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. Introduction

Banach in 1922 [1] proved his famous contraction mapping principle in a complete metric space. Since
then this result of Banach has been characterized in different spaces such as those in multiplicative metric space,
b-metric, G-metrics. On the other hand, in 2006, Chistyakov [4] introduced the notion of the metric modular on
an arbitrary set and the corresponding modular space, which is more general than a metric space, and, based on
this, he further studied Lipschitz continuity and a class of superposition operators on modular metric space (see
also [8,5]). His purpose was to define the notion of a modular on an arbitrary set, develop the theory of metric
spaces generated by modulars, called modular metric spaces in [6], [8],[9].This is a generalization of the
classical modular spaces like Orlicz spaces (see [14]).
For more details on modular metric fixed point theory, the reader may consult the books [14, 7].
Let 2 be a nonempty set. Throughout this paper, for a function
0:(0,0) X 2 X 2 - [0,0), we write
0,.(¢,m)=0(k,¢,n)forallk > 0and {,n € Q.
Definition 1.1. [6] Let 2 be a nonempty set. A function 9: (0,) X 2 X 2 — [0,0) is said to be a metric
modular on £ if it satisfies, for all {,n,w € 0, the following conditions:
1)0,(¢,n) =0forallk > Oifandonlyif { = n,
2) 0,(¢,m) =0, (n, ¢) forallr>0,
3) O +p (§,1) < 0, ({,w) + 0, (w,n) forall k,u > 0.
If instead of (1) we have only the condition
1Y0,((,{)= 0forall { € ¥, k > 0then d is said to be a pseudo modular (metric) on 0.
An important property of the (metric) pseudo modular on set 2 is that the
mapping « = d,({,n) isnonincreasing forall {,n € 0.
Definition 1.2. [6] Let @ is a pseudo modular on . Fixed {, € 2. The set
Ny =05(3)={¢ €2 :0,({,{y) — 0as Kk - oo} is said to be a modular metric space (around ;).
Definition 1.3. [16] Let 2, be a modular metric space.
1) The sequence {{,} in 25 is said to be d-convergent to ¢ € (2, if and only if there exists a number k > 0,
possibly depending on (¢;) and ¢, such that Al_)rg 0,(¢y, O)=0.

2) The sequence {{,} in (2, is said to be 9-Cauchy if there exists k > 0, possibly depending on the sequence,
such that 0,(p, {p) — 0 asm,n — oo
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3) A subset C of 2, is said to be d -complete if any d-Cauchy sequence in C is a convergent sequence and its
limitisin C.
Definition 1.4. [3] Let d be a metric modular on £2 and 2, be a modular metric space induced by a. If 2, is a
d-complete modular metric space and T: 25 — 25 be an arbitrary mapping T is called a contraction if for each
{,n € Nyandforall k > 0thereexists 0 < ¢ < 1 such that

9:(7¢,Tn) < 0 0,(¢,m)
In 1975, Das and Gupta [10] derived some fixed point results for rational type contraction as follow:
Let B be a continuous self mapping on a complete metric space (£2,d). If £ is a rational type contraction, there
exist a, B € [0,1), where o+ B < 1 such that

da(m,m(1+d({.83)
A0S, fn) < @ d(g, ) + p LLLDLHACHD)

for all {,n € £, then B has a unique fixed point in £2.

On the other hand, in 1977 Jaggi [13] gave the fixed point results for rational type contraction as follows:

Let B be a continuous self mapping on a complete metric space (2, d). If B is a rational type contraction, there
exist o, § € [0, 1), where o + f < 1 such that

d(B, Bn) < a d((,n) + pLLEQd@bn)

a.m
forall {,n € 2, { #n, then B has a unique fixed point in 2.
Similarly, various results exist for self maps and pair of self mappings satisfying rational contraction in different
spaces [11,2].

