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ABSTRACT: In this paper, He’s homotopy perturbation method(HPM) is used to find approximate analytical
solutions of a system of nonlinear differential equations which are the mathematical models of two interacting
species in population dynamics. The HPM method is straight forward, highly effective and a promising tool for
obtaining the approximate analytical solution of non-linear ODE's. Three different models having
commensalism as interaction between the species are considered. The functional response differs in each model.
He’s Homotopy-Perturbation Method (HPM) is used in the present study to find approximate solutions of these
models and the solution curves are drawn using MATLAB. The solution curves obtained by HPM and R-K 4"
order method are depicted in the same graph and compared.

Keywords:  Homotopy-Perturbation Method (HPM), non-linear differential equations, commensalism,
commensal, host, Monod model.

. INTRODUCTION

The non-linear phenomena play a crucial role in applied mathematics and science. It is one of the most
stimulating areas of the research. In the research of past few decades [1-6] great progress was made in the
development of methods for obtaining approximate analytical solutions for non-linear differential equations
arising in various fields of Science and Engineering. It is observed that most of the methods require a tedious
analysis. Comparatively, He’s Homotopy Perturbation Method (HPM) require less complicated analysis and
easy to find the approximate solutions of the non-linear differential equations.

The Homotopy- Perturbation Method (HPM) was initially proposed by Chinese mathematician J.H.He
[2-4]. The HPM is useful to obtain exact or approximate solutions of linear and non-linear differential equations.
The primary objective of this method is to approximate the actual solution from initial approximation as the
homotopy parameter, say p, varies from 0 to 1. In this method a solution is expressed as a series in p which
converges to the exact solution. The key feature of this HPM is that linearization or discretization or round of
errors can be evaded. The approximations converge rapidly to exact solutions [11]. HPM has been used to find
approximate solutions effectively, easily and accurately a large class of non-linear problems in population
dynamics, and epidemic models[1,2,6,7,8,9,10].

The objective of this paper is to explore the use of HPM for obtaining approximate solutions to
biological models of population dynamics having commensalism between the species. A comparative study of
these solutions with the solutions obtained using 4th order Runge- Kutta method (R-K method) is presented.

In this paper three biological models are considered in which the interaction between the species is
commensalism. In model-1 and model-3 the two species have limited food source and each species follow
logistic growth law in the absence of the other. The model-3 is more complex than model-1 in the sense that the
commensalism is characterised by a function of host species. Unlike model-1 and model-3, model-2 the host
species follows logistic growth law and has limited food sources whereas the commensal species decline in the
absence of host species. The commensal species survive only because of the interaction of the host species.
Description of these models is given in the next section.

1. MODELS
2.1 Model-1: This model deals with interaction of two species utilizing the same limited assets for inborn
development of the species. It is assumed that the interaction of the two species benefits one of the species. The
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species which gets benefit is called commensal species and the species which helps for the growth of the other is
called host species. Suppose N, =N,(t),N, =N, (t) represents the size of population of the commensal and host

species respectively at any time ‘t’. The commensal species (Nj), in spite of the limitation of its natural
resources, flourishes by drawing strength from the host species (N,). Suppose a,,a, respectively represent the

intrinsic growth rates; a,,a,, represent the rates of reduction due to the limitation of natural sources of the
commensal and host species. a, represent beneficial factor of the commensal species by interaction with host

species. All these parameters assume positive values .The mathematical model governing the commensalism
between two species is given by coupled non-linear differential equations,

dNy 2

AN 3N 3NN,

dN

~—2_a.N,-a, N2 (1)

Phani Kumar.etal. [13] established that the system has four equilibrium states and the co-existent state

(M , ﬁj is the only stable state under the assumption
all a22 a22

(A)  @ay +aya, #aay, -
The global stability is analysed by a suitably constructed Liapunov’s function.

2.2 Model-2: This model is concerned with the interaction of the two species having commensalism between
the species. Commensal species ( Nl) is weak to sustain, despite of the support of the other host species( N2) .

The host species has their limited food source and the species (Nl) benefits by the interaction with the host

species ( N2 ) Mathematically this model is represented by:

dN 5
5 = N 3N AN N,
dN
2 _ ~ 2
& 22Na 73N, (2)

Here-d, represents the natural death rate of the commensal species in the absence of(Nz) and all
other parameters have same meaning as mentioned in model-1. Seshagiri Rao et.al [14] studied this model
extensively and concluded that (i) N, will sustain forever in the absence of N, and tend to the equilibrium point

(O,ij (if) In the coexistent state the equilibrium point (M,ij is stable with the
2 &y &
condition
(B) d, < 2%
8,8y,
The global stability is analysed by a suitably constructed Liapunov function.

