Quest Journals Journal of Research in Applied Mathematics Volume 2~ Issue 10 (2016) pp: 10-15 ISSN(Online) : 2394-0743 ISSN (Print):2394-0735 www.questjournals.org

Generalized Difference Entire Sequence Spaces Defined By Musielak-Orlicz Function

Zakawat U. Siddiqui and Ado Balili

Department of Mathematics and Statistics, University Of Maiduguri, Borno State, Nigeria

Received 28 June, 2016; Accepted 26 July, 2016 © The author(s) 2016. Published with open access at **www.questjournals.org**

ABSTRACT: In this paper, we introduce generalized difference entire sequence spaces by means of Musielak-Orlicz functions and study some of their topological properties and a few inclusion relations among them. **Keywords:** Analytic Sequence, Entire Sequences, Generalized Difference Sequences, Musielak-Orlicz Functions, Solid Sequences.

Mathematics Subject Classification: 40A05, 40C05, 40D05

I. INTRODUCTION

The notion of difference sequence spaces was introduced by Kizmaz [1], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. This notion was further generalized by Et [2] who defined the sequence spaces $l_{\infty}(\Delta^2)$, $c(\Delta^2)$ and $c_0(\Delta^2)$. Later, Et and Colak [3] defined the sequence spaces $l_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$. Et and Esi [4], then defined the following spaces:

$$\begin{split} \ell_{\omega}(\Delta_{\nu}^{m}) &= \{ x = (x_{k}) \in \omega : (\Delta_{\nu}^{m} x_{k}) \in \ell_{\omega} \} \\ c(\Delta_{\nu}^{m}) &= \{ x = (x_{k}) \in \omega : (\Delta_{\nu}^{m} x_{k}) \in c \} \\ c_{0}(\Delta_{\nu}^{m}) &= \{ x = (x_{k}) \in \omega : (\Delta_{\nu}^{m} x_{k}) \in c_{0} \}, \end{split}$$

where

$$\Delta_{\nu}^{m} \mathbf{x} = (\Delta_{\nu}^{m} \mathbf{x}_{k}) = (\Delta_{\nu}^{m-1} \mathbf{x}_{k} - \Delta_{\nu}^{m-1} \mathbf{x}_{k+1}, \text{ and } \Delta_{\nu}^{0} \mathbf{x}_{k} = \mathbf{x}_{k}$$

for all $k \in N$, which is equivalent to binomial representation

$$\Delta_{\nu}^{m} \mathbf{x}_{k} = \sum_{i=0}^{m} (-1)^{i} {m \choose i} \mathbf{x}_{+\nu i}$$

It was proved that the generalized sequence space $Z(\Delta_{\nu}^{m})$, where $Z = \ell_{\infty}$, c or c_{0} , is a Banach space with norm defined by

$$\|\mathbf{x}\|_{\Delta_{\nu}^{m}} = \sum_{i=1}^{m} |\mathbf{x}_{i}| + \sup |\Delta_{\nu}^{m} \mathbf{x}_{k}|.$$

Taking v = 1, we get the spaces which were studied by Et and Colak [3].

Taking m = v = 1, we get the spaces which were introduced and studied by Kizmaz [1].

A complex sequence whose kth term is denoted by x_k is said to be analytic if $\frac{\sup}{k} |x_k|^{1/k} < \infty$. The vector

space of all analytic sequences will be denoted by Λ . A sequence $x = (x_k)$ is said to be entire if $\lim_{k \to \infty} |x_k|^{1/k} =$

0. The space of all entire sequences is denoted by Γ .

Orlicz function is defined as the function $M : [0, \infty) \rightarrow [0, \infty)$, which is continuous, non-decreasing and convex such that M(0) = 0, M(x) > 0 for x > 0 and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. Lindenstrauss and Tzafriri [4] used the concept of Orlicz functions to define the space

$$\ell_{\mathrm{M}} = \left\{ \mathbf{x} \in \omega : \sum_{k=1}^{\infty} \mathrm{M}\left(\frac{|\mathbf{x}_{k}|}{\rho}\right) < \infty \right\}.$$
(1.1)

called Orlicz sequence space, and proved that every Orlicz sequence space contains a subspace isomorphic to $\ell_p (1 \le p < \infty)$. Subsequently, different classes of sequence spaces were defined by Parashar and Choudhary [5], Mursaleen et al [6], Bektas and Altin [7], Tripathy et al [8], Rao and Subramaniam [9] and many others.

