Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 8 (2022) pp: 07-12 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

A Tale of Two Sequences: Fibonacci and Perrin

Eric Choi, Anthony Delgado, Marty Lewinter, Derek Tan

Abstract

The Fibonacci sequence, $\{u_n\}$, is defined by: $u_0 = 0$, $u_1 = 1$, and $u_{n+2} = u_n + u_{n+1}$. The Perrin sequence, $\{P_n\}$, is defined by: $P_0 = 3$, $P_1 = 0$, $P_2 = 2$, and $P_{n+3} = P_n + P_{n+1}$. We compare and contrast these important sequences in this largely expository article.

Received 02 August, 2022; Revised 14 August, 2022; Accepted 16 August, 2022 © The author(s) 2022. Published with open access at www.questjournals.org

The Fibonacci Sequence

The Fibonacci sequence, $\{u_n\}$, is defined by: $u_0 = 0$, $u_1 = 1$, and $u_{n+2} = u_n + u_{n+1}$. The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, and 610. The following identities are quite interesting.

- 1. $gcd(u_n, u_{n+1}) = 1$
- 2. (a) $u_1 + u_2 + ... + u_n = u_{n+2} 1$ (b) $u_1 + u_3 + ... + u_{2k-1} = u_{2k}$ (c) $u_2 + u_4 + ... + u_{2k} = u_{2k+1} 1$
- 3. $u_1^2 + u_2^2 + u_3^2 + \ldots + u_n^2 = u_n u_{n+1}$

4. Binet formula:
$$
u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]
$$
, where $\left| \frac{1 - \sqrt{5}}{2} \right| < 1$.

5. For large *n*,
$$
u_n \approx \frac{1}{\sqrt{5}} \phi^n
$$
, where $\phi = \frac{1 + \sqrt{5}}{2} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}}$, ϕ is a root of $\lambda^2 - \lambda - 1 = 0$.

- 6. $u_n^2 u_{n+1}u_{n-1} = (-1)^{n+1}$
- 7. (a) $u_{m+n} = u_{m-1}u_n + u_m u_{n+1}$ (b) $u_{n+1}^2 u_{n-1}^2 = u_{2n}$ (c) $u_{n+1}^2 + u_n^2 = u_{2n+1}$
- 8. Let $n \ge m \ge 3$. Then $u_m | u_n$ if and only if $m | n$.
- 9. Let p be prime such that $p \neq 5$. Then either $p \mid u_{p+1}$ or $p \mid u_{p+1}$. When $p = 5$, we have $p \mid u_5$.

Proof of #6: Verify that $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u_n & u_{n-1} \\ u_{n+1} & u_n \end{pmatrix} = \begin{pmatrix} u_{n+1} & u_n \\ u_{n+2} & u_{n+1} \end{pmatrix}$. The determinant of a product of

square matrices is the product of their determinants. So

$$
\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \times \begin{vmatrix} u_n & u_{n-1} \\ u_{n+1} & u_n \end{vmatrix} = \begin{vmatrix} u_{n+1} & u_n \\ u_{n+2} & u_{n+1} \end{vmatrix} \implies - (u_n^2 - u_{n-1}u_{n+1}) = u_{n+1}^2 - u_n u_{n+2}
$$

Letting $F(n) = u_n^2 - u_{n-1}u_{n+1}$, our last equation (exchanging the left and right sides) becomes $F(n+1) = -F(n)$. Now $F(1) = u_1^2 - u_0 u_2 = 1$, implying that $F(n) = (-1)^{n+1}$. Done! Note that the characteristic equation of $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ is $\begin{vmatrix} -\lambda & 1 \\ 1 & 1-\lambda \end{vmatrix} = 0$, or $\lambda^2 - \lambda - 1 = 0$. The roots are $\frac{1+\sqrt{5}}{2}$ and

 $\frac{1-\sqrt{5}}{2}$, the heroes of the Binet equation!