2.3 Model-3: In this model the commensalism is represented by F(Nz) ,a function of the host species of the

form F(N,)= ﬁaN'il , instead of a linear functiona, ,N,, in the model discussed in section 2.1.
+ 2

Itis clear that F(N,)is bounded and F(N,)— a constant « >0as N, > . Further g(=0) is a parameter which
signifies the strength of the commensalism. The commensalism is strong, weak or neutral accordingas g>0

<0 or p=0.Theratio K, :i,i =1,2 is the carrying capacity of commensal and host species.
8
This mathematical representation of this model is

le ~

2
o alNl_a‘llNl + NlF(Nz)
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dNZ 2 3
& 22Na 73N, @)

Phani Kumar and Pattabhiramacharyulu [12] established that the system has four equilibrium states and the co-

SN 1 K
existent state (Nl, N, ) = —| Ka, + 2 | K, | isalways stable under the assumption
all ﬂ+ K2
aK
(C) Klail + ﬂ+ éz # K2a22 *

The global stability is established by adopting Liapunov second method.

I HOMOTOPY-PERTURBATION METHOD (HPM)

The Homotopy-Perturbation Method is a combination of the classical perturbation technique and
homotopy technique. To explain the basic idea of homotopy-perturbation method, consider a non-linear
differential equations.

A(u)-f(r)=0, reQ (@)

subject to the boundary condition B[ u%jz 0, reI’ where Ais a general differential operator, B js a
n

boundary operator, f(r) is a known analytic function, T'is the boundary of the domainQand ;indenotes

differentiation along the normal drawn outwards from .
In general the operator A be divided into a linear part L and a non-linear part N. The equation (4) can
be written as

L(u)+N(u)— f(r)=0 ©)
By the Homotopy technique [4], construct a function v(r, p):€Qx[0,1] —[J which satisfies

H (v, p)=(1-p)[L(v)-L(u) ]+ p[A(v)-f(r)]=0 pe[01],req (6)
= H(v,p)=L(v)=L(uy)+ pL(uy)+ p[N(v) = f(r)] =0 (7

pe[01]is an imbedding parameter. u,is initial approximate solution to equation (4),which satisfies the

boundary conditions.
From the equations (6), (7)
H(v,0)=L(v)-L(u,)=0 ®)
and H(v,1)=A(v)-f(r)=0 9)
Thus it can be observed that as the parameter P varies from zero to unity v(r, p) varies from u,(r) tou(r).
Assume v(r,p) asa power series in p

V=V, + Py, + PV, + P+ Y e e (10)
The limitas P — 1 v approaches the solution of equation (4)
U= Ltv=v,+V+V, +V,+V, + —————————— (11)
p—ol

3.1 Solutions Of The Models By HPM
In this section we apply the HPM  explained in section 3 to the system of non-linear ordinary
differential equations (1), (2) and (3).

3.1.1. Solution Of Model-1
Consider the equations (1) with initial approximations

Vig(t) = Nyo(t) =v1(0) =¢;

(12)
V20 (t) . N20 (t) = V2 (O) = C2
As explained in section 3.1, the equations (1) can be written as
v =Ny +p ( Nig' —apVy +av” - a12V1V2) =0
(13)

’ ’ ’ 2
Vo =Ny + P(Nzo —aVy +ax)Vy )=0
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Assume the approximate solutions of N, (t),N,(t) as

Vi (1) =V + PV, (1) + P2V, (1) + PPV g (1) + pivy, () +——————————
V, (1) =V, 0+ PV, (1) + P2V, , (1) + PV (1) + Py, (1) +——————————
vij(i=12j=1234,... )are to be determined by substituting equations (12) and (14) into equation (13) and

arranging the terms in the increasing powers of p

|:V1,1' (t)+ Nag (t) - avy o () + @14y 0% (t) — sV o (V2,0 (t)} p+ [V1,2, (t) = a1 (t) +2803v3 o (t)vaz (t) — 812V 0 (t)Vou (t) —B1oVa1 (t)V20 (t)} p