It is to be noted that if the convexity in an Orlicz function is replaced by the condition $M(x + y) \le M(x) + M(y)$, then this function is called Modulus function, defined and discussed by Ruckle [10] and Maddox [11]. An Orlicz function is said to satisfy the Δ_2 – condition for all values of u if there exists a constant k > 0 such that $M(2u) \le kM(u)$, $u \ge 0$. In other words $M(nu) \le knM(u)$, for all values of u and n > 1.

The sequence space ℓ_M defined in (i) is a Banach space with the norm

^{*}Corresponding Author: Zakawat U. Siddiqui¹ Department of Mathematics and Statistics, University Of Maiduguri, Borno State, Nigeria

$$\|\mathbf{x}\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\mathbf{x}_k|}{\rho}\right) \le 1\right\}$$
(1.2)

II. BASIC DEFINITIONS

Definition 2.1: The space consisting of all sequences $x \in \omega$ such that $M\left(\frac{|x_k|^{1/k}}{\rho}\right) \to 0$ as $k \to \infty$ for some arbitrary fixed $\rho > 0$, is denoted by Γ_M , with M being a modulus function. In other words $\left\{M\left(\frac{|\mathbf{x}_k|^{1/k}}{\rho}\right)\right\}$ is a null space. The space Γ_M is a metric space with metric

$$d(x, y) = \frac{\sup_{k} M\left(\frac{|x_{k} - y_{k}|^{1/K}}{\rho}\right) \text{ for all } x = (x_{k}), \ y = (y_{k}).$$

The space $\Gamma_{\rm M}$ is called entire sequence space defined by Orlicz functions.

Definition 2.2: A sequence space S is said to be solid or normal if whenever $\{x_k\} \in S$, the sequence $\{\alpha_k x_k\} \in$ S, where $\{\alpha_k\}$ is a sequence of scalars with $|\alpha_k| \leq 1$.

Definition 2.3 (see [12]): Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, then M is called Musielak-Orlicz function.

We shall use the following inequality throughout this work. Let $\{p_k\}$ be a sequence of positive real numbers with $0 < p_k < \sup p_k = P$. Let $C = 2^{P-1}$. Then

$$|a_k + b_k|^k \le C\{|a_k|^{p_k} + |b_k|^{p_k}\}$$
(2.1)
where a_k and b_k are complex numbers.

In this paper we shall define a new class of sequence, which is the generalization of the sequence space given in Raj et al [13], as follows:

$$\Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s) = \left\{ x_{k} \in \Gamma(x) : \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_{q} \left(\frac{q | \Delta_{\nu}^{m} x_{k} |^{\frac{1}{k}}}{\rho} \right) \right]^{p_{k}} \right\} \to 0 \text{ as } n \to \infty, \text{ uniformly in } n > 0,$$

0 for some $\rho > 0.$

s ≥

III. MAIN RESULTS

We shall prove the following theorems in this paper.

Theorem 3.1: Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $p = (p_k)$ be a sequence of strictly positive real numbers. Then the space $\Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$ is a linear space over the field \mathbb{C} of complex numbers. **Proof.** Let $x = (x_{k}), y = (y_{k}) \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers

$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q | \Delta_v^m x_k|^k}{\rho_1} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$
(3.1)

and

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho_{2}}\right)\right]^{p_{k}} \to 0 \text{ as } n \to \infty$$
(3.2)

In order to prove the result, we need to find ρ_3 such that

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_{k}\left(\frac{q|\Delta_{\nu}^{m}(\alpha x_{k}+\beta y_{k})|^{\frac{1}{k}}}{\rho_{3}}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty$$
(3.3)

Let $\rho_3 = max(|\alpha|^{1/k}\rho_1, |\beta|^{1/k}\rho_2)$. Since $\mathcal{M} = (M_k)$ is non decreasing, convex and q is a semi norm, so by using inequality (2.1), we have

