4]. T.A. Burton and T. Furumochi, A note on stability by Schauder’s theorem, Funkcialaji Ekvacioj 445(2001), 73-82. 
[5]. K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, 1985. 

[6]. B.C. Dhage, A nonlinear alternative with applications to nonlinear perturbed differential equiations, Nonlinear Studies, 13(4) 

(2006), 343-354. 
[7]. B.C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equation, Nonlinear Analysis 70 (5) (2009), 

1912-1922. 

[8]. B.C. Dhage,  Global attractivity result for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, 
Nonlinear Analysis 70 (2009), 2485-2493 

[9]. X. Hu, J Yan, The global attractivity and asymplotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl 

321(2006), 147-156. 