The Fibonacci sequence, $\{u_n\}$, may be extended for negative values of *n* by rewriting the recursive relation as $u_n = u_{n+2} - u_{n+1}$. We have

$$
u_{-1} = u_1 - u_0 = 1 - 0 = 1
$$

\n
$$
u_{-2} = u_0 - u_{-1} = 0 - 1 = -1
$$

\n
$$
u_{-3} = u_{-1} - u_{-2} = 1 - (-1) = 2
$$

\n
$$
u_{-4} = u_{-2} - u_{-3} = -1 - 2 = -3
$$

\n
$$
u_{-5} = u_{-3} - u_{-4} = 2 - (-3) = 5
$$

\n
$$
u_{-6} = u_{-2} - u_{-3} = -3 - 5 = -8
$$

Fact: For $n \le 0$, $u_n = (-1)^{1-n}u_{-n}$. That is, the signs strictly alternate, and $|u_n| = u_{-n}$.

Proof: The Fact is true for the first few (negative) values of *n*. Assume that $u_n = (-1)^{1-n} u_{-n}$ and $u_{n-1} = (-1)^{2-n} u_{-n+1}$. Then by the recursion,

$$
u_{n-2} = u_n - u_{n-1} = (-1)^{n-1} u_{n-1} - (-1)^{n-1} u_{n-1} = (-1)^{n-1} [u_{n-1} - (-1) u_{n+1}] = (-1)^{n-1} [u_{n-1} + u_{n-1}] = (-1)^{n-1} [u_{n-1} + u_{n-1}] = (-1)^{n-1} [u_{n-1} + u_{n-1}] = (-1)^{n-1} u_{n-1} = (-1
$$

The Perrin Sequence

The Perrin sequence, $\{P_n\}$, is defined by:

$$
P_0 = 3 \t P_1 = 0 \t P_2 = 2 \t \overline{P_{n+3} = P_n + P_{n+1}}
$$

The first few Perrin numbers are 3 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 90 119. The bold-font values have prime indices.

Fact: Given any prime number, p, we have $p \mid P_p$.

A composite number, n, for which $n | P_n$, is called a *Perrin pseudoprime*. The smallest Perrin pseudoprime is 271441.

For $n \geq 3$, P_n counts the number of maximal independent sets of the cycle, C_n .

Consider the matrix-vector equation

$$
\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{n} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} P_n \\ P_{n+1} \\ P_{n+2} \end{pmatrix}
$$
 (*)

When $n = 0$, the matrix is the identity, so (*) yields our three initial values. That is,

$$
\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} P_0 \\ P_1 \\ P_2 \end{pmatrix}
$$

When $n = 1$, (*) becomes

$$
\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix}
$$

As a consequence of (*), we have

$$
\begin{pmatrix}\n0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0\n\end{pmatrix}^n\n\begin{pmatrix}\n3 & 0 & 2 \\
0 & 2 & 3 \\
2 & 3 & 2\n\end{pmatrix} =\n\begin{pmatrix}\nP_n & P_{n+1} & P_{n+2} \\
P_{n+1} & P_{n+2} & P_{n+3} \\
P_{n+2} & P_{n+3} & P_{n+4}\n\end{pmatrix}\n\implies\n\begin{pmatrix}\n0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0\n\end{pmatrix}^n\n\times\n\begin{pmatrix}\n3 & 0 & 2 \\
0 & 2 & 3 \\
2 & 3 & 2\n\end{pmatrix} =\n\begin{pmatrix}\nP_n & P_{n+1} & P_{n+2} & P_{n+3} \\
P_{n+2} & P_{n+3} & P_{n+4}\n\end{pmatrix}
$$
\n
$$
\implies\n\begin{vmatrix}\nP_n & P_{n+1} & P_{n+2} \\
P_{n+1} & P_{n+2} & P_{n+3} \\
P_{n+2} & P_{n+3} & P_{n+4}\n\end{vmatrix} = -23
$$
\n
$$
\text{since }\n\begin{vmatrix}\n0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0\n\end{vmatrix} = 1 \text{ and }\n\begin{vmatrix}\n3 & 0 & 2 \\
0 & 2 & 3 \\
2 & 3 & 2\n\end{vmatrix} = 3\n\begin{vmatrix}\n2 & 3 \\
3 & 2\n\end{vmatrix} + 2\n\begin{vmatrix}\n0 & 2 \\
2 & 3\n\end{vmatrix} = 3(-5) + 2(-4) = -23. \text{ Done!}
$$