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_{k} \left(\frac{q | \Delta_{\nu}^{m} (\alpha x_{k} + \beta y_{k}) |^{\frac{1}{k}}}{\rho_{3}} \right) \right]^{p_{k}} \\ & \leq \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_{k} \left(q \left\{ \frac{\left(|\alpha|^{1/k} | \Delta_{\nu}^{m} x_{k}| \right)^{1/k}}{\rho_{3}} + \frac{\left(|\beta|^{1/k} | \Delta_{\nu}^{m} y_{k}| \right)^{1/k}}{\rho_{3}} \right\} \right) \right]^{p_{k}} \\ & \leq \frac{1}{n} \sum_{n=1}^{k} k^{-s} \left[M_{k} \left(q \left\{ \frac{\left(|\Delta_{\nu}^{m} x_{k}| \right)^{1/k}}{\rho_{1}} + \frac{\left(|\Delta_{\nu}^{m} y_{k}| \right)^{1/k}}{\rho_{2}} \right\} \right) \right]^{p_{k}} \\ & \leq C \frac{1}{n} \sum_{n=1}^{k} k^{-s} \left[M_{k} \left(q \left\{ \frac{\left(|\Delta_{\nu}^{m} x_{k}| \right)^{1/k}}{\rho_{1}} \right\} \right) \right]^{p_{k}} + C \frac{1}{n} \sum_{n=1}^{k} k^{-s} \left[M_{k} \left(q \frac{|\Delta_{\nu}^{m} y_{k}|^{1/k}}{\rho_{2}} \right) \right]^{p_{k}} \\ & \to 0 \quad as \quad n \to \infty. \end{split}$$

Thus $\alpha x + \beta y \in \Gamma_m(\Delta_v^m, p, q, s)$, showing that it is a linear space.

*Corresponding Author: Zakawat U. Siddiqui¹

Theorem 3.2: Suppose $\mathcal{M} = (M_k)$ is Musielak-Orlicz function and $p = (p_k)$ be a sequence of strictly positive real numbers. Then the space $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is a paranormed space with the paranorm defined by

$$h(x) = \inf\left\{\rho^{p_n}: \sup_{k \ge 1} k^{-s} \left[M_k\left(\frac{q|\Delta_v^m x_k|^{1/k}}{\rho}\right)\right]^{p_k/H} \le 1\right\}, \text{ uniformly in } n > 0, \ \rho > 0,$$

where $H = \max\left(1, \frac{\sup}{k}p_k\right)$.

Proof. Clearly $h(x) \ge 0, h(x) = h(-x)$ and $h(\theta) = 0$, where θ is the zero sequence of X. Let $x_k, y_k \in \Gamma_m(\Delta_v^m, p, q, s)$. Let $\rho_1, \rho_2 > 0$ be such that

$$\sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{1/k}}{\rho_1} \right) \right]^{p_k/H} \le 1$$

and,

$$\sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q | \Delta_{\mathcal{V}}^m y_k |^{1/k}}{\rho_2} \right) \right]^{p_k/H} \le 1$$

Let $\rho = \rho_1 + \rho_2$, then by using Minkowski's inequality, we have $\begin{aligned} \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q | \Delta_v^m (x_k + y_k) |^{1/k}}{\rho} \right) \right]^{p_k/H} \\ &\le \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q | \Delta_v^m x_k |^{\frac{1}{k}}}{\rho_1} \right) \right]^{\frac{p_k}{H}} + \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q | \Delta_v^m y_k |^{\frac{1}{k}}}{\rho_1} \right) \right]^{\frac{p_k}{H}} \\ &\le 1. \end{aligned}$

Hence

$$\begin{split} h(x+y) &\leq \inf\left\{ (\rho_1 + \rho_2)^{p_m/H} : \sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho_1 + \rho_2} \right) \right]^{p_k/H} \leq 1, \rho_1, \rho_2 > 0, \ m \in \mathbb{N} \right\} \\ &\leq \inf\left\{ (\rho_1)^{p_m/H} : \sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho_1} \right) \right]^{p_k/H} \leq 1, \rho_1 > 0, \ m \in \mathbb{N} \right\} + \\ &\quad + \inf\left\{ (\rho_2)^{p_m/H} : \sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho_2} \right) \right]^{p_k/H} \leq 1, \rho_2 > 0, \ m \in \mathbb{N} \right\} \end{split}$$