(14)

+[V1,3' (1) a2 (t) + 282%1 0 (t)ve o (1) + B2v1.% (1) ~ BuoVa0 (E)V2,2 () — B ()Voa (1) gV 2 (t)V20 (t)} p®
+[V1,4' (1) — 2wV 3 (t) + 280330 (1) vy 3 (1) + 28024 (1) V1,2 () — Ba2Vy,0 ()V2,3 (1) — A1V (t)V2, 2 () — a2Va2 ()2 () — 12Va3 (t) V20 (t)} plom— e
[Vai (1) + Nao' (1) = 8av20(t) + 8gava,0% (1) [+ Va2 (1) - v (t) + 2azav o (v (t) |

+[v2,3' (t)—apVp o (1) + 289,y o (t) Vo 2 (1) + azzvzf (t)} pS+ [v2'4' (t)—agvp3(t)+2a95V5 o (t)Va3(t) + 2895V 1 (t)Va.2 (t)} php—— e — =0

(15) To obtain the unknowns vij(t),i=12j=1234 solve the following system of linear differential equations
with the initial conditions given in (12)

From (15)
Vg + N — @V o + a1V o — oV Vo 0 =0, Vi1 (0)=0 (16)
Vai +Nag —8Vp o+ aVp0° =0, Vo1(0)=0 (7)
Vi —aqVig + 2843V gVig — 1oV oVa 1 —BV1aVa,0 =0 Vi2(0)=0 (18)
Va2 —@Vp1 +285Vp Vo1 =0, V5,(0)=0 (19)
Vig =8 o+ 280V Vi o + A11Vis — AV Vo2 — AioViqVag — BioVh Vo0 =0, Vig(0)=0 (20)
V.3 —agVp o + 289V oVp 0 + a22V2,12 =0, v,3(0)=0 (21)

’
Vi g a3+ 280V Vi 3 + 2809V 1V o — 1oV 0Va,3 — 1oVi Va0 — 1oV oVog —BViaVa0 =0, Vi4(0)=0  (22)

Va4 = 8gVa 3+ 2895V Vo 3 + 289V21V22 =0, V5,4(0)=0 (23)
Solutions of the differential equations (16)-(23) are given by
t t t
2
via(t)= alIVl,odt - a11J.V1,o dt+ a12.|.V1,0V2,odt = (3 — 2316 +ayCy )it (24)
0 0 0
t t
szl (t) = azjV2’0dt — aZZJ.VZ,OZdt = (az — a22C2)Czt (25)
0 0
t t t t
vio(t)=2 _[ vy gt — 2a11'|‘v1'0v1’1dt + 312IV1,0V2,1dt + alZIV1,1V2,Odt
0 0 0 0 (26)

t2
=[(31 — a0 + alZCZ)(alcl — 281017 +a3,01C ) +ayy(a — azzcz)clcz}?
t t t2
V2’2 (t) = a2J.V2]1dt - 2a22J-V2'0V2‘1dt = (az - a22C2 )02 (az - 2a22C2 )E (27)
0 0
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t t

t

t t t
2
vis(t)= a1IV1,2dt - 2a11‘[v1,0v12dt - alljivlvl dt+ alzjivl'ovzyzdt + alzjlvl’lvzyldt + alzjV1, Vo odt
0 0 0 0

0

3

2(31 —2ay1¢ + a0 )[(al — 1101 + 812C2 )(3101 - 25111012 +2126C) ) +a12 (a2 —aC )ClC2:|E
t3 t3
+(ay — a0 +1562) ¢ I:alZ (82 —2ap,¢; ) c — 89161 (8 —ay1Cy +815C; )]3 +892C1C5 (82 —ap2C; ) (A — 2825C5 ) —

(28)
t t t t3
2 2
vo3(t)= azIVz,zdt - 26‘22_|‘V2,0V2,2dt - a22J.V2,1 dt = (ap —aCy)c, [(az —28p,Cy ) —2895C; (82 —a95Cy )}g
0 0 0
(29)
t t t t t t
V1'4 (t) = alj‘vlysdt - 2a11.|‘vl‘ovl’3dt - 2a11J‘V1y1V1'2dt + alzjvl’oVZVSdt + a12.|‘V1ylV2'2dt + alzj.vl’2V2’ldt + alzj‘vl“?,VZ’odt

