Quest Journals Journal of Research in Applied Mathematics Volume 2~ Issue 10 (2016) pp: 10-15 ISSN(Online) : 2394-0743 ISSN (Print):2394-0735 **www.questjournals.org**

Generalized Difference Entire Sequence Spaces Defined By Musielak-Orlicz Function

Zakawat U. Siddiqui and Ado Balili

Department of Mathematics and Statistics, University Of Maiduguri, Borno State, Nigeria

Received 28 June, 2016; **A**ccepted 26 July, 2016 © The author(s) 2016. **P**ublished with open access at **www.questjournals.org**

ABSTRACT: In this paper, we introduce generalized difference entire sequence spaces by means of Musielak-Orlicz functions and study some of their topological properties and a few inclusion relations among them. Keywords: Analytic Sequence, Entire Sequences, Generalized Difference Sequences, Musielak-Orlicz Functions, Solid Sequences.

Mathematics Subject Classification: 40A05, 40C05, 40D05

I. INTRODUCTION

The notion of difference sequence spaces was introduced by Kizmaz [1], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. This notion was further generalized by Et [2] who defined the sequence spaces $l_{\infty}(\Delta^2)$, $c(\Delta^2)$ and $c_0(\Delta^2)$. Later, Et and Colak [3] defined the sequence spaces $l_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$. Et and Esi [4], then defined the following spaces:

$$
\ell_{\infty}(\Delta_v^m) = \{x = (x_k) \in \omega: (\Delta_v^m x_k) \in \ell_{\infty}\} \n c(\Delta_v^m) = \{x = (x_k) \in \omega: (\Delta_v^m x_k) \in c\} \n c_0(\Delta_v^m) = \{x = (x_k) \in \omega: (\Delta_v^m x_k) \in c_0\},
$$

where

$$
\Delta_{v}^{m} x = (\Delta_{v}^{m} x_{k}) = (\Delta_{v}^{m-1} x_{k} - \Delta_{v}^{m-1} x_{k+1}, \text{ and } \Delta_{v}^{0} x_{k} = x_{k}
$$

for all $k \in N$, which is equivalent to binomial representation

$$
\Delta_v^m x_k = \sum_{i=0}^{\bar{m}} (-1)^i {m \choose i} x_{+vi}
$$

It was proved that the generalized sequence space $Z(\Delta_v^m)$, where $Z = \ell_\infty$, c or c_0 , is a Banach space with norm defined by

$$
\|x\|_{\Delta^m_\nu}=\Sigma_{i=1}^m |x_i|+sup|\Delta_\nu^m x_k|.
$$

Taking $v = 1$, we get the spaces which were studied by Et and Colak [3].

Taking $m = v = 1$, we get the spaces which were introduced and studied by Kizmaz [1].

A complex sequence whose kth term is denoted by x_k is said to be analytic if $\frac{\sup}{k} |x_k|^{1/k} < \infty$. The vector

space of all analytic sequences will be denoted by Λ. A sequence $x = (x_k)$ is said to be entire if $\lim_{k \to \infty} |x_k|^{1/k} =$

0. The space of all entire sequences is denoted by Γ .

Orlicz function is defined as the function M : $[0, \infty) \rightarrow [0, \infty)$, which is continuous, non-decreasing and convex such that M (0) = 0, M (x) > 0 for x > 0 and M (x) $\rightarrow \infty$ as $x \rightarrow \infty$. Lindenstrauss and Tzafriri [4] used the concept of Orlicz functions to define the space

$$
\ell_{\mathbf{M}} = \left\{ \mathbf{x} \in \omega : \sum_{k=1}^{\infty} \mathbf{M} \left(\frac{|\mathbf{x}_k|}{\rho} \right) < \infty \right\}.
$$
\n(1.1)

called Orlicz sequence space, and proved that every Orlicz sequence space contains a subspace isomorphic to $\ell_p(1 \le p < \infty)$. Subsequently, different classes of sequence spaces were defined by Parashar and Choudhary [5], Mursaleen et al [6], Bektas and Altin [7], Tripathy et al [8], Rao and Subramaniam [9] and many others.