Thus we have $h(x + y) \le h(x) + h(y)$. Hence h satisfies the triangle inequality. Now,

$$h(\lambda x) = \inf \left\{ (\rho)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\lambda \Delta_v^m(x_k)|^{1/k}}{\rho} \right) \right]^{p_k/H} \le 1, \rho > 0, m \in \mathbb{N} \right\}$$
$$= \inf \left\{ (r|\lambda|)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k)|^{1/k}}{r} \right) \right]^{p_k/H} \le 1, r > 0, m \in \mathbb{N} \right\}$$
where $r = \frac{\rho}{|\lambda|}$. Hence $\Gamma_m(\Delta_v^m, p, q, s)$ is a paranormed space.

Theorem 3.3: Let $\mathcal{M}' = (\mathcal{M}'_k)$ and $\mathcal{M}'' = (\mathcal{M}''_k)$ be two Musielak-Orlicz functions. Then $\Gamma_{\mathcal{M}'}(\Delta_{\nu}^m, p, q, s) \cap \Gamma_{\mathcal{M}''}(\Delta_{\nu}^m, p, q, s) \subseteq \Gamma_{\mathcal{M}'+\mathcal{M}''}(\Delta_{\nu}^m, p, q, s).$

Proof. Let $x \in \Gamma_{\mathcal{M}'}(\Delta_{\nu}^m, p, q, s) \cap \Gamma_{\mathcal{M}''}(\Delta_{\nu}^m, p, q, s)$. Then there exists ρ_1 and ρ_2 such that $\frac{1}{2}\sum_{n=1}^{n} k^{-s} \left[M_{\nu} \left(\frac{q | \Delta_{\nu}^m x_k |^{\frac{1}{k}}}{p} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$

$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho_1} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$
(3.4)

and

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho_{2}}\right)\right]^{p_{k}} \to 0 \text{ as } n \to \infty$$

$$Let \ \rho = min\overline{[4]}, \frac{1}{2}.$$
(3.5)

$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M'_{k} + M''_{k}) \left(\frac{q | \Delta_{v}^{m} x_{k} |^{\frac{1}{k}}}{\rho} \right) \right]^{p_{k}} \\ \leq K \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M'_{k} \left(\frac{q | \Delta_{v}^{m} x_{k} |^{\frac{1}{k}}}{\rho_{1}} \right) \right]^{p_{k}} + K \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M'_{k} \left(\frac{q | \Delta_{v}^{m} x_{k} |^{\frac{1}{k}}}{\rho_{2}} \right) \right]^{p_{k}} \\ \to 0, as n \to \infty$$

by (3.4) and (3.5). Then

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}^{'}+M_{k}^{''})\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty.$$

Therefore $x \in \Gamma_{\mathcal{M}' + \mathcal{M}''}(\Delta_{\nu}^{m}, p, q, s)$.

*Corresponding Author: Zakawat U. Siddiqui¹

Theorem 3.4 Let $m \ge 1$. Then we have

$$\Gamma_{\mathcal{M}}(\Delta_{\nu}^{m-1}, p, q, s) \subseteq \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$$
Proof. Let $x \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m-1}, p, q, s)$. Then we have

$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_{k} \left(\frac{q |\Delta_{\nu}^{m-1} x_{k}|^{\frac{1}{k}}}{\rho} \right) \right]^{p_{k}} \to 0 \text{ as } n \to \infty \text{ for some } \rho > 0.$$
Since $\mathcal{M} = (\mathcal{M}_{\nu})$ is non decreasing, convex function and a is seminorm, then we

Since $\mathcal{M} = (M_k)$ is non decreasing, convex function and q is seminorm, then we have $\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q | \Delta_v^m x_k |^{\overline{k}}}{\rho} \right) \right]^{p_k} \leq \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q | \Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1} |^{\overline{k}}}{\rho} \right) \right]^{p_k}$ $\leq K \{ \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q | \Delta_v^{m-1} x_k |^{\overline{k}}}{\rho} \right) \right]^{p_k} + \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q | \Delta_v^{m-1} x_{k+1} |^{\overline{k}}}{\rho} \right) \right]^{p_k} \}$ $\rightarrow 0 \text{ as } n \rightarrow \infty.$

 \rightarrow 0 us $n \rightarrow$ Therefore,

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty.$$

Hence $x \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$. This completes the proof.

