Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 7 (2022) pp: 01-05 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Existence Theory for Quadratic Random Differential Equation

D. S. Palimkar

Department of Mathematics, Vasantrao Naik College, Nanded (M.S.) India

Abstract: In this paper, we investigate the first order quadratic random functional differential equation on unbounded intervals. We prove the existence and attractivity results of the solution using hybrid fixed point theory.

Keywords: Random differential equation, Random solution, Fixed point theory, global attractivity. 2000MathematicsSubjectClassifications:60H25,47H40,47N20.

Received 25 June, 2022; Revised 05 July, 2022; Accepted 07 July, 2022 © The author(s) 2022. Published with open access at www.questjournals.org

I. Introduction

Consider the following quadratic random functional differential equation on unbounded intervals,

Consider the following quadratic random functional differential equation on unbounded intervals,

\n
$$
\left[\frac{p(t, \omega)u(t, \omega)}{f(t, u(t, \omega), \omega)}\right] = g(t, u(t, \omega), u_t, \omega) + h(t, u(t, \omega), u_t, \omega) + k(t, u(t, \omega), u_t, \omega), \ a.e. t \in R_+
$$
\n(1.1)

Where $p \in CRB(R_+)$, $f: R_+ \times R \rightarrow R \setminus \{0\}$, $g: R_+ \times R \times C \rightarrow R$ and $h: R_+ \times R \times C \rightarrow R$.

 The problem(1.1)have been studied on closed and bounded intervals by many authors..The above problem (1.1) is not discussed on unbounded intervals .Here, we have discussed on unbounded intervals and prove the existence and attractivity results by application of hybrid fixed point theory.

II. Auxiliary Results

Let $I_0 = [-\delta, 0]$ be a closed , bounded interval in real line R for some real number $\delta > 0$ and let $J = I_0 \cup R_+$. We have use the following result for proving the main existence result.

Theorem2.1 (Dhage[10]). Let S be a non-empty, closed convex and bounded subset of the Banach algebra U **Theorem 2.1 (Diage [10]).** Let S be a non-empty, closed convex
and Let $A:U \rightarrow U$ and $B: S \rightarrow U$ be two operators such that

(i) $A(\omega)$ $A\big(\omega\big)$ is D-Lipschitz with D-function $\psi,$

(ii) $B(\omega) \ B(\omega)$ is completely continuous,
 $u = Au Bv \Longrightarrow u \in S$ *for all* $v \in S$ *, and*

(iii)
$$
u = Au B v \implies u \in S
$$
 for all $v \in S$, and

 (iv) $M \psi(t) < r$, where $M = ||B(S)|| = \sup{||Bu|| : u \in S}$

Then the operator equation Au $Bu = u$ has a solution in S.

We have needed following definitions.

Definition 2.1. The solutions of the operator equation $Qu(t) = u(t)$ are locally attractive if there exists a closed ball $\overline{B}_r(u_0)$ in $BC(I_0 \cup R_+, R)$ for some $u_0 \in BC(I_0 \cup R_+, R)$ such that for arbitrary solutions $u = u(t)$ *and* $v = v(t)$ of equation $Qu(t) = u(t)$ belonging to $\overline{B}_r(u_0)$.

In the case when the limit is uniform with respect to the set $\overline{B}_r(u_0)$, then say that solutions of equation $Qu(t)=u(t)$ are uniformly locally attractive on $I_0 \cup R_+$.

Definition 2.2. A solution $u = u(t)$ of equation $Qu(t) = u(t)$ is said to be globally attractive if $\lim_{t\to\infty} (u(t)-v(t))=0$ holds for each solution $v=v(t)$ of $Qu(t)=u(t)$ in $BC(I_0\cup R_+,R)$.

III. Main Result

Consider the following.

(A₁). There is a continuous function h:
$$
R_+ \to R_+
$$
 such that
for all $u \in R$ and $v \in C$. Also, let $\lim_{t \to \infty} |\overline{p}(t)| \int_0^t h(s)ds = 0$

 $(A_2)\phi(0) \ge 0$.

(A_3). The function $t \to f(t, 0, 0)$ is bounded on R_+ with $F_0 = \sup\{|f(t, 0, 0)| : t \in R_+\}.$ (A_4) . The function $f: R_+ \times R \to R$ is continuous and there exists a function $\ell \in BC(R_+, R)$ and a real number $K > 0$ such that

$$
K > 0 \text{ such that}
$$
\n
$$
| f(t, u) - f(t, v) | \ell(t) \frac{|u - v|}{K + |u - v|} \text{ for all } t \in R_+ \text{ and } u, v \in R \text{ also}
$$
\n
$$
\text{suppose } \sup_{t \ge 0} \ell(t) = L.
$$

$$
\lim_{(A_5)\, \longrightarrow\, \infty} \left[|f(t,u)| - f(t,v) \right] = 0 \text{ for all } u \in R.
$$

 $(A_6) \cdot f(0, \phi(0)) = 1$

 (A_7) . Suppose $u \to \frac{u}{f(0,u)}$ $u \rightarrow \frac{u}{\sqrt{u}}$ $f(0, u)$ $\rightarrow \frac{u}{\sqrt{u}}$ is injective.