It is to be noted that if the convexity in an Orlicz function is replaced by the condition $M(x + y) \le M(x)$ + $M(y)$, then this function is called Modulus function, defined and discussed by Ruckle [10] and Maddox [11].An Orlicz function is said to satisfy the Δ_2 – condition for all values of u if there exists a constant k > 0 such that $M(2u) \leq kM(u)$, $u \geq 0$. In other words $M(nu) \leq knM(u)$, for all values of u and $n > 1$.

The sequence space ℓ_M defined in (i) is a Banach space with the norm

$$
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \le 1 \right\}
$$
 (1.2)

II. BASIC DEFINITIONS

Definition 2.1: The space consisting of all sequences $x \in \omega$ such that $M\left(\frac{|x_k|^{1/k}}{k}\right)$ $\frac{p}{\rho}$ \rightarrow 0 as k $\rightarrow \infty$ for some arbitrary fixed $\rho > 0$, is denoted by Γ_M , with M being a modulus function. In other words $\left\{ M \left(\frac{|x_k|^{1/k}}{n} \right) \right\}$ $\left(\frac{1}{\rho}\right)$ is a null space. The space Γ_M is a metric space with metric

$$
d(x,y) = \frac{\sup_{k} M\left(\frac{|x_k - y_k|^{1/k}}{\rho}\right)}{k} \text{ for all } x = (x_k), y = (y_k).
$$

The space Γ_M is called entire sequence space defined by Orlicz functions.

Definition 2.2: A sequence space S is said to be solid or normal if whenever $\{x_k\} \in S$, the sequence $\{\alpha_k x_k\} \in$ S, where $\{\alpha_k\}$ is a sequence of scalars with $|\alpha_k| \leq 1$.

Definition 2.3 (see [12]): Let $M = (M_k)$ be a sequence of Orlicz functions, then M is called Musielak-Orlicz function.

We shall use the following inequality throughout this work. Let $\{p_k\}$ be a sequence of positive real numbers with $0 < p_k <$ sup $p_k = P$. Let $C = 2^{P-1}$. Then

$$
|a_k + b_k|^k \le C\{|a_k|^{p_k} + |b_k|^{p_k}\}\tag{2.1}
$$

where a_k and b_k are complex numbers.

In this paper we shall define a new class of sequence, which is the generalization of the sequence space given in Raj et al [13], as follows:

$$
\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s) = \left\{ x_k \in \Gamma(x) : \frac{1}{n} \sum_{k=1}^n k^{-s} \left[M_q \left(\frac{q |\Delta_v^m x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \right\} \to 0 \text{ as } n \to \infty, \text{ uniformly in } n > 0,
$$

0 for some $\rho > 0$.

 $s \geq 0$

III. MAIN RESULTS

We shall prove the following theorems in this paper.

Theorem 3.1: Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $p = (p_k)$ be a sequence of strictly positive real numbers. Then the space $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is a linear space over the field $\mathbb C$ of complex numbers. **Proof.** Let $x = (x_k)$, $y = (y_k) \in \Gamma_{\mathcal{M}}(\Delta_v^m)$, p, q, s) and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 , ρ_2 such that

$$
(y_k) \in T_{\mathcal{M}}(\Delta_v, \mathbf{p}, \mathbf{q}, \mathbf{s}) \text{ and } \alpha, \beta \in \mathbb{C}. \text{ Then there exist positive numbers } \mathbf{p}_1, \mathbf{p}_2 \text{ such that}
$$

$$
\frac{1}{n} \sum_{k=1}^n k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{\overline{k}}}{\rho_1} \right) \right]^{pk} \to 0 \text{ as } n \to \infty \tag{3.1}
$$

and

$$
\frac{1}{n}\sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{\frac{1}{k}}}{\rho_2} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty \tag{3.2}
$$

In order to prove the result, we need to find ρ_3 such that

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_k\left(\frac{q|A_v^m(\alpha x_k+\beta y_k)|_k^{\frac{1}{k}}}{\rho_3}\right)\right]^{p_k}\to 0 \text{ as } n\to\infty
$$
\n(3.3)