To find the characteristic equation of $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, we evaluate $\begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix}$ by cofactor

expansion around the first row, obtaining

$$
\begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -\lambda \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda(\lambda^2 - 1) - 1 = \lambda^3 - \lambda - 1
$$

 $\lambda^3 - \lambda - 1$ is an example of a *depressed cubic*, since it is missing a square term, and its leading coefficient is 1. The discriminant of the depressed cubic, $x^3 + bx + c$, is $-4b^3 - 27c^2$. The depressed cubic has a repeated root if and only if the discriminant is 0. The discriminant of $\lambda^3 - \lambda - 1$ is $-4(-1)^3 - 27(-1)^2 = 4 - 27 = -23$, so the roots are distinct. (The identity (**) features -23.)

Let the (distinct) roots of $\lambda^3 - \lambda - 1$ be r, s, and t, where

$$
r = \sqrt[3]{\frac{9 + \sqrt{69}}{18}} + \sqrt[3]{\frac{9 - \sqrt{69}}{18}} \approx 1.3247
$$
 $s \approx -.66236 - .56228i$ $t \approx -.66236 + .56228i$

(s and t are complex conjugates.) Then we have a formula for P_n , reminiscent of the Binet formula for the Fibonacci numbers, namely

$$
P_n = r^n + s^n + t^n
$$

Since $|s| \le 1$ and $|t| \le 1$, we see that as *n* gets large, $P_n \approx r^n$, implying that $\lim_{n \to \infty} \frac{P_{n+1}}{P_n} = r$.

Here is another way to obtain $\lim_{n \to \infty} \frac{P_{n+1}}{P_n} = r$, where r is the real solution of $x^3 - x - 1 = 0$.

$$
P_{n+3} = P_n + P_{n+1} \qquad \Longrightarrow \qquad \frac{P_{n+3}}{P_{n+2}} = \frac{P_n}{P_{n+2}} + \frac{P_{n+1}}{P_{n+2}} \qquad \Longrightarrow \qquad \frac{P_{n+3}}{P_{n+2}} = \frac{P_n}{P_{n+1}} \cdot \frac{P_{n+1}}{P_{n+2}} + \frac{P_{n+1}}{P_{n+2}}
$$

Letting $\lim_{n \to \infty} \frac{P_{n+1}}{P_n} = x$, the last equation above becomes

$$
x = \frac{1}{x} \cdot \frac{1}{x} + \frac{1}{x} = \frac{1}{x^2} + \frac{1}{x} \implies x = \frac{1}{x^2} + \frac{1}{x} \implies x^3 = 1 + x \implies x^3 - x - 1 = 0 \quad \text{Done!}
$$

Fact: $r = -2re(s)$

Interesting Formula for r:

Proof: Since $P_n = r^n + s^n + t^n$, we have $r + s + t = P_1 = 0$. Since s and t are complex conjugates, $0 = r + s + t = r + 2re(s)$, so $r = -2re(s)$.

$$
r = \sqrt[3]{1 + \sqrt[3]{1 + \sqrt[3]{1 + \sqrt[3]{1 + \cdots}}}}
$$

Heuristic Proof: Assuming that the right side converges, we can rewrite it as $r = \sqrt[3]{1+r}$ which becomes $r^3 = 1 + r$, or $r^3 - r - 1 = 0$.

Fact: $P_0 + P_1 + P_2 + ... + P_n = P_{n+2} + P_{n+3} - 2$

Example: When $n = 4$, $P_0 + P_1 + P_2 + P_3 + P_4 = P_6 + P_7 - 2$, or $3 + 0 + 2 + 3 + 2 = 5 + 7 - 2$.