Il.  Main Results
In this section, we will prove the fixed point result for single map using rational type contraction in Modular
Metric Space and then extend this for four maps in Modular Metric Space.
Theorem 2.1 Let y be self - mapping of a complete modular metric space (5, d) such that

0k (¥ ax(mym) 9k (3¥)dx(n.ym)
0 (rS, v < ke max{9, (3, ), 0,(¢, ¥4, By, yp), 2ELEUAID, DLIEAAID |- (3 1)

140,(Em) 7 140, (rSym)
forall {,n € C({y,0) and
0,(co,vco) < 0(1 — k), where k € [0,1). (2.2)
Then y has a unique fixed point.
Proof. Suppose ¢, € Q5 and ¢, € Qy such that ¢; = y(cp), ¢; = y(c1),---> Cner = Y (cn). Now, by inequality
(2.2), we have
0 (corc1) = 0y (co¥cp) <01 —-k) <o
This implies that ¢; € C(cy, o). Suppose that c;, c3....,c, € C(co, 7).
Now,if g=2p+1,p=123,..,p=12

2
O (C2p+1,' C2p+2) = 0y (VCZIJ'VCZPH)

Oy (CZp» C2p+1)' O (Czp» chp)» Oy (C2p+1' VC2p+1),
< k maxq 0y (C2p: chp)aK (52p+1: V52p+1) aK(CZp' VCZp)ax(CZpH: VC2p+1)
1+ ax(CZpt C2p+1) ' 1+ ak(yCZplyC2p+1)
a;c (CZp: C2p+1): a;c (CZp: C2p+1,)» a1c((:21r1+1r C2p+2)»

< k max 0x(c2p.C2p+1)0ic(Capr1.caprz) Oxl(CapCaps1)dx(Capr1Capta)
1+0x(C2p.Cap+1) ’ 1+0x(C2p+1.C2p+2)

<k max{a,c (CZp,: 52p+1): aK(C2p+1: C2p+2)}

So, we have
O (C2p+1,' C2p+2) < kaK(CZp: C2p+1) (2.3)
q-1

If g=2p+1,p=123,..,p =

Oy (CZp,r C2p+1) = 0y (VCZp—lu VCZp)
Oy (CZp—ll CZp)l ax(czp—p chp—1)' O (C2p’ chp),
6K(62p—1: VCZp—1)ax(52p:V52p)
< k max 1+ a,c(czp_l, czp)
Oy (CZp—llVCZp—l)aK(CpryCZp) J
1+ ax(VCZp—pVCzp)

’
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ax (C2p—1v C2p)' ax (C2p—1v C2p,)v aK(CZp: C2p+1)!
ak(CZp—lﬂ CZp)ak (CZp: C2p+1)
< k max 1+ ak(czp_l, czp)

L aK(CZp—lv C2p)aK (CZp' C2p+1) J
1+ a,c(cz,,, czp+1)
<k max{ak (czp_l, czp), Oy (czp, czp+1)}

’

So, we have

ak (CZp' C2p+1) < kax(CZp—l: CZp) (2-4)
From (2.3), (2.4) and by induction, we have

0, (cqrcqs1) < k10, (co,cy) (2.5)
ax(co' Cq+1) <0« (cgcy) +0x (c1,65) +0_x (Cp03) +...F aL(Cq, Cq+1)

q+1 q+1 q+1 q+1
Oy (Co' Cq+1) < 0_x (co 1) + kd_x (co,¢1) + k?0_x (co,¢1) +...+ k90 _x (o, ¢1)

q+1 q+1 q+1 q+1

0, (corcqe1) < (M+k + k2 + -+ k) 8_x _(co, 1)
q+1

1
ak (CO' Cq+1) < (E) aL(CO; Cl)
q+1
Since ¢; € C(cy, 0)
1-k 1
0, (corcqe1) < ) (o <o
This implies that ¢,., € C(c,, o). By mathematical induction c, € C(c,0).
0xc(Cny Cny1) < k™0, (co, 1) (2.6)
Next, we claim that {c,,} is a Cauchy sequence for m > n.
ak(cn' Cm) < aL(Cn' Cn+1) + a#(@ﬁl' Cn+2) + aﬁ(cn+2t Cn+3) +oot BL_(Cm—li Cm)

m-n m-n

< k™0_x _(co,c1) + k™10 _x (co,¢q) +k™20_x_(coocq) + ... + k™10 x (co,¢1)
< (k™ + k™ +.)0_x (co,cq) = LOL(COJ c1).-
m-n (1-kK) m-n