Let $\rho_3 = max (|\alpha|^{1/k} \rho_1, |\beta|^{1/k} \rho_2)$. Since $\mathcal{M} = (M_k)$ is non decreasing, convex and q is a semi norm, so by using inequality (2.1) , we have

$$
\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q |\Delta_{\nu}^{m} (\alpha x_k + \beta y_k)|_k^{\frac{1}{k}}}{\rho_3} \right) \right]^{p_k}
$$
\n
$$
\leq \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(q \left\{ \frac{\left(|\alpha|^{1/k} |\Delta_{\nu}^{m} x_k| \right)^{1/k}}{\rho_3} + \frac{\left(|\beta|^{1/k} |\Delta_{\nu}^{m} y_k| \right)^{1/k}}{\rho_3} \right\} \right) \right]^{p_k}
$$
\n
$$
\leq \frac{1}{n} \sum_{n=1}^{k} k^{-s} \left[M_k \left(q \left\{ \frac{(\left(|\Delta_{\nu}^{m} x_k| \right)^{1/k}}{\rho_1} + \frac{(\left| \Delta_{\nu}^{m} y_k \right|^{\frac{1}{k}})}{\rho_2} \right\} \right) \right]^{p_k}
$$
\n
$$
\leq C \frac{1}{n} \sum_{n=1}^{k} k^{-s} \left[M_k \left(q \frac{\left| \Delta_{\nu}^{m} x_k \right|^{\frac{1}{k}}}{\rho_1} \right) \right]^{p_k} + C \frac{1}{n} \sum_{n=1}^{k} k^{-s} \left[M_k \left(q \frac{\left| \Delta_{\nu}^{m} y_k \right|^{\frac{1}{k}}}{\rho_2} \right) \right]^{p_k}
$$
\n
$$
\to 0 \text{ as } n \to \infty.
$$

Thus $\alpha x + \beta y \in I_m(\Delta_v^m, p, q, s)$, showing that it is a linear space.

*Corresponding Author: Zakawat U. Siddiqui ¹

Theorem 3.2: Suppose $\mathcal{M} = (M_k)$ is Musielak-Orlicz function and $p = (p_k)$ be a sequence of strictly positive real numbers. Then the space $\Gamma_{\mathcal{M}}(\mathcal{A}_{\nu}^m, p, q, s)$ is a paranormed space with the paranorm defined by

$$
h(x) = \inf \left\{ \rho^{p_n} \colon \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{1/k}}{\rho} \right) \right]^{p_k/H} \le 1 \right\}, \text{ uniformly in } n > 0, \ \rho > 0,
$$

where H = max $\left(\begin{matrix} 1, & \sin \theta \\ 1, & \sin \theta \end{matrix} \right)$ $\binom{a_p}{k} p_k$.

Proof. Clearly $h(x) \ge 0, h(x) = h(-x)$ and $h(\theta) = 0$, where θ is the zero sequence of X. Let $x_k, y_k \in$ $\Gamma_m(\Delta_v^m, p, q, s)$. Let $\rho_1, \rho_2 > 0$ be such that

$$
\sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{1/k}}{\rho_1} \right) \right]^{p_k/H} \leq 1
$$

and,

$$
\sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m y_k|^{1/k}}{\rho_2} \right) \right]^{p_k/H} \leq 1.
$$

Let $\rho = \rho_1 + \rho_2$, then by using Minkowski's inequality, we have sup $\sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho} \right) \right]$ $\frac{\rho^{(\tau y_{k})(\tau)}}{\rho}$ p_k/H \leq $\left(\frac{\rho_1}{\rho_2}\right)$ $\frac{\rho_1}{\rho_1+\rho_2}$ $\bigg\}$ $\sup_{k \geq 1}$ $\sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{\frac{1}{k}}}{\rho_1} \right) \right]$ $\frac{\nu^{k}k^{\alpha}}{\rho_1}$ $\frac{p_k}{H}$ + $\left(\frac{\rho_2}{H}\right)$ $\frac{\rho_2}{\rho_1+\rho_2}$ $\bigg\}$ $\sum_{k=1}^{sup}$ $\sup_{k \geq 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m y_k|^{\frac{1}{k}}}{\rho_1} \right) \right]$ ≤ 1 .