Theorem 3.1. Suppose that (A_1) , (A_3) , (A_4) , (A_6) and (A_7)) holds. Further, assume that $L \max{\{\|\phi\|, |\phi(0)| \|\bar{a}\| + W\}} \leq K.$ (3.1)

Then problem (1.1) admits a solution and solution is uniformly globally attractive. **Proof.** Now, using hypotheses (A_6) and (A_7) it can be shown that the problem (1.1) is equivalent to the (*f*) ψ (*f*) ψ (*o*) ψ (*i*) ψ (*o*) ψ (*i*) ψ (*i*) ψ (*i*) admits a solution and solution is uniformly globally attractive.

Now, using hypotheses (*A*₆) and (*A*₇) it can be shown that the pro

Then problem (1.1) admits a solution and solution is uniformly globally attractive.
\n**Proof.** Now, using hypotheses
$$
(A_6)
$$
 and (A_7) it can be shown that the problem (1.1) is equivalent to
\nfunctional integral equation
\n
$$
u(t) = \begin{cases}\n\int [f(t, u(t))] \bigg(\phi(0) \overline{a}(t) + \overline{a}(t) \int_0^t [g(s, u(s), u_s) + h(s, u(s), u_s) + k(s, u(s), u_s)] ds \bigg), & \text{if } t \in R_+ \\
\phi(t), & \text{if } t \in I_0\n\end{cases}
$$
\n(3.2)

Set $U = BC(I_0 \cup R_+, R)$ and define a closed ball $\overline{B}_r(0)$ in U centered at origin of radius r given by $r = \max\{1, L + F_0\} \max \{\|\phi\|, |\phi(0)| \|\overline{a}\| + W\}$

Define the operators A, B on X,
$$
\overline{B}_r(0)
$$
 respectively by
\n
$$
Au(t) = \begin{cases} f(t, u(t)), & \text{if } t \in R_+ \\ 1, & \text{if } t \in I_0 \end{cases}
$$
\n(3.3)
\nAnd $Bu(t) = \begin{cases} \phi(0)\overline{p}(t) + \overline{p}\int_0^t [g(s, u(s), u_s) + h(s, u(s), u_s) + k(s, u(s), u_s)] ds, & \text{if } t \in R_+ \\ \phi(t), & \text{if } t \in I_0. \end{cases}$

$$
Au(t) = \begin{cases} 1, & \text{if } t \in \mathbb{R}^n, \\ 1, & \text{if } t \in \mathbb{R}^n, \\ \phi(t), & \text{if } t \in \mathbb{R}^n. \end{cases}
$$

Then the equation (3.2) is transforms

Then the equation(3.2) is transformed into the operator equation as
 $Au(t)Bu(t) = u(t), t \in I_0 \cup R_+$.

$$
Au(t)Bu(t) = u(t), \ t \in I_0 \cup R_+.
$$
\n
$$
(3.4)
$$

We have to Show that A and B satisfy all the conditions of Theorem 2.1 on $BC(I_0 \cup R_+, R)$ First we show that the operators A and B define the mappings $A: U \rightarrow U$ and $B: \overline{B}_r(0) \rightarrow U$. be arbitrary. Obviously, Au is a continuous function on $I_0 \cup R_+$. We show that Au is bounded on $I_0 \cup R_+$. Thus, if $t \in R_+$, then we obtain: $| I_1 |$ \in
 $| I_0$ (ous function on $I_0 \cup R_+$. We show that Au is bounded on I_0
 $| A u(t) | = | f(t, u(t)) | \le | f(t, u(t)) - f(t, 0) | + | f(t, 0) |$

$$
||f(t, u(t)) - f(t, 0)|| + |f(t, 0)|
$$

\n
$$
\leq \ell(t) \frac{|u(t)|}{K + |u(t)|} + F_0 \leq L + F_0
$$

Similarly,
$$
|Au(t)| \le 1
$$
 for all $t \in I_0$. Therefore, as supremum,
\n $|Au|| \le \max\{1, L+F_0\} = N ||Au|| \le \max\{1, L+F_0\} = N$