Proof: Let's rewrite the recursive equation, $P_{n+3} = P_n + P_{n+1}$, as $P_n = P_{n+3} - P_{n+1}$. Now insert, successively, the values $0, 1, 2, ..., n$, yielding the $n + 1$ equations

$$
P_0 = P_3 - P_1
$$

\n
$$
P_1 = P_4 - P_2
$$

\n
$$
P_2 = P_5 - P_3
$$

\n
$$
\vdots
$$

\n
$$
P_{n-2} = P_{n+1} - P_{n-1}
$$

\n
$$
P_{n-1} = P_{n+2} - P_n
$$

\n
$$
P_n = P_{n+3} - P_{n+1}
$$

Adding the left and right sides of these equations and cancelling all but a few terms on the right-side sum confirms the Fact. (This is called *telescoping*.) Using telescoping, we also have:

(1) $P_0 + P_2 + P_4 + ... + P_{2n} = P_{2n+3}$ (2) $P_1 + P_3 + P_5 + ... + P_{2n-1} = P_{2n+2} - 2$

Fact: $P_n + P_{n+4} = P_{n+2} + P_{n+3}$

Proof: Let a, b, c, $a + b$, $b + c$ be five consecutive Perrin numbers starting with P_n . That is, $a = P_n$, $b = P_{n+1}$, etc. Then $P_n + P_{n+4} = a + (b + c)$, while $P_{n+2} + P_{n+3} = c + (a + b)$. Done.

Fact: For $n \ge 5$, $\Delta_n = P_n - P_{n-1} = P_{n-5}$.

Proof: This is true for $n = 5$, 6, and 7. That is, (1) $P_5 - P_4 = P_0$ and (2) $P_6 - P_5 = P_1$. Then add these two equations to obtain $P_8 - P_7 = P_3$. Now $P_7 - P_6 = P_2$, that is, $7 - 5 = 2$. So $P_n - P_{n-1} =$ P_{n-5} is true for $n = 5, 6, 7$, and 8. Now generalize this *inductive* procedure for all $n \ge 5$. Done.

Fact 1: Given any k, we have: $\boxed{P_k - P_{k+2} + P_{k+4} - P_{k+6} = -P_{k+4}}$.

Proof: $P_k - P_{k+2} + P_{k+4} - P_{k+6} = (P_k + P_{k+4}) - (P_{k+2} + P_{k+6}) = P_{k+5} - P_{k+7} = -P_{k+4}$.

Fact 2: Given $a \ge 3$, we have:

$$
\sum_{k=0}^{2^{a}-1} (-1)^{k} P_{2k} = - \sum_{k=0}^{2^{a-2}-1} P_{8k+4}
$$

Proof: The series on the left side of the equality has 2^a terms, so it can be partitioned into

 $\frac{2^a}{4} = 2^{a-2}$ sums which we evaluate using Fact 1, as follows.

1st sum: $P_0 - P_2 + P_4 - P_6 = -P_4 = -P_{008+4}$

 $2nd$ sum: $P_8 - P_{10} + P_{12} - P_{14} = -P_{12} = -P_{(1)8+4}$

 3^{rd} sum: $P_{16} - P_{18} + P_{20} - P_{22} = -P_{20} = -P_{22} + P_{21}$

$$
2^{a-2} \operatorname{sum}: P_{(2^{a-2}-1)8} - P_{(2^{a-2}-1)8+2} + P_{(2^{a-2}-1)8+4} - P_{(2^{a-2}-1)8+6} = -P_{(2^{a-2}-1)8+4}
$$

Adding both sides of these equations yields $\sum_{k=0}^{2^a-1} (-1)^k P_{2k} = -\sum_{k=0}^{2^{a-2}-1} P_{8k+4}$. Using a similar argument we have Fact 3.

$$
\begin{split}\n\textbf{Fact 3: Given } a \ge 3, \text{ we have:} \n\left[\sum_{k=0}^{2^{a-1}-1} (-1)^k P_{2k+1} = -\sum_{k=0}^{2^{a-2}-1} P_{8k+5} \right] \\
\textbf{Proof: Using Facts 2 and 3, we have } \n\sum_{k=0}^{2^{a-1}} P_k i^k = P_0 + P_1 i + P_2 i^2 \dots + P_{2^{a}-1} i^{2^{a}-1} \\
\left(P_0 - P_2 + P_4 - \dots + P_{2^{a}-4} - P_{2^{a}-2} \right) + \left(P_1 - P_3 + P_5 - \dots + P_{2^{a}-3} - P_{2^{a}-1} \right) i &= \sum_{k=0}^{2^{a-1}-1} (-1)^k P_{2k} + i \sum_{k=0}^{2^{a-1}-1} (-1)^k P_{2k+1} \\
&= -\sum_{k=0}^{2^{a-2}-1} P_{8k+4} - i \sum_{k=0}^{2^{a-2}-1} P_{8k+5} = -\sum_{k=0}^{2^{a-2}-1} \left(P_{8k+4} + P_{8k+5} i \right).\n\end{split}
$$

Fact: $P_n + P_{n+1} + P_{n+2} = P_{n+5}$.