Hence

$$
h(x + y) \le \inf \left\{ (\rho_1 + \rho_2)^{p_m/H} : \sup_{k \ge 1}^{sup} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho_1 + \rho_2} \right) \right]^{p_k/H} \le 1, \rho_1, \rho_2 > 0, \ m \in \mathbb{N} \right\}
$$

$$
\le \inf \left\{ (\rho_1)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho_1} \right) \right]^{p_k/H} \le 1, \rho_1 > 0, \ m \in \mathbb{N} \right\} +
$$

+ $\inf \left\{ (\rho_2)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k + y_k)|^{1/k}}{\rho_2} \right) \right]^{p_k/H} \le 1, \rho_2 > 0, \ m \in \mathbb{N} \right\}$
Thus we have $h(x + x) \le h(x) + h(x)$. Hence, he satisfies the triangle inequality. Now

Thus we have $h(x + y) \leq h(x) + h(y)$. Hence h satisfies the triangle inequality. Now,

$$
h(\lambda x) = \inf \left\{ (\rho)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\lambda \Delta_v^m(x_k)|^{1/k}}{\rho} \right) \right]^{p_k/H} \le 1, \rho > 0, m \in \mathbb{N} \right\}
$$

=
$$
\inf \left\{ (r|\lambda|)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m(x_k)|^{1/k}}{r} \right) \right]^{p_k/H} \le 1, r > 0, m \in \mathbb{N} \right\}
$$

where $r = \frac{\rho}{|\lambda|}$. Hence $\Gamma_m(\Delta_v^m, p, q, s)$ is a parameter space.

Theorem 3.3: Let $\mathcal{M}' = (M'_k)$ and $M'' = (M''_k)$ be two Musielak-Orlicz functions. Then $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s) \cap \Gamma_{\mathcal{M}'}(\Delta_v^m, p, q, s) \subseteq \Gamma_{\mathcal{M}'+\mathcal{M}'}(\Delta_v^m, p, q, s).$

Proof. Let $x \in \Gamma_{\mathcal{M}}(4^m, p, q, s) \cap \Gamma_{\mathcal{M}}(4^m, p, q, s)$. Then there exists ρ_1 and ρ_2 such that 1 I 1 \overline{k} p_k

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_k\left(\frac{q|A_{\nu}^m x_k|^{\frac{1}{k}}}{\rho_1}\right)\right]^{p_k} \to 0 \text{ as } n \to \infty \tag{3.4}
$$

and

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_k\left(\frac{q|A_V^{m}x_k|^{\frac{1}{k}}}{\rho_2}\right)\right]^{p_k}\to 0 \text{ as } n\to\infty
$$
\n(3.5)

 p_k

 $\frac{\nu y_k}{\rho_1}$

 $\frac{p_k}{H}$

Let $\rho = min[\sqrt{1 + \frac{1}{2}}]$ $\frac{1}{\rho_1}, \frac{1}{\rho_2}$ $\frac{1}{\rho_2}$). Then we have 1 $\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}^{'} + M_{k}^{''}) \left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho} \right) \right]$ $\frac{\lambda_k}{\rho}$ p_k $\sum_{k=1}^n$ $\leq K\frac{1}{n}$ $\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q |\Delta_v^m x_k|^{\frac{1}{k}}}{\rho_1} \right) \right]$ $\frac{\nu^{k}k}{\rho_1}$ p_k $\left| M_{k}^{-1} k^{-s} \right| M_{k}' \left(\frac{q | \Delta_{\nu}^{m} x_{k} | k}{q} \right) \right| \quad + K \frac{1}{n}$ $\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_{k}^{''}\left(\frac{q\left|\Delta_{\nu}^{m}x_{k}\right|^{\frac{1}{k}}}{\rho_{2}}\right)\right]$ $\frac{\nu^{\lambda} k!^{\kappa}}{\rho_2}$ $\sum_{k=1}^{n}$ \rightarrow 0 $\alpha s n \rightarrow \alpha$

by (3.4) and (3.5). Then

$$
\frac{1}{n}\sum_{k=1}^n k^{-s} \left[(M'_k + M''_k) \left(\frac{q |\Delta_1^m x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.
$$

Therefore $x \in \Gamma_{\mathcal{M}'+\mathcal{M}''}(\Delta_v^m, p, q, s)$.

