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Abstract

The Fibonacci sequence. {ux}. is defined by: wo=0, w1=1 and u, ., =u, +1 . The Perrin

sequence, {Pyn}.1s defined by: Po=3, P1=0, P:=2, and .F:H_3 = f:_ +P

n+l "

We compare and

contrast these important sequences in this largely expository article.
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The Fibonacci Sequence
The Fibonacei sequence, {uy}. is defined by: up =0, w3 = 1, and U, =U +U_,. The first few

Fibonacei numbersare 0,1, 1, 2, 3, 5, 8, 13,21, 34, 55, 89, 144, 233, 377, and 610. The following

identities are quite interesting.

1. ged(up,ups1) =1
2. @utwmt.. Fup=upn—1 (byur tus+ .. Fup-r = (uatus+ . Fup=uyq — 1
3. ul+w? + w4 = untinn

4. Binet formula: un = %[[1 i Jg] —{1 — Jg] }: where

2 2

1-45

2

‘c:l.

2 1ot

1 .
5. Forlarge n, u, = ﬁé”.where ¢:l+"l§:1+ ! . ¢disarootof A2-1-1=0.
tn® = gttty = (1)
() tnrin = Un-ilin + tmtinst (D) tnst” — 1> = 120 (€) Untt” + tn® = Uyt

Letnzm=3. Then um | unif and only if m | n.

o o = O

Let p be prime such that p # 5. Then eitherp | up-1 or p|upt1. Whenp =5, we havep | us.

. 0 1 ”n u:ﬂ—l. u:n+l u:u . .
Proof of #6: Verify that L1 = . The determinant of a product of

It:|+l un : I‘:|+2 Hlﬂ'l,

square matrices is the product of their determinants. So

u u

U u
n n—1 n+l n
X = (tn® — tn1tin+1) = Uns12 — lnlinsd

01
11

Hyn iy Uy Upy
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Letting F(n) = un® — tn—1un~1. our last equation (exchanging the left and right sides) becomes

F(n+1) = —F(n). Now F(1) = uy® — uouz = 1. implying that F(n) = (—1)""!. Done! Note that the

—A 1 5
7 ! +2J_ and

o 1 R
1 1-1 =0.0r A-—A—1=0. The roots are
—-A

characteristic equation of l ) l‘ is

. the heroes of the Binet equation!

1-+/5
2

The Fibonacei sequence. {#,}. may be extended for negative values of n by rewriting the recursive

relationas u, =u, , —u, . Wehave

u_y =y —uy =1-0=1 Uy =U,—U;=—1-2=-3
Uy =ty —ti_y =0-1=-1 U_s=U_y—U,=2—(-3)=5
Uy = —U,=1-(-1)=2 U =U,—U,=-3-5=-8

Fact: Formn<0.u, = (—1)1_”r.'_n. That is, the signs strictly alternate. and |u,| = u_y.

Proof: The Fact is true for the first few (negative) values of n. Assume that u, = (—1)!7"u_, and

tino1 = (=1 "u_y+1. Then by the recursion.

tp— = tin — tp—1 = (—1) My — (12 My = (1) "oy — (—Dtipe1] = (D) [tmn + tep1] =
(—1}1_”[N|,,| R (—1)1_”3.' =2 = (—1}1_"1{_,,—2 = (—1)1_”;.f3_,,.
The Perrin Sequence
The Perrin sequence, {Py}. is defined by:

Py=3 P =0 Py=1 P.=P+P,

The first few Perrinnumbersare 3 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 90 119. The
bold-font values have prime indices.

Fact: Given any prime number, p. we have p | Pp.

Examples: 2|2 3|3 5|5 7|7 11]22 13|39 17]119

A composite number, n. for which n | Pn. is called a Perrin psendoprime. The smallest Perrin

pseudoprime is 271441,
For n = 3. P, counts the number of maximal independent sets of the eycle. Cy.

Consider the matrix-vectorequation

0 1 U\_n ,.«3\[ i 1}” \.{
0 0 1 0 ,—l P | )
11 0} 2) \pP,)

.