Proof: $P_{n+5} = P_{n+2} + P_{n+3} = P_{n+2} + (P_n + P_{n+1}) = P_n + P_{n+1} + P_{n+2}$

Perrin numbers with negative indices are obtained by working backwards. We rewrite the recursion, $P_{n+3} = P_n + P_{n+1}$, as $\boxed{P_n = P_{n+3} - P_{n+1}}$. For $n = -1$, we have $P_{-1} = P_2 - P_0 = 2 - 3 = -1$, and for $n = -2$, we have $P_{-2} = P_1 - P_{-1} = 0 - (-1) = 1$. Here are the first few Perrin numbers with negative indices: $P_{-1} = -1$, $P_{-2} = 1$, $P_{-3} = 2$, $P_{-4} = -3$, $P_{-5} = 4$, $P_{-6} = -2$, $P_{-7} = -1$, $P_{-8} = 5$, $P_{-9} = -7$, $P_{-10} = 6$, $P_{-11} = -1$.

For
$$
n > 1
$$
, $P_n = \sum_{m=-3}^{n-5} P_m = P_{-3} + P_{-2} + \dots + P_{n-5}$. For $n < 1$, $P_n = \sum_{m=4}^{4-n} P_{-m} = P_{-4} + P_{-3} + P_{-2} + \dots + P_{4-n}$.

Non-linear Identities: (1) $P_{2n} = P_n^2 - 2P_{-n}$ (2) $P_{2n+1} = P_n P_{n+1} + P_{1-n}$ (3) $P_{3n} = P_n^3 - 3P_n P_{-n} + 3P_{-n}$ **Examples:** For $n = 3$, (1) $P_6 = P_3^2 - 2P_{-3}$, or $5 = 3^2 - 2 \cdot 2$; (2) $P_7 = P_3P_4 + P_{-2}$, or $7 = 3 \cdot 2 + 1$; and (3) $P_9 = P_3^3 - 3P_3P_{-3} + 3$, or $12 = 3^3 - 3 \cdot 3 \cdot 2 + 3$.

Surprising Fact: When p is prime, $P_{-p} = -1 \pmod{p}$.

Examples: $P_{-2} = 1 = -1 \pmod{2}$, $P_{-3} = 2 = -1 \pmod{3}$, $P_{-5} = 4 = -1 \pmod{5}$, $P_{-7} = -1 \pmod{7}$, and $P_{-11} = -1 \pmod{11}$.

The Perrin sequence, mod 3, starts 0 0 2 0 2 2 2 1 1 0 2 1 2 0 0 2 ... The last three numbers (in bold font) are identical to the first three numbers, so the period of the Perrin numbers, mod 3, consists of the thirteen values, $0 \t 0 \t 2 \t 0 \t 2 \t 2 \t 1 \t 1 \t 0 \t 2 \t 1 \t 2$. The period length is 13. Out of every thirteen Perrin numbers, six are 2 (mod 3). Note that we can obtain the Perrin sequence mod 3, by applying the recursive relation directly from the revised seed, 0 0 3 provided that we reduce our sums mod 3.

References

- 1. M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley & Sons. 2015.
- 2. https://www.cut-the-knot.org/arithmetic/combinatorics/PerrinSequence.shtml
- 3. https://en.wikipedia.org/wiki/Perrin_number
- 4. https://mathworld.wolfram.com/PerrinSequence.html
- 5. https://www.geeksforgeeks.org/program-perrin-number/
- 6. https://cp4space.hatsya.com/2013/09/15/perrin-sequence/
- 7. https://www.had2know.org/academics/perrin-padovan-sequence-plastic-constant-calculator.html