*Corresponding Author: Zakawat U. Siddiqui ¹

Theorem 3.4 Let $m \geq 1$. Then we have

Proof. Let
$$
x \in \Gamma_M(\Delta_v^{m-1}, p, q, s) \subseteq \Gamma_M(\Delta_v^m, p, q, s)
$$

\nProof. Let $x \in \Gamma_M(\Delta_v^{m-1}, p, q, s)$. Then we have
\n
$$
\frac{1}{n} \sum_{k=1}^n k^{-s} \left[M_k \left(\frac{q |\Delta_v^{m-1} x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty \text{ for some } \rho > 0.
$$
\nSince $\mathcal{M} = (M_1)$ is non decreasing convex function and a is seminorm, then we

Since $\mathcal{M} = (M_k)$ is non decreasing, convex function and q is seminorm, then we have 1 $\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_k\left(\frac{q\left|\Delta_{\nu}^{m}x_k\right|^{\frac{1}{k}}}{\rho}\right)\right]$ $\frac{a_{k}^{n}}{\rho}$ p_k $\leq \frac{1}{n}$ $\frac{1}{n}\sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q |\Delta_{\nu}^{m-1} x_k - \Delta_{\nu}^{m-1} x_{k+1}|^{\frac{1}{k}}}{\rho} \right) \right]$ $\frac{\Delta v \quad \lambda k+1}{\rho}$ p_k $\left| \sum_{k=1}^n k^{-s} \right| M_k \left(\frac{q |\Delta_v^{\alpha} x_k|^k}{q} \right) \right| \leq \frac{1}{n} \sum_{k=1}^n$ $\leq K \left(\frac{1}{n}\right)$ $\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[M_k \left(\frac{q |\Delta_{\nu}^{m-1} x_k|^{\frac{1}{k}}}{\rho} \right) \right]$ $\frac{\lambda_{k}}{\rho}$ p_k $+\frac{1}{x}$ $\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[M_k\left(\frac{q\left|\Delta_{\nu}^{m-1}x_{k+1}\right|^{\frac{1}{k}}}{\rho}\right)\right]$ $\frac{\lambda_{k+1}}{\rho}$ \bar{p}_k $\left| \frac{n}{k+1} k^{-s} \right| M_k \left(\frac{q |\Delta_v^{n} - x_k|^{\kappa}}{q} \right) \right| \quad + \frac{1}{n} \sum_{k=1}^n k^{-s} M_k \left(\frac{q |\Delta_v^{n} - x_{k+1}|^{\kappa}}{q} \right) \quad \text{and}$

 \rightarrow 0 as $n \rightarrow \infty$.

Therefore,

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty.
$$

Hence $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. This completes the proof.

Theorem 3.5: Suppose
$$
\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{V}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \le |x_k|^{\frac{1}{k}}
$$
, then $\Gamma \subset \Gamma_{\mathcal{M}}(\Delta_{V}^{m}, p, q, s)$.
\n**Proof.** Let $x \in \Gamma$. Then we have\n
$$
|x_k|^{\frac{1}{k}} \to 0 \text{ as } k \to \infty
$$
\n(3.6)

But $\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q |\Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) \right]$ $\frac{\lambda k}{\rho}$ p_k $\left| \sum_{k=1}^n k^{-s} \right| \left(M_k \left(\frac{q |\Delta_v^m x_k|^{\bar{k}}}{q} \right) \right|^{1/2} \leq |x_k|^{\frac{1}{k}}$ by our assumption, it implies that 1 $\frac{1}{n}\sum_{k=1}^n k^{-s}\left[(M_k\left(\frac{q\left|\Delta_V^{m}x_k\right|^{\frac{1}{k}}}{\rho}\right)\right]$ $\frac{\lambda_k}{\rho}$ p_k $\lim_{k=1}^n k^{-s} \left| \left(M_k \left(\frac{q \mid \Delta_v^m x_k \mid \kappa}{\alpha} \right) \right| \right| \to 0 \text{ as } n \to \infty$ by (3.6).