0 0 0 0 0

0 0
(8 —2831¢, +15C; )[(31 — 8116 +312C) )(3101 —2ay,6% +31,0,C, ) +agz (8 — a0, )0102} t
=(y — 2ay1¢; +a5C;) —
+2(8g — aq1Cy + @265 )¢y [312 (8 —85€; ), — 111 (8 — @10 +812C; )] +a2C1C; (82 — 8226 ) (@2 — 2a55C;)

4
+(ag — 2110 + a0 ) {alZCZ (B2 —ap2Cy ) (B2 — 2825C; ) — 2844 |:(a1 — 81101 +81,Cp )(alcl —2a,02 + alzclcz) +8y5 (8 — 22567 ) 165 ]} 8
4
+29,01C; (8 — 82,0, )[(az —2ap,C, )2 —285,C; (85 —85C; )}

24

4
2 t
+81,C; (a2 - a22‘32)[("511 — a0 + a12(32)(51101 —28110)" +81C/Cy ) +ay2 (a2 — 802 )0102}—

(30)
t t t
Voq(t)= aZJ.v2'3dt - 2a22J‘v210v2'3dt - 2a22'|‘v211v7_’2dt
0 0 0

4
=(ap —2ay,C; ) (az — a0y )cy [(az —2ap,Cy )2 —8ay,C; (8 — 850, )] 22

The approximate solution of Ny (t),Ny(t) is

(31)
4
Ny(t)= Lt vy(t)= ) vy (t) (32)
p—1
k=0
4
N2 (t)= Lt va(t)= ) vau(t) (33)
p-ol pry
which yield
2
Ny (t) =0+ (e —aye + 5112‘32)01t + [(31 —anG + alzcz)(al‘h - 2311012 +81261C ) +ap (az — a0 )0102}*
N (31 —28y:0; +a15C; )[(31 — 811G +315C; )(3101 - 2"7111012 +8126Cy ) +ap (az - 32202)0102} t3
+2(a —ay0 + alzcz)cl[alz (a2 —2a85 )¢, — 3101 (8 — @410y +a45C, )] +84501C; (8 — a5, ) (8 — 285,07 )
(a1 —2ay0 + a12c2)|:(a1 —a0 + a12c2)(a1cl - 25‘1101Z +8126C2 ) +a15 (3, — a0, )0102}
(ay — 23301 +a,07)
2(8y — g0y +ag,0, )01[312 (82 —apCp )cp —ay1cy (2 — 10y + 2158, )] +8,01C; (82 —aC ) (82 — 28,6, )
t4
+ +3(ay —ay10; + 126 ) {31202 (82 —az0p )(82 —2a:¢, )~ 2311[(31 —ay10 + 2350 )(3101 — 28,67 + a120102)+ 2y (3~ azzcz)clcz}} v
+3150.Cp (az —ant; )[(az =230, )2 =230, (az —ant; )} +3315Cy (az —ant; )[(31 —a1C +312Cp )(3101 - 2311012 + 3120102)+ A (az - 32202)0102}
34)
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2 t3

t
N2 (t) =Cy + (a2 - a22C2)C2t + (a2 - a22C2)CZ (az - 2a22C2)E + (az — a0y )Cz l:(az - 2a22C2 )2 - 232202 (az — a0y ):|€

t4

+(ap —2a,C; ) (8 — 802 )¢, [(az —23y,Cy )2 —8ay,C, (ap — a0, )}z

(35)

The values of the parameters in equation(1l) which satisfy condition (A) (see section 2.1) are taken as
a, =1.15;a,, =0.05;a,, =0.2;a, =178;a,, =0.0;N,; =2;N,, =2

The approximate solutions of equation (1) are obtained by using equations (34) and (35) and their
graphical representations are given in figure 1 and Figure 2 . In these figures solution obtained by 4™ order
Runge- Kutta method are also depicted.

It is observed from the figuresl and 2 that the solutions obtained by the two methods agree up to the
calculated degree of accuracy.

4.5 T T
------ HPM Method
=+=>=:= R K Method

e
Col
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0 0.05 0.1 0.15 0.2 025 03 035 04 045 05
time(t)

Fig.1. For the values &, =1.15;a,, =0.05;a,, =0.2;a, =178;a,, = 0.01;N,, = 2;N,, = 2,Comparison between the
solutions of N1 (Eq(1)) obtained by HPM ( calculated up to 4 terms) and R-K method.
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time(t)

Fig.2. For the values  a =1.15;a,, =0.05;a,, =0.2;a, =178;a,, =0.01;N,, = 2;N,, = 2,Comparison between the
solutions of N2 (Eq(1)) obtained by HPM ( calculated up to 4 terms) and R-K method.

