Volume 8 ~ Issue 7 (2022) pp: 18-20

ISSN(Online): 2394-0743 ISSN (Print): 2394-0735

Research Paper

K-EQUIDISTANT SETS OF HYPERCUBES

Eric Choi and Anthony Delgado

ABSTRACT

A *k*-equidistant set, S_k , of a graph is a subset of three or more vertices such that if x and y are distinct vertices in S_k , then the distance, d(x,y) = k. The hypercube, Q_n , is defined by $Q_1 = K_2$, and $Q_{n+1} = Q_n \times K_2$. Results on k-equidistant sets of Q_n are presented. In particular, given a hypercube, Q_n , where $n = 2^m$, we develop a matrix algorithm for determining k-equidistant sets, where $k = 2^{m-1}$.

Received 25 June, 2022; Revised 05 July, 2022; Accepted 07 July, 2022 © The author(s) 2022. Published with open access at www.questjournals.org

We follow the notation of [1]. A *k*-equidistant set, S_k , of a graph is a subset of three or more vertices such that if x and y are distinct vertices in S_k , then the distance, d(x,y) = k. The hypercube, Q_n , is defined by $Q_1 = K_1$, and $Q_{n+1} = Q_n \times K_2$. Hypercubes are important for massively parallel computing, error-correcting codes, and other topics in computer science. They are the subject of much research. See [2, 3, ..., 6]. Throughout this paper, $S_k \subset V(Q_n)$.

Theorem 1: Given $S_k \subset V(Q_n)$, then k must be even.

Proof: Proceeding by contradiction, assume k is odd. Given $v_1, v_2, v_3 \in S_k$, since k is odd and hypercubes are bipartite, v_1 and v_2 must have opposite color. Assume, WLOG, that v_1 is black and v_2 is white. This implies that v_3 , which is a distance of k away from both v_1 and v_2 , cannot be either black or white, which is impossible. (Note that Theorem 1 applies to a k-equidistant set in any bipartite graph.) \square

Theorem 2: Given $S_k \subset V(Q_n)$, then $n \ge \frac{3}{2}k$.

Proof: We will use binary strings of length n for vertex labels in Q_n . Let the label of $v_1 \in S_k$ consist of n '0's. Clearly, for $i \ge 2$, v_i has k '1's. For $r, s \ge 2$, place disagreements between v_r and v_s are of two types. (1) v_r has a 0 in the same place in which v_s has a 1, and (2) v_r has a 1 in the same place in which v_s has a 0. Let D be the number of disagreements of type (1). Since v_r and v_s have the same number of 1's, the number of disagreements of type (2) must also be v_r . Hence we have $d(v_r, v_s) = k = 2D \implies D = \frac{k}{2} \in \mathbb{N}$ (since k is even). Then each of v_r and

 v_5 have k '1's and n-k '0's, and we need $n-k \ge D = \frac{k}{2}$ which implies that $n \ge \frac{3}{2}k$. \square

Theorem 3: Let f(n,k) be the maximum size of S_k in Q_n . Then $\frac{2n}{k} \le f(n,k) < \binom{n}{k} + 1$.

Proof: We will concatenate two kinds of "horizontal" vectors to yield the binary labels of the vertices of S_k in Q_n . [0] represents $\frac{k}{2}$ "0"s, and [1] represents $\frac{k}{2}$ "1"s. It is clear by inspection that the rows in matrix A below are binary labels of vertices in S_k :

$$A = \begin{pmatrix} [0] & [0] & [0] & \cdots & [0] \\ [1] & [1] & [0] & \cdots & [0] \\ [1] & [0] & [1] & \cdots & [0] \\ \vdots & \vdots & \vdots & \ddots & [0] \\ [1] & [0] & [0] & \cdots & [1] \end{pmatrix}$$

For $i \ge 2$, the *i*-th row starts with a [1] vector, and the *i*-th vector is [1]. (The remaining vectors

are [0]'s.) Since the number of columns (of vectors) in
$$A$$
 is $\left\lfloor \frac{n}{\left(\frac{k}{2}\right)} \right\rfloor = \left\lfloor \frac{2n}{k} \right\rfloor$, and the vectors

in A as depicted above using bracketed entries, give it the "appearance" of a square matrix,

$$\left\lfloor \frac{2n}{k} \right\rfloor$$
 equals the number of rows (and therefore, vertex addresses, of S_k) in A . Hence $\left\lfloor \frac{2n}{k} \right\rfloor \le$

f(n, k). On the other hand, $f(n, k) < \binom{n}{k} + 1$, which is the total number of addresses with k '1's plus the one address with n '0's. \square

Lemma: Let $\overline{v_i}$ denote the *antipode* of v_i (also called the *binary complement* of v_i). Suppose for $v_i, v_j \in Q_n$ we have $d(v_i, v_j) = k$. Then $d(\overline{v_i}, v_j) = n - k$.