Applying rlll_{rolo we get 0, (cp, cm) < 0. We get that {c,,} is a Modular Cauchy sequence in ;. and because Q,

is complete so ¢, = c* € Q.
Now,
aZk(C*v )/C*) < ax(C*'Cn+1) + ak(ycn! ]/C*)
0y (Cny €7), 0 (Cpy Crsn), O (€7, 7C7),
aZK(C*' VC*) < aK(C*v Cn+1) + k max i (CnCnt1)0ic(c™yc™) Ox(cn,Cne1)di(c™yc”)
140, (cn,c*) ’ 1+9, (yen,yc®)

Taking rlll_{rolo we get
05, (c*, yc*) <0+ k max{0,0, d,,(c* yc*),0,0}
aZKZ(C*' VC*) < k aZK(C*’ VC*)
This implies that
9z (c*,yc™) <0. (2.7)
So c¢*=yc*. Hence c* is a fixed point of y. Let n be another fixed point of y such that yn = 1.
0 (c™,m) = O, (yc™, ¥m)
0 (c™,m), 0, (c”, yc"), 0, (n, ¥m),
< k max aK(C*I VC*)a)c(n' VU) 61((6*' yC*)ax(n' VTI)
140.(ctm) " 1+0.(ycr,yn)

< k max {9,.(c*,1),0,0,0, 0}
(1-k) 9, (c",m) <0,
So c¢*=1. Hence c* is a unique fixed point of y.
Corollary 2.2 Let (€5, ) be a complete modular metric space such that

9 (v¢,yn) < k 9, (¢, m),

forall {,n € C({,,0) and
0 (co,vCo) < a(1—k),
where k € [0,1). Then y has a unique common fixed point.

Theorem 2.3 Let a, 8,y and § be self- mappings of a complete modular metric space (Q3,0) and (y,«) and
(6, B) are weakly commutative with a3 c 6Q,, BQs € yQ5 and a, B,y and & are continuous. Let ¢, € Q5 and

acy = 8¢y =1,. If there exists k € (0,%) such that
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0 (ag, Bn) < k(M (S,m)), forany {,n € C(n,0) (2.8)
holds, where
0, (¥S,6m), 0, (¥<, ad), 0, (6, Bn),
M(¢,m) = Max {9x(r5,a0)ax(8n.8m) 3x(¥3,a8)dx(51.8n) (2.9)
140, (yg6m) " 1+3,(ad,pn)
Then there exists a unique common fixed point of &, 8,y and § in C(n,, o) provided that
3, (10, Bc1) < (1 — h)o, where h=—"—and h < 1. (2.10)

Proof. Let ¢, be a given point in Q5. Since afl; € §Q,, we can choose a point ¢; in Q, such that acy = §¢; =
no- Similarly, there exists a point ¢, in Q5 such that Sc; = yc, = n,. Indeed, it follows from the assumption that
BQs < yQ,. Thus we can construct sequences {c, } and {n,,} in &5 such that
Nan = AC2n = 6Cant1s Mant1 = BC2ns1 = VCanyz, M =012, ...
Now, we show that {n,,} is a sequence in C(7,, 7).
By (2.10), 0,(mo,M1) = 0(Mo, Bc1) < (1 —h)a < o. Hence n; € C(no,0).
Assume 7, 13,..., Nq € C(ny, o) for some q € N.
Then if g = 2k, it follows from conditions (2.8) and (2.9), that
O (M21 M2k41) = Ox(@Cqp, BCair1) < k(M (C2p) Cox41))
0, (Y €2k 0C2141), 0 (¥ 21 @C2), 0xc (S Caper 1) BCok41)
< k MaX |0,y caracai) 0 (8cais1.8c2k+1) (¥ C2ko@C21)8ic(8Cok+1.8C2k+1)
1+0x(YC21.6C2k+1) ’ 1+0x(acak.Bezk+1)