When n = 0. the matrix is the identity. so (*) yields our three initial values. That is,
(31 (&)
lo|=|R|
| ] | |
l2) \m )
When n = 1. (¥*) becomes
(0 1 0Yy3) (0 (R
o o0 1'0'—[2'—‘1’.‘,‘
| | | -
11 o)l2) (3) \B)
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As a consequence of (*), we have

. N . 1

(010 (302 (B By Ba 010 A |B By Ba

001 [023=By By By| =10 01 <o 2 3=B, B, B,
| | | |
110 (23 2) 2, By B 110 ) |p. 2. B,

E Fa Eu
- B B Ba|=-23 (**)
B, B, B,
01 0 3 0 2 . R
since (0 0 1{=1and |0 2 3=3; +2 ;=3(—5}+2(—4)=—33. Done!
1 10 23 2 - -
01 0 -4 1 0
To find the characteristic equation of |0 0 1|, we evaluate |0 -4 1| by cofactor
1 1 0) |
expansion around the firstrow. obtaining
410 o1 o1
—A -
0 -2 1|=-=-24 _—1‘ _‘:x:(k—l}—l:,a}—,i—l
; 1 —A 1 -
1 1 —A

A7 —A—1 1s an example of a depressed cubic, since it 1s missing a square term, and its leading

coefficientis 1. The discriminant of the depressed cubic, x3 +bx + ¢, is —4b* —27¢%. The depressed

cubic has a repeated root if and only if the discriminant is 0. The discriminant of A* —A—1 is

—4(—1)> = 27(=1)>=4 — 27 = -23. so the roots are distinct. (The identity (**) features —23.)

Let the (distinct) roots of 13— 4 — 1 be r. 5. and f. where

r= Jg_“sg L 322N 13047

18 18

5= —.66236—.56228{ = —.662136 +.56228{

(s and f are complex conjugates.) Then we have a formula for P,,. reminiscent of the Binet formula

for the Fibonacci numbers. namely

B =¢"+s5"+1t"

. . . N
Since |s| <1 and |rf| < 1. we see that as n gets large, P, = #", implying that ]]mf =r.
n—sam

. ... P . .
Here is another way to obtain lim ;;1 = . where r is the real solutionof ¥* —x—-1=0.

m—san

P, P, P,
P”—S :}3" +E.+1 :> n+3 _ LI nsl j +3 n_ —nsl , Tnsl
R:—l R‘I+2 PM—Z Rl—l PFHl Pn—2 'PN—Z
Letting lim ===~ = x| the last equation above becomes
11 1 1 1 1 1
X=—r—4—=—g+ = x=—+ = xX¥=l+x = x-x-1=0 Done!
X X X X X xX° X
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Fact: r=—2re(s)

Proof: Since P, =p"+5"+¢", we have r + 5+t =P; = 0. Since 5 and ¢ are complex conjugates,

0=r+s+r=r+2re(s), so r=—2re(s).

Interesting Formula for »: = {/1— \il 1+1+3f1+--

Heuristic Proof: Assuming that the right side converges. we can rewrite it as » = 4f1 +r which

becomes ¥*=1+r,orr’ —r—1=0.

Fact: Po+P1+Py+ ... +Py=Pyy+ Ppys — 2

Example: Whenn =4, Pp+P1+Pr+ P3+ Py=Pg+P7;—2.0or3+0+2+3+2=5+7-12.
Now insert,

Proof: Let’s rewrite the recursive equation, P, =P +P_  .as P=P . —-P ..

successively, the values 0, 1, 2, ..., n, vielding the n + 1 equations
Py=P;— P
Pi=Py—P
Py=Ps—P;
F,=F.,-F,
F.,=F,—F,

F,=F;-F,

Adding the left and right sides of these equations and cancelling all but a few terms on the

right-side sum confirms the Fact. (This is called felescoping.) Using telescoping, we also have:
(1) Po+ P2+ Ps+ ...+ Pig=Pus3 (2) P1+P;s+Ps+ ... +Py1 =Puya—2
Fact: Py + Ppra = Pys2 + Pyss

Proof: Leta. b, c. a+ b. b+ ¢ be five consecutive Perrin numbers starting with Pn. That is.

a = Pn. b= Pn+1. etc. Then Pn+ Ppta =a + (b + ¢), while Pp+2 + Prsa =c¢ + (a + b). Done.