Thus Au is continuous and bounded on $I_0 \cup R_+$. As a result $Au \in U$. It can be shown that $Bu \in U$ and in particular, $A: U \rightarrow U$ and $B: \overline{B}_r(0) \rightarrow U$. We show that A is a Lipschitz on U. Let $u, v \in U$ be arbitrary.
Then, by hypothesis (A_3) ,
 $||Au - Av|| = \sup_{t \in I_0 \cup I_1} |Au(t) - Av(t)|$ Then, by hypothesis (A_3) ,

$$
||Au - Av|| = \sup_{t \in I_0 \cup I_+} |Au(t) - Av(t)|
$$

\n
$$
\leq \max \left\{ \sup_{t \in I_0} |Au(t) - Av(t)|, \sup_{t \in I_+} |Au(t) - Av(t)| \right\}
$$

\n
$$
\leq \max \left\{ 0, \sup_{t \in I_+} \ell(t) \frac{|u(t) - v(t)|}{K + |u(t) - v(t)|} \right\}
$$

\n
$$
\leq \frac{L ||u - v||}{K + ||u - v||}
$$

for all $u, v \in U$. This shows that A is a D-Lipschitz on U with D-function $\psi(r) = \frac{Lr}{\sigma}$ $K + r$ $=$ $\frac{m}{r}$ next, it can be shown that B is a compact and continuous operator on U and in particular on $\overline{B}_r(0)$ Next, we estimate the value of the constant M.By definition of M, as
 $|B(\overline{B}_r(0))|| = \sup \{ ||Bu|| : u \in \overline{B}_r(0) \}$ shown that B is a compact and continuous operator
value of the constant M.By definition of M, as
 $|B(\overline{B}_r(0))| = \sup \{ ||Bu|| : u \in \overline{B}_r(0) \}$

show that all B is a complete that continuous operator of D can be the constant M.By definition of M, as
\n
$$
|B(\overline{B}_r(0))| = \sup \{ ||Bu|| : u \in \overline{B}_r(0) \}
$$
\n
$$
= \sup \{ \sup_{t \in I_0 \cup I_+} |Bu(t)| : u \in \overline{B}_r(0) \}
$$
\n
$$
\leq \sup \{ \max \{ \sup_{t \in I_0} |Bu(t)|, \sup_{t \in I_+} |Bu(t)| \} \} : u \in \overline{B}_r(0) \}
$$
\n
$$
\leq \sup_{u \in \overline{B}_r(0)} \{ \max \{ ||\phi||, |\phi(0)||\overline{u}(t)| + \sup_{t \in I_+} |\overline{p}(t)| \} \int_0^t |g(s, u(s), u_s) + h(s, u(s), u_s) + k(s, u(s), u_s) | ds \} \}
$$
\n
$$
\leq \max \{ ||\phi||, |\phi(0))|| \overline{p} || + W \}
$$

, *Thus*

 $|| Bu || \le \max \left\{ || \phi ||, | \phi(0) | || \overline{p} | + W \right\} = M$ for all $u \in \overline{B}_r(0)$. Next, let $u, v \in U$ be arbitrary. Then,

$$
\begin{aligned}\n& Existence \text{ Theory For Quadr} \\
|u(t)| &\leq |Au(t)| \text{ } |Bv(t)| \\
&\leq ||Au|| ||Bv|| \\
&\leq ||A(U)|| ||B(\overline{B}_r(0))|| \\
&\leq \max \{1, L + F_0\} M \\
&\leq \max \{1, L + F_0\} \max \{||\phi||, |\phi(0)| ||\overline{p}|| + W\} \\
&= r\n\end{aligned}
$$

For all $t \in I_0 \cup R_+$. Therefore, we have:

For all
$$
t \in I_0 \cup R_+
$$
. Therefore, we have:
\n $||u|| \le \max\{1, L + F_0\} \max\{| |\phi||, |\phi(0)| || \overline{p}|| + W \} = r$

This shows that
$$
u \in \overline{B}_r(0)
$$
 and hypothesis (iii) of Theorem 2.1 is satisfied. Again,
\n
$$
M\phi(r) \le \frac{L \max\left\{ \|\phi\| \|\phi(0)\| \|\overline{p}\| + W \right\} r}{K + r} < r
$$

For r>0, because L max $\{ || \phi || | \phi(0) || || \overline{p} || + W \} \le K.$

Therefore, hypothesis (iv) of Theorem 2.1 is satisfied. Now we apply Theorem 2.1 to the operator equation Au Bu = u to yield that the problem (1.1) has a solution on $I_0 \cup R_+$ Moreover, the solutions of the problem(1.1) are in $\overline{B}_r(0)$ Hence, solutions are global in nature. $u = u$ to yield that the problem (1.1) has a solution on $I_0 \cup R_+$ Moreover, the solutions of the
 $m(1.1)$ are in $\overline{B}_r(0)$ Hence, solutions are global in nature.
 $v,$ let $u, v \in \overline{B}_r(0)$ be any two solutions of th