0 M2k—1 M2k O M2r—1, M21)> O M2k M2k 1),
< k max {0,c(mak—1.m20) 9k M2iM2ic+1) O M2k—1.120) s M2ieM2k+1)
1+0x(M2k-1.M2k) ’ 1+0;(M2k M2k +1)

< k max {0, M2x—1,M21)» O M2ses M2ke+1)}

Thatis, 0,(Mz M2k+1) < kO (M2k—1,M2k) (2.11)
Thus Similarly, if ¢ = 2k + 1, then

O M2kt 1 N2ir2) < kO M2k, Makr1) (2.12)
Hence from (2.11) and (2.12) , We have

O (Mies Mie+1) < kO (Mie—1, M) (213)

From (2.11), (2.12) and (2.13), we have

0 (Mo Mie1) < kB (Mie—1, M) < k20, (M2, Mie—1) <...< kX0 (mo,m) VkEN.  (214)
Thus from (2.14), we have

ax(no,npﬂ) <0k (Mo,m1) +0_x (y,Mz) +0_x_(Nz,m3) +...+ OL(TIp,TIpH)
pH1 p+1 P+l P+l
< 0_x (o, ny) + kd_x (o, m1) + k20 _x (19, m1) + ...+ kP9 _x_(1o, 1)
p+1 p+1 p+1 p+1
< (1+ k +k? +...4kP)d_x_(19,11)
p+L

_ (1-(P*h
- 1-k aL(TIO, 7’]1)
p+1

Since n, € C(ny, o), we have
— (k)P+1

aK(UO' 77p+1) < (1 - k) %

<A-M®PHo<o
0, (10, Mp41) <o forallp € N. (2.15)
Hence 1,41 € C (1o, 0). By induction on n, we conclude that {n,,} € C(ny, o) foralln € N.
Now we claim that the sequence {n,,} satisfies modular Cauchy criterion for convergence in (C (1o, o), d,). TO
show this let m,n € N be such that m > n and let m = n + p, then

ax(nn' nn+p) < a%(nn' 77n+1) + 6§(nn+1' 77n+2) +..F 6§(nn+p—1: nn+p)
< k™0x(no,m1) + k™ 0x(ng, my) + ...+ K"PT0x(n,11)
p p ?
< (K™ kM 4 ARk (10,11)
p

(@)

=(1-k. o=k
Letting n —» oo, we have 9,(n,,n,) — 0, as m,n - . Hence the sequence {n,} is a modular Cauchy
sequence.
As (Qp, 9,) is complete, so (C(n,,0), d,) is complete. Hence {n,,} has a limit, say ¢ in C(n, o). The fact that
{acon} = {6cans1} = (20} and {Beanin} = {¥eons2} = {M2ns1} are subsequences of {n,} makes Tlll_{{)lo ACypn =

lim §¢ap41 = lim Beypyq = lim yepny, = 4.
n—-oo n—-oo n—-oo
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Suppose y is continuous, then

lim y(acy,) = y(lim acyy) =y(lim yczni2) =¥ (2.16)

By weak commutativity of a pair (y, «), we have

ak (y(aCZn)' a(yCZn)) < ak(yCZn' aCZn) (2-17)
Taking limitas n — oo, on both sides of (2.17) and by (2.16), we get

0 (YO, lim a(yez)) < 9¢(6,9) (218)

which further implies that lilgoa(yCZH) =y(Q).