Theorem 3.5: Suppose
$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_{\nu}^m x_k |^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \le |x_k|^{\frac{1}{k}}, \text{ then } \Gamma \subset \Gamma_{\mathcal{M}} (\Delta_{\nu}^m, p, q, s).$$

Proof. Let $x \in \Gamma$. Then we have
$$|x_k|^{\frac{1}{k}} \to 0 \text{ as } k \to \infty$$
(3.6)

But
$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{v}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \leq |x_{k}|^{\frac{1}{k}}$$
 by our assumption, it implies that
 $\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{v}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \rightarrow 0 \text{ as } n \rightarrow \infty$ by (3.6).

Then, $x \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$ and hence $\Gamma \subset \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$.

Theorem 3.6: $\Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$ is solid **Proof.** Let $|x_{k}| \leq |y_{k}|$ and $y = (y_{k}) \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$. Since $\mathcal{M} = (M_{k})$ is non decreasing, it implies that

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \leq \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}y_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\right]^{p_{k}}$$

Since $y \in \Gamma_{\mathcal{M}}(\Delta_{v}^{m}, p, q, s)$. Therefore,

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}y_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty$$

and

$$\frac{1}{n}\sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty \right]$$

$$A_{m}^m, n, q, s). \text{ Hence the result.}$$

Therefore $x = (x_k) \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. Hence the result.

Theorem 3.7: (i) Let $0 < infp_k \le p_k \le 1$. Then $\Gamma_{\mathcal{M}}(\Delta_{\mathcal{V}}^m, p, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_{\mathcal{V}}^m, q, s)$ (ii) Let $1 \le p_k \le supp_k < \infty$. Then $\Gamma_{\mathcal{M}}(\Delta_{\mathcal{V}}^m, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_{\mathcal{V}}^m, p, q, s)$ **Proof.** (i) Let $x \in \Gamma_{\mathcal{M}}(\Delta_{\mathcal{V}}^m, p, q, s)$. Then

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty$$
(3.7)

Since $0 < inf p_k \le p_k \le 1$.

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right] \leq \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \to 0 \text{ as } n \to \infty$$
(3.8)

From (3.7) and (3.8) it follows that, $x \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, q, s)$ Thus $\Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, q, s)$

*Corresponding Author: Zakawat U. Siddiqui¹

(ii) Let $p_k \ge 1$ for each k and $supp_k < \infty$ and let $x \in \Gamma_{\mathcal{M}}(\Delta_{\mathcal{V}}^m, q, s)$ then

$$\frac{1}{n}\sum_{k=1}^{n}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right] \to 0 \text{ as } n \to \infty$$
(3.9)

Since $1 \le p_k \le supp_k < \infty$, we have

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \leq \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right)^{p_{k}} \rightarrow 0 \text{ as } n \rightarrow \infty\right]$$

$$\Rightarrow \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right)^{p_{k}} \rightarrow 0 \text{ as } n \rightarrow \infty\right]$$

This implies that $x \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$. Therefore, $\Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_{\nu}^{m}, p, q, s)$.