Finally, let $u, v \in \overline{B}_r(0)$ be any two solutions of the problem(1.1) on $I_0 \cup R_+$. Then

$$
A \cdot B \cdot U = u
$$
 to yield that the problem (1.1) has a solution on $I_0 \cup R_+$ Moreover, the solutions of the
problem(1.1) are in $\overline{B}_r(0)$ Hence, solutions are global in nature.
Finally, let $u, v \in \overline{B}_r(0)$ be any two solutions of the problem(1.1) on $I_0 \cup R_+$. Then

$$
|u(t)-v(t)| \leq |\int f(t, u(t))| \left(\phi(0)\overline{p}(t) + \overline{p}(t)\int_0^t [g(s, u(s), u_s) + h(s, u(s), u_s)] + k(s, u(s), u_s) ds\right) - [\int f(t, v(t))] \left(\phi(0)\overline{p}(t) + \overline{p}(t)\int_0^t [g(s, v(s), v_s) + h(s, v(s), v_s)] + k(s, u(s), v_s) ds\right)
$$

$$
\leq |f(t, u(t)) - f(t, v(t))| \left(\phi(0)\overline{p}(t) + \overline{p}(t)\int_0^t [g(s, u(s), u_s) + h(s, u(s), u_s)] + k(s, u(s), u_s) ds\right)
$$

$$
+ |f(t, v(t))| \left(\overline{p}(t)\int_0^t \left[\left[g(s, u(s), u_s) - g(s, u(s), u_s)\right] - [k(s, u(s), u_s) - k(s, v(s), v_s)\right] ds\right]
$$

$$
\leq |f(t, u(t)) - f(t, v(t))| \left(|\phi(0)||\overline{p}(t)| + |\overline{p}(t)||_0^t h(s) ds\right)
$$

+2[|f(t, u(t)) - f(t, 0)| + |f(t, 0)||r(t)|

$$
\leq \Gamma(t) \frac{|u(t) - v(t)|}{K + |u(t) - v(t)|} (|\phi(0)||\overline{p}|| + R)
$$
 (3.5)
+2
$$
\frac{\Gamma(t) |v(t)|}{K + |v(t)|} + F_0 \frac{r(t) |v(t)|}{K + |v(t)|} + F_0
$$

$$
+2\left[\frac{C(t)|v(t)|}{K+|v(t)|} + F_0\right]r(t)
$$

\n
$$
\leq \frac{L(\left|\phi(0)\right| \left|\left|\frac{p}{p}\right|\right| + R) |u(t) - v(t)|}{K+|u(t) - vy(t)|} + 2(L+F_0)r(t)
$$

\nsuperior as $t \to \infty$ in the above, we get

Taking the limit s $\lim_{t\to\infty} |u(t) - v(t)| = 0$

$$
\lim_{t\to\infty} |u(t)-v(t)|
$$

Hence, there is a real number $T > 0$ such that $|u(t) - v(t)| < \epsilon$ for all $t \geq T$. Obviously, the solutions of problem(1.1) are uniformly globally attractive on $I_0 \cup R_+$.

Acknowledgement

The paper is outcome result of Minor Research Project funded by Swami Ramanand Teerth Marathwada University,Nanded[MS] India.

References

- [1]. J. Banas, B.C. Dhage, Global asymptotic stability of solutions of a functional integral equeations*,* Nonlinear Analysis 69 (2008), 1945-1952.
- [2]. T.A. Burton, A fixed point theorem of Krasnoselskii, Appl.Math. Lett. 11(1998),85-88.
- [3]. T.A. Burton, B. Zhagng, Fixed points and stability of an integral equations: nonuniqueness,Appl. Math. Letters 17(2004), 839-846.
- [4]. T.A. Burton and T. Furumochi, A note on stability by Schauder's theorem, Funkcialaji Ekvacioj 445(2001), 73-82.
- K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, 1985.
- [6]. B.C. Dhage, A nonlinear alternative with applications to nonlinear perturbed differential equiations, Nonlinear Studies*,* 13(4) (2006), 343-354.
- [7]. B.C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equation, Nonlinear Analysis 70 (5) (2009), 1912-1922.
- [8]. B.C. Dhage, Global attractivity result for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Analysis 70 (2009), 2485-2493
- [9]. X. Hu, J Yan, The global attractivity and asymplotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl 321(2006), 147-156.