Now, by conditions (2.8) aTrl1d (2.9), we have

ak (a(yCZn)' .BCZn+1)
a}c (yyCZn' 6C2n+1)v a}c (VVCZn: ayCZn):
[ 0, (8¢2n41, BCons1), ]

05 (VY C2n, @y C2n) 0k (8Can+1,8C2n+1)
< k maxi 1405 (1Y C2ndCamin) f (2.19)
k 05 (YYCan,aycan)9x(8cant1,.8C2n+1) )
1+0x(aycan.Bcan+1)

Taking limitas n — oo, on both sides of (2.19), we obtain

0,4, 9,0, (¥$, v, 0, (S, 9),
0, (¥, ¢) < k Max{0,(r3,v9)0,(6.0) 9E¥w(§,9) (2.20)

1+0,(¥3,0) 1 1+9,x(¥4.0)

thatis 0,(y¢,0) < k 9,(y{,{). Hence 9, (y¢,¢) =0 and ¢ is a fixed point of y in C(n,, ). In similar way, by

conditions (2.8) and (2.9), we have
0,c(¥{, 6¢an+1), 0 (¥S, (), 0, (8 211, BC2ns1),
O (05((); BC2n+1) < k max {0,x?,ad)d(8cant1.Bcant1) 9¥i.ad)d(Scant1.Bcant1) (2.21)
140, (¥{,6¢c2n+1) ’ 1+0x(ad,Bcan+1)

Taking limit as n — oo, on both sides of (2.21), we obtain
0,(¥¢,9), 0, (¥¢, ag), 0, (¢, 9),
Oy (@(0), ) < k Max {9,(¥.a0)d80) 3 ¥.a0)dx(0)
1+0,(r¢,) ' 148x(al,d)
d.(a(,0) <0.

Hence 0d,.(a,{) =0and ¢ is a fixed point of a in C(n,,0).
Because of the fact that { = a({) € aC(ny, ) € 5C(n,, 0).
Let {* in C(ny, o) be such that { = §({7).
0, (¥, 677), 0, (¥$, a$), 0,,(6¢7, BT,
0, ((, B = 0y (a({), ") <k max {ax(yz.aoaxwz*.ﬁz*) 3 (v{,a0)d, (8" ") }
1+0,(¥8,8¢") 1 149, (ad,BTY)
0,(¢,B{) < 0.

This implies that B¢* = ¢.
Since the pair (8, 8) is weakly commutative from our assumptions, thus
0,,(8¢,8) = 0,,(8B (), BEC™) < 0,(8¢7, B¢) = 0,(¢,{) =0.
Hence 6¢ = B{. By (2.8) and (2.9), we obtain
0,(, BS) = 0(a($), BY)
0,(¥$,80),0,,(y§, ag), 8,.(6¢, BY),
< k max 0, (v{,a0)a, (88,80 8,(¥¢,al)d (88,8
1+0,(v{,69) ! 1+0,(ad,B7)

which implies ¢ = 8({). Hence ¢ is a common fixed point of y, §, ¢ and 8 in C(n,, o).

If & is continuous, then following arguments similar to those given above, we obtain that { = a({) = y({) =

B =48(9.

Now suppose that « is continuous.

Thus lim a(ycy,) = a(lim ycy,) = a({) (2.22)
n—-oo n—-oo

As the pair (y, a) is weakly commuting, we have

O, (Y (aczn), a(¥can)) < 0, (YC2n, @Cap) (2.23)
Taking limit as n — oo, on both sides of (2.23) , We obtain

O (¥ (aczn), af) < 9,(¢,¢) =0and limy (aczn) = a(d).
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By contractive condition (2.8) , We get
aK (a(aCZn)r ﬂC2n+1)
{aK (yaCva 5C2n+1)v a}c (yaCZn! aacZn)!