Theorem 3.8 Let $0 \le p_k \le r_k$ and let $(\frac{r_k}{p_k})$ be bounded then $\Gamma_{\mathcal{M}}(\Delta_{\nu}^m, r, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_{\nu}^m, p, q, s)$. **Proof.** Let $x \in \Gamma_{\mathcal{M}}(\Delta_{\nu}^m, r, q, s)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q \left| \Delta_v^m x_k \right|^{\frac{1}{k}}}{\rho} \right) \right]^{r_k} \to 0 \text{ as } n \to \infty$$

$$(3.10)$$

Let $t_k = \frac{1}{n} \sum_{k=1}^n k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \text{ and } \lambda_k = \frac{p_k}{r_k}, \text{ since } p_k \le r_k, \text{ we have } 0 \le \lambda_k \le 1. \text{ Take } 0 < \lambda < \lambda_k. \text{ Define} \right]$

$$u_k = \begin{cases} t_k, & \text{if } t_k \ge 1\\ 0, & \text{if } t_k < 1 \end{cases}$$

and,

$$v_k = \begin{cases} 0, & \text{if } t_k \ge 1 \\ t_k, & \text{if } t_k < 1 \end{cases}$$

 $t_{k} = u_{k} + v_{k}, \quad t_{k}^{\lambda_{k}} = u_{k}^{\lambda_{k}} + v_{k}^{\lambda_{k}}.$ It follows that $u_{k}^{\lambda_{k}} \le u_{k} \le t_{k}, \quad v_{k}^{\lambda_{k}} \le v_{k}^{\lambda}.$ Since, $t_{k}^{\lambda_{k}} = u_{k}^{\lambda_{k}} + v_{k}^{\lambda_{k}},$ then $t_{k}^{\lambda_{k}} \le t_{k} + v_{k}^{\lambda}.$ Now

$$\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k} \le \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k | \overline{k}}{\rho} \right) \right)^{r_k} \right]^{r_k}$$

But

$$\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{v}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{r_{k}}\to 0 \ as \ n\to\infty$$

by (3.10). Therefore,

$$\frac{\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|\Delta_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right)^{r_{k}}\right]^{p_{k}} \to 0 \text{ as } n \to \infty$$

Thus we get

 $\frac{\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M \text{Hence } x \in \Gamma_{\mathcal{M}}(\Delta_{v}^{m}, p, q, s). \text{ Thus we get}\right]$

$$\Gamma_{\mathcal{M}}(\Delta_{\nu}^{\mathrm{m}}, \mathbf{r}, \mathbf{q}, \mathbf{s}) \subset \Gamma_{\mathcal{M}}(\Delta_{\nu}^{\mathrm{m}}, \mathbf{p}, \mathbf{q}, \mathbf{s})$$

IV. CONCLUSION

We observe that the difference sequence space $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is not only a linear space but also a paranormed space when the given sequence $p = (p_k)$ contains strictly positive terms. Further the space is also solid. Moreover, the intersection of the spaces defined by two Musielak-Orlicz functions is identical with the space defined by the addition of the two given functions.

REFERENCES

- [1]. H. Kizmaz, On certain Sequence spaces, Canada Math. Bull. 24 (2) (1981), 169-176.
- [2]. M. Et, On some difference sequence spaces, Doga-Tr. J. Math. 17 (1993), 18-24.
- [3]. M. Et, and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995), 377-386.
- [4]. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379-390.
- [5]. S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. (1994), 419-428.

- [6]. M. Mursaleen, M.A Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstration Math. (1999), 145-150.
- $\label{eq:constraint} [7]. C. Bektas and Y. Altin, The sequence space L_M(p,q,s) on semi normed spaces, Indian J. Pure Appl. Math. (2003), 529-534.$
- [8]. B. C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz functions in a locally convex spaces,

- [19]. K. C. Kao and N. Subramanan, The Officz space of entite sequences, int. J. Math. Sci., (2004), 575-5704.
 [10]. W. H. Ruckle, FK Spaces in which the sequence of coordinate vectors is bounded, Canada J. Math., (1973), 937-978.
- [11]. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1978), 161-166.
- [12]. J. Musielak, Orlicz spaces and Modular spaces, Lecture Notes in Mathematics, (1983), 1034.
- [13]. K. Raj, S. K. Sharma and A. Gupta, Entire sequence spaces defined by Musielak Orlicz function, Int. J. of Mathematical sciences and Application, 1 (2) (2011), 954-960.

<sup>J. Analysis and Application, (2003), 175-192.
[9]. K. C. Rao and N. Subramanian, The Orlicz space of entire sequences, Int. J. Math. Sci.,(2004), 3755-3764.</sup>