Fact: Forn=5, Ay=P,— Py 1= P, s.
Proof: This istrue for n=35, 6, and 7. That is, (1) Ps — P4 = Pp and (2) Ps — Ps = P1. Then add
these two equations to obtain Ps — Py =P;. Now P;—Pg=P3, thatis,7-5=2. So Py—Pp1=

Py sistrueforn =35, 6. 7, and 8. Now generalize this inductive procedure forall n > 5. Done.

Fact 1: Given any k. we have: ‘}3}‘ —-B,+EB.,—-B =—P}M| .

Proof: B -B,+R.,~B=R +By)-(Bu+B.)=Bys—Ba=-FR.

21 i
Fact 2: Given g =3, we have: Z(—l}*sz == Py
k=0 =
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Proof: The series on the left side of the equality has 27 terms. so it can be partitioned into

2° . .
i 27 sums which we evaluate using Fact 1, as follows.

1% sum: Py—Py+ Py— Ps=—Py= —Poys+4

2% sum: Pg— Py + Py — P1a=—P13 =P+

3@ sum: Pig— Pig + Py — Py = —Pa=—P+

—2 . ’ - —
207 sum: ‘Ffzﬂ-?_n}a - I_;zﬁ—um + ‘F{_'z“'* 1)ge4 T P[’_ | ‘Fr 2-2_1)g-4
r- b
Adding both sides of these equations yields > (-)'R, =— > PBy., . Using a similar argument
=0 =0
we have Fact 3.
e | ¥
Fact 3: Given a =3, we have: Z (—l)kgh_l =— Z E,.;
k=0 k=0
2
Proof: Using Facts 2 and 3, we have ZP*;E* =F —I—}31'4!'+P2i2...+1‘}2,,_14!'2‘1_1 =
k=0
»3q . 2 .
(B-B+Bt BB )+(R-B 4Bt BB )i = 3 (D Byoi 3 (DB,
p= =0

| e 21 _
= - Z Ry —1 Z Byis = — Z (-PBH4_I:§J:+SE-,}'
k=0 k=0 k=0

Fact: P, + Pys1 + Pyoo = Pyas.
Proof: Py:s= Ppa+ Pys3 = Ppaa + (Pp+ Ppe1) = Py + Pyt + Py

Perrin numbers with negative indices are obtained by working backwards. We rewrite the

recursion, P, =P +P  , as m Forn=-1.,we have P.1 =P, —Py=2-3=-1,
and for n =-2, we have Po=P1—P-1=0—(-1)= 1. Here are the first few Perrin numbers with
negative indices: P.y=-1, Py=1,P3=2,P4=-3, P5=4 Pg=-2, P7=-1, Pg=35,
Po=-7 P 19=6, P.;1=-1.

=3 4-n
Forn>1, B, = Z P,=P,+P,+.+P ;. Forn< I'P:j':z}:)_m =P,+P,+P,++P_ .
MHe=—3 M=

Non-linear Identities: (1) P, = P’ -2P, (2) Puins1= PPyt + Pi-n (3) Pan= P} — 3PP, +3

Examples: Forn=3, (1) Ps=P;’—2P3. or 5=32-2:2: (2) P;=P;Py+Pj or7=32+1;
and (3) Po=P3® —3P3P3+3,0r 12=33-3-3-2+3.

Surprising Fact: When p is prime, P, = -1 (mod p).
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Examples: P,=1=-1(mod2), P3=2=-1(mod3), P5=4=-1(mod5), P.3=-1 (mod 7),
and P11 =-1 (mod 11).

The Perrin sequence, mod 3, starts® 0 2 0 2 2 2 1 1 02 1 2 0 0 2 ... The last three
numbers (in bold font) are identical to the first three numbers, so the period of the Perrin numbers,
mod 3, consists of the thirteenvalues, 0 0 2 02 22 1 10 2 1 2. The period lengthis 13.
Out of every thirteen Perrin numbers, six are 2 (mod 3). Note that we can obtain the Perrin
sequence mod 3, by applying the recursive relation directly from the revised seed, 0 0 3 provided

that we reduce our sums mod 3.
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