0, (6¢2n41, BCant1),
<k max{ 8y @Com @ cyn) (B sms1.Bomer)
|

(2.24)

’

1+0x(yacan,6can+1)
Ak (Yacanaacyn)dx(8can+1,82n+1)
k 1+0x(aacan,Bean+1)
Taking limit as n — oo, on both sides of (2.24), implies that
0, (ad,$) < k 0,(ad, O)
Hence 0,(a,{) =0, and { is a fixed point of a in C(n,, o). Since = a({) € a(C(ny, 7)) € §C(ny, o). Let {*
in C(ny, o) be such that { = 6(¢). It follows from condition (2.8), that
ax (yaCZn' 6{*)' ax (yaCZn' aaCZn): ax (6§*, ﬁ(*):
ax(a(aCZn)' ,8(*) < k max 3x(VaCzn,aaCZn)ax(H*,ﬁi*) aK(yaCZHtaaCZn)aK((s(*vB(*) (225)
140y (yacan,6¢*) ’ 1+0x(aacan, B3
Taking limit as n — oo, on both sides of (2.25), implies that

—_———

0., BT <k 0,(, BT (226 )
Thus B¢* = {. Since the pair (B, §) is weakly commutative from our hypothesis, then
0, (BT, 8¢) = 0,(B6C",8B7) < 9, (BS™,6(") = 0,(¢,0) =0, (2.27)

which implies that 6 = 7. From (2.8), we have
6;c (VCZn: 5()! aK (VCZn: acZn)r aK (6(1 ﬁ():
O (acan, fO) < k MAX {9y (yeanacan)dn(88,88) Inlycan acan)dn(5S,69)
1+0x (Y c2n,69) ’ 1+0x(aczn,B9)
Taking limit as n — oo, on both sides of (2.28), implies that
0, (¢, B) < k 0,(¢, 7)) and ¢ = B(J).
However, { = B({) € B(C(ny,0)) € v(C(ny,0)), let n €(C(ny, o) ) be such that ¢ = y(n). It follows from
condition (2.8) , that
O (an,{) = 0, (an, BO)
0, (yn, 64, 0, (yn, an), 0,.(6¢, BY),
< k mMax {9, 4m.andi(83.62) 3ilyn.an)dw(83.69)
140, (yn,68) 7 149y (an,Bd)
which implies that d,.(an, () < k d,.(an, {).
Hence an = {. Since a and y are weakly commutative, so
0, (¥$,ag) = 9 (yan,ayn) < 0,(yn,an) =09,(¢,{) =0. (2.29)
This gives y({) = a({). Applying condition (2.8), we obtain
0, (ad,$) = 0,(ad, BO)
ak (]/Z' 66)1 a;c (YZJ a()' ak (661 .8()'
< k MaX §0,(r$,a8)0x(88.8) 9x(¥8,a)d:(83,89)
140, (¥$,6) ' 1+8x(a,BY)
which implies that { = a({). Hence ¢ is a common fixed point of y, &, 8 and § in C(n,, o).
If B is continuous, then by using arguments similar to those given above, we can easily obtain a common fixed
point of y,a, B and & in C(n,, o).
We proceed to show the uniqueness of the common fixed point of the mappings y,a, and §. So let n €
C (no, o) be another common fixed point of y, a, 8 and §. By (2.8), we have
9,(¢,m) = 9,(al, Bn)
0, (v¢, 6m), 0, (v<, ad), 0,.(6m, Bn),
< k Max 10, (r$,a$)ax(dn.Bm) 9x¥8,a8)dx(8n.81)
140, (vG6m) 1 14+0x(ad,Bn)
thatis, 9,(¢,n) < k 9,.(¢,m).
Hence { = n and this implies that the common fixed point of y, a, § and § is unique.
Example 2.4 Let Q3 = R and 9,:Qy X Q5 — [0, 0) be a modular metric defined by 9,({,n) = i(l{l + InD.