Proof: If $d(v_i, v_j) = k$, then v_i and v_j must disagree in k places in their addresses. Since $\overline{v_i}$ disagrees with v_i in all places, $\overline{v_i}$ agrees with v_j in n - k places, that is, $d(\overline{v_i}, v_j) = n - k$. \square

Corollary: When
$$d(v_i, v_j) = k = \frac{n}{2}$$
, we have $n - k = k$, implying $d(v_i, v_j) = d(\overline{v_i}, v_j)$. \square

Theorem 4: Given Q_n , where $n = 2^m$ and $m \ge 2$, let $k = 2^{m-1}$. Then there exists a k-equidistant set, S_k , such that $|S_k| = n$.

Proof: By construction. $S_{2^{m-1}}$ can be constructed recursively using square submatrices.

Initial Case:
$$n = 4$$
. Then $m = \log_2 n = 2$ and $k = 2^{m-1} = 2$. Let $B_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$. The rows

of B_2 yield a 2-equidistant set with n=4 elements.

Generating Scheme: Let $B_{m+1} = \begin{pmatrix} B_m & B_m \\ B_m & \overline{B_m} \end{pmatrix}$, where $\overline{B_m}$ is the binary complement of B_m .

Example:
$$n = 8$$
. Then $m = \log_2 n = 3$ and $k = 2^{m-1} = 4$. Let $B_3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$

Verify that the rows of B_3 yield a 4-equidistant set in Q_8 with n=8 elements. Note that the lower right 4×4 submatrix guarantees that the eight rows are distinct and that the place disagreements between any two distinct rows is 4. Continuing in this manner, we obtain k-equidistant sets, S_k , in Q_n , such that $n=2^m$, $k=2^{m-1}$, and $|S_k|=n$.

We use induction to show that the above recursion generates $S_{2^{n-1}}$ in Q_n . The base case is the Initial Case above for Q_4 .

Inductive Leap: Given rows v_i, v_j in B_m , $d(v_i, v_j) = k = 2^{m-1}$ by the inductive assumption, let

$$B_{m+1} = \begin{pmatrix} B_m & B_m \\ B_m & \overline{B_m} \end{pmatrix}$$
. Since $\overline{B_m}$ is the binary complement of B_m , every row in B_{m+1} is obtained

by concatenating a vertex in B_m with itself or with its antipode, thereby doubling its length. For $1 \le j \le n$, designate these concatenations $v_j * v_j$ and $v_j * \overline{v_j}$, respectively. Note that any pair of rows in B_{m+1} is of one of three cases:

- (1) $v_i * v_i$ and $v_i * v_j$, $i \neq j$; both concatenated vectors are rows of the upper half of B_{m+1} .
- (2) $v_i * \overline{v_i}$ and $v_j * \overline{v_j}$, $i \neq j$; both concatenated vectors are rows of the lower half of B_{m+1} .
- (3) $v_i * v_i$ and $v_i * \overline{v_i}$; the concatenated vectors are from different halves of B_{m+1} .

Then we have

- (1) $d(v_i * v_i, v_i * v_i) = d(v_i, v_i) + d(v_i, v_i) = 2d(v_i, v_i) = 2k$.
- (2) $d\left(v_i * \overline{v_i}, v_j * \overline{v_j}\right) = d\left(v_i, v_j\right) + d\left(\overline{v_i}, \overline{v_j}\right) = 2d\left(v_i, v_j\right) = 2k$, since $d\left(\overline{v_i}, \overline{v_j}\right) = d\left(v_i, v_j\right)$.
- (3) $d(v_i * v_i, v_j * \overline{v_j}) = d(v_i, v_j) + d(v_i, \overline{v_j}) = 2d(v_i, v_j) = 2k$, using the Corollary. \square

References

- [1] F.Buckley, M.Lewinter, A Friendly Introduction to Graph Theory. Prentice-Hall, 2003.
- [2] M.Gargano, M.Lewinter, J.Malerba, Hypercubes and Pascal's triangle: A tale of two proofs. Math. Magazine, Vol.76, 3 (216-217) 2003.
- [3] A.Delgado, M.Gargano, M.Lewinter, et al, Subcubes of Hypercubes. Cong. Num. 189, (25-32) 2008.
- [4] A.Delgado, M.Lewinter, L.Quintas, Equipartition sets of hypercubes II, Bulletin of the ICA, 63, (2011), 51-59.
- [5] D.Aulicino, F.Harary, M.Lewinter, Embedding k-dimensional meshes in hypercubes. GTN of NY XXXVII (51-53) 1999.
- [6] D.Aulicino, M.Lewinter, k-equidistant sets of Q_n . GTN of NY XXXVI (17-19) 1999.