Then, $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ and hence $\Gamma \subset \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$.

Theorem 3.6: $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is solid **Proof.** Let $|x_k| \le |y_k|$ and $y = (y_k) \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. Since $\mathcal{M} = (M_k)$ is non decreasing, it implies that

$$
\frac{1}{n}\sum_{k=1}^n k^{-s} \left[\left(M_k \left(\frac{q \left| \Delta_{\nu}^m x_k \right|^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \leq \frac{1}{n}\sum_{k=1}^n k^{-s} \left[\left(M_k \left(\frac{q \left| \Delta_{\nu}^m y_k \right|^{\frac{1}{k}}}{\rho} \right) \right]^{p_k} \right]
$$

Since $y \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. Therefore,

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{\nu}^{m}y_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty\right]
$$

and

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{v}^{m}x_{k}|_{k}^{\frac{1}{n}}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty\right]
$$
\n
$$
A^{m} n a s) \text{ Hence the result}
$$

Therefore $x = (x_k) \in \Gamma_M(\Delta_v^m, p, q, s)$. Hence the result.

Theorem 3.7: (i) Let $0 < \inf p_k \leq p_k \leq 1$. Then $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_v^m, q, s)$ (ii) Let $1 \leq p_k \leq \sup p_k < \infty$. Then $\Gamma_{\mathcal{M}}(\Delta_v^m, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ **Proof.** (i) Let $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. Then

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|_{k}^{1}}{\rho}\right)\right]^{p_{k}}\to 0 \text{ as } n\to\infty\right]
$$
\n(3.7)

Since $0 < inf p_k \le p_k \le 1$.

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right] \leq \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \to 0 \text{ as } n \to \infty\right]
$$
\n(3.8)

From (3.7) and (3.8) it follows that, $x \in \Gamma_M(\Delta_v^m, q, s)$ Thus $\Gamma_{\mathcal{M}}(\Delta^m_\nu, p, q, s) \subset \Gamma_{\mathcal{M}}(\Delta^m_\nu, q, s)$

*Corresponding Author: Zakawat U. Siddiqui ¹

(ii) Let $p_k \ge 1$ for each k and $supp_k < \infty$ and let $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, q, s)$ then 1

$$
\frac{1}{n}\sum_{k=1}^{n} \left[\left(M_k \left(\frac{q | \Delta_v^m x_k|^{\frac{1}{k}}}{\rho} \right) \right] \to 0 \text{ as } n \to \infty \right]
$$
\n(3.9)

Since $1 \leq p_k \leq \sup p_k < \infty$, we have

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \leq \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]
$$
\n
$$
\Rightarrow \frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{p_{k}} \to 0 \text{ as } n \to \infty
$$

This implies that $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. Therefore, $\Gamma_{\mathcal{M}}(\Delta_v^m, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$.

Theorem 3.8 Let $0 \leq p_k \leq r_k$ and let $\left(\frac{r_k}{r_k}\right)$ $\frac{r_k}{p_k}$) be bounded then $\Gamma_{\mathcal{M}}(\Delta_v^m, r, q, s) \subset \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. **Proof.** Let $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, r, q, s)$. Then

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{r_{k}}\to 0 \text{ as } n\to\infty\right]
$$
\n(3.10)