Note that (Q,, d) is a complete modular metric space, define mappings y, 8, a, B : Q5 = Q5 by

(2.28)

_(¢ ifg=<2 (3¢ if¢<2
) "{306 if{>2" () ‘{20( if{>2
_(2¢ if¢s2 _[3if¢=<2
a(()‘{1oogif(>2' '8(5)‘{4(if<->2

Obviously, Maps are continuous and (y, @) and (8, §) are weak commutative with a(Q3) < §(Q3) , and B(Q5)
c y(Qp). First we construct a closed ball such that ¢, = % e=16andk =2
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€02 ={n € 05: 3c(n.7) < 16}

{n € 23 (nl +[7]) < 16}
%n € 0g: (Inl + |3 < 32}

n Eﬂailnl SZ;_S}: 223 223

77 7r

Clearly, the mappings are weakly commutative. Now choose ¢, = ; then there exist
{ € @ such that a(;) =8(0)=no = ; and ny = 6(g;) =3¢;.

Now, 7o =2 = 8(3) =38 = & = =

Also, B(G1)= o) ===m

Thus,

9, (M0, B({1)) = 0.06349
where € = 16, k :%, k < 1, then

(1-ke=(1-2)16<16
So 0c(1M0,6($0)) < (1 — k)¢,

holds

Thus for {,n € C({,, €) all the conditions of Theorem 2.3 hold.
Hence ¢ = 0 is the unique common fixed point of y, 8, @ and §.

1. Conclusion

The purpose of this paper is to prove some common fixed point theorems in Modular Metric Space for single
map and four maps using rational type contraction mapping.

Competing Interests
The authors have declared that no competing interests exist.

[1].
2.
[31.

[4].
[5].
[6].
[7].
[8].
[9].

[10].
[11].
[12].

[13].
[14].

[15].

[16].

References
Banach, S. : Sur les operations dans les ensembles abstracts et leure application aux equations integrals. Fundam. Math. 1922; 3:
133-181.
V. K. Bhardwaj, V. Gupta, N. Mani, Common fixed point theorems without continuity and compatible property of maps, Bol. Soc.
Paran. Mat. 2017; 35(3): 67-77.
M. Chirasak, S.Wutiphol, and K. Poom, (2011) Fixed Point Theorems for Contraction Mappings in Modular Metric Spaces. Fixed
Point Theory and Applications, 2011; 93.
Chistyakov, V.V. Metric modular and their applications. Dokl. Akad. Nauk 2006; 406: 165-168.
Chistyakov, V.V. Modular metric spaces, II: Application to superposition operators. Nonlinear Anal. 2010; 72: 15-30.
W. Chistyakov, Metric Modular Spaces and Their Application. Doklady Mathematics. 2006; 73: 32-35.
V.V. Chistyakov, Metric Modular Spaces-Theory and Applications, Springer International Publishing Switzerland 2015.
W. Chistyakov, Modular Metric Spaces, |: Basic Concepts. Nonlinear Analysis: Theory, Methods & Applications. 2010; 72: 1-14.
W. Chistyakov, Modular Metric Spaces Generated by F-Modular. Folia Mathematica, 2008; 14: 3-25.
Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl. Math. 1975;
6: 1455-1458.
V. Gupta, N. Mani Existence and uniqueness of fixed point for contractive mapping of integral type, International Journal of
Computing Science and Mathematics. 2013;4 (1): 72-83.
Hosseinzadeh, H.; Parvaneh, V. Meir-Keeler type contractive mappings in modular and partial modular metric spaces. Asian-Eur. J.
Math. 2020; 13: 1-18.
Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977; 8: 223-230.
M.A. Khamsi, W.M. Kozlowski, Fixed Point Theory in Modular Function Spaces, DOl 10.1007/978-3-319-14051-3, Springer
International Publishing Switzerland 2015.
P.P. Murthy and K. N. V. V. Vara Prasad, Weak Contraction Condition Involving Cubic Terms of d({, n) under the Fixed Point
Consideration, Journal of Mathematics. 2013; 5 pages,
A. Padcharoen, D. Gopal, P. Chaipunya, and P. Kumam, Fixed Point and Periodic Point Results for a-Type F-Contractions in
Modular Metric Spaces. Fixed Point Theory and Applications. 2016; 39.

*Corresponding Author: Narinder Kumar 57 | Page