3.1.2. Solution of model-2
Consider the system of equations (2) with initial approximations

V].O (t) = Nlo (t) = Vl(O) = C_L
Voo (t) = N20 (t) =V, (0) = C2
As explained in section 3.1, the equations (2) can be written as

(36)
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! ! ’ 2
vy —Ngg + P(Nlo —dvy + g - a12V1V2) =0

) (37)
V2 =Nz + p(Nzo — V5 + a0V, )= 0
Assume the approximate solutions of N, (t),N,(t) as
Vi (1) =Vio+ Py, (1) + PPV, (1) + PPy (t) + pivy, () +—————————— 38)

Vy (1) = Voo + PV (1) + PPV, (1) + Py s (1) + PV, () +——————————
vij(i=12j=1234,.....) are to be determined by substituting equations (36) and (38) into equation (37) and
arranging the terms in the increasing powers of p
[t ()4 Nug' (6)+ vy (t) + aaivy o (1) ~ vy o ()0 (1) | P+ [ Va2 (6)+ vy (1) + 2aaivy o (1)1 (€)= auavy o (t)v2: (1) = augis (V0 (t) | P

+[V1,3' () + dyvy 2 (1) + 2803v1 0 ()12 (1) + Bravas” (1) — BV 0 ()Va,2 () — AgpVaa () (t) —212vy o (Voo (¢ )] p

J{VM' (t)+dqvy 3(t)+ 2897wy o (t)vy 3 (t) + 2877V 1 (t)Vy 2 (t) —B1aVe 0 (t) V23 (t) —B1aVe (E)Va, 2 (t) —aoVy o (t)Vas (t) —aroVe 3 (t)Vo 0t )] Py =0

(Vo ()4 Nag' (£) = v o (1) + 8av 02 ()| P+ [ Va2 (€)= v (1) + 3o (t)v2a (1) |
)

+ V23 (€)= a2 2(1) + 20020 (1)V2.2(6) + Q22,2 (1) | PP+ Vo (1) ~ v (1) + 2820V 0 1)V (1) + 3ot (4o (1) | 4= = ===

(39)
To obtain the unknowns vi'j(t),i =1,2; j =1,2,3,4 solve the following system of linear differential equations with

the initial conditions given in (36)

From (39)
Vig +Nig +divi g + a1y 0° — a1V Va0 =0, v11(0)=0 (40)
Vai +Nag —8Vp o+ agVp0° =0, Vo4(0)=0 (41)
Vi +OiVig + 2803V Vi1 — 8oV Vo g —B1oVaVa 0 =0, Vy2(0)=0 (42)
Va2 —@Vpy +2a5Vp Vo1 =0, V5,(0)=0 (43)
Vi3 0V o+ 2801Vy oy o + 8yqVp 1 — AgoVy Vo p — B1aVy Vg — B1oVy Vo 0 =0, vy 3(0)=0 (44)
Vo3 —agVy g +2855Vp Vo o +8goVp1° =0, Va3 (0)=0 (45)

r
Vig +OVig + 280V oV 3+ 2801V11V 2 — B1aV1 0V2,3 ~ BiaVi V2 2 — A1aVi Vo1 — A1 aV20 =0, Vi4(0)=0  (46)

V214/ - a2V213 + 2322V210V2y3 + 2322V21V2‘2 = O, V2‘4 (O) = 0 (47)
Solutions of the differential equations (40)-(47) are given by
t t t
via(t) = —dlel,odt - allIVLozdt + a12_‘.V1,0V2,0dt = (—dy —aygCy + 2328 )it (48)
0 0 0
t t
szl (t) = azjV2’0dt - aZZJ.VZ,OZdt = (az - a22C2)Czt (49)
0 0

t t t t
vio(t)= —d1J.V1,1dt —2ay; J. vy oV gdt +ap, I Vi Vo 10t + 8y, I Vi 1Vp odt
0 0 0

0 (50)
t2
:[(_dl —a10 + alzcz)(—d101 - 25‘11012 + a1201(32) +ap (a2 —aC; )01‘32}?
t t tz
V2’2