Let $t_k = \frac{1}{n}$ $\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}\left(\frac{q\left|\varDelta_{\nu}^{m}x_{k}\right|_{k}}{\rho}\right)\right]$ $\frac{a_{k}^{n}}{\rho}$ $\left| \sum_{k=1}^n k^{-s} \right| \left(M_k \left(\frac{q | \Delta_w^m x_k | k}{q} \right) \right)$ and $\lambda_k = \frac{p_k}{r_k}$ $\frac{p_k}{r_k}$, since $p_k \le r_k$, we have $0 \le \lambda_k \le 1$. Take $0 < \lambda < \lambda_k$. Define

$$
u_k = \begin{cases} t_k, & \text{if } t_k \ge 1 \\ 0, & \text{if } t_k < 1 \end{cases}
$$

and,

$$
v_k = \begin{cases} 0, & \text{if } t_k \ge 1 \\ t_k, & \text{if } t_k < 1 \end{cases}
$$

 $t_k = u_k + v_k$, $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$. It follows that $u_k^{\lambda_k} \le u_k \le t_k$, $v_k^{\lambda_k} \le v_k^{\lambda}$. Since, $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$, then $t_k^{\lambda_k} \leq t_k + v_k^{\lambda}$. Now

$$
\frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) r_k \right]^{k} \leq \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{r_k}
$$
\n
$$
\Rightarrow \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) r_k \right]^{r_k} \leq \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{r_k}
$$
\n
$$
\Rightarrow \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) r_k \right]^{p_k} \leq \frac{1}{n} \sum_{k=1}^{n} k^{-s} \left[(M_k \left(\frac{q | \Delta_{\nu}^{m} x_k|^{\frac{1}{k}}}{\rho} \right) \right]^{r_k}
$$
\nBut

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[\left(M_{k}\left(\frac{q|a_{v}^{m}x_{k}|^{\frac{1}{k}}}{\rho}\right)\right]^{r_{k}}\to0\;as\;n\to\infty\right]
$$

by (3.10). Therefore,

$$
\frac{1}{n}\sum_{k=1}^{n}k^{-s}\left[(M_{k}\left(\frac{q|A_{\nu}^{m}x_{k}|_{k}^{\frac{1}{k}}}{\rho}\right))^{r_{k}}\right]^{p_{k}} \to 0 \text{ as } n \to \infty
$$

Hence $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$. Thus we get

$$
\Gamma_{\mathcal{M}}(\Delta_{v}^{\mathsf{m}},\mathsf{r},\mathsf{q},\mathsf{s})\subset \Gamma_{\mathcal{M}}(\Delta_{v}^{\mathsf{m}},\mathsf{p},\mathsf{q},\mathsf{s})
$$

IV. CONCLUSION

We observe that the difference sequence space $x \in \Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is not only a linear space but also a paranormed space when the given sequence $p = (p_k)$ contains strictly positive terms. Further the space is also solid. Moreover, the intersection of the spaces defined by two Musielak-Orlicz functions is identical with the space defined by the addition of the two given functions.

REFERENCES

- [1]. H. Kizmaz, On certain Sequence spaces, Canada Math. Bull. 24 (2) (1981), 169-176.
- [2]. M. Et, On some difference sequence spaces, Doga-Tr. J. Math. 17 (1993), 18-24.
- [3]. M. Et, and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995), 377-386.
[4]. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379-390.
- [4]. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379-390.

^{[5].} S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. (1994), 419-428.

- [6]. M. Mursaleen, M.A Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstration Math. (1999), 145-150.
- [7]. C. Bektas and Y. Altin, The sequence space $L_M(p, q, s)$ on semi normed spaces, Indian J. Pure Appl. Math. (2003), 529-534. [8]. B. C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orli
- [8]. B. C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz functions in a locally convex spaces, J. Analysis and Application, (2003), 175-192.
-
- [9]. K. C. Rao and N. Subramanian, The Orlicz space of entire sequences, Int. J. Math. Sci.,(2004), 3755-3764. [10]. W. H. Ruckle, FK Spaces in which the sequence of coordinate vectors is bounded, Canada J. Math., (1973), 937-978.
- I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1978), 161-166.
-
- [12]. J. Musielak, Orlicz spaces and Modular spaces, Lecture Notes in Mathematics, (1983), 1034. [13]. K. Raj, S. K. Sharma and A. Gupta, Entire sequence spaces defined by Musielak Orlicz function, Int. J. of Mathematical sciences and Application, 1 (2) (2011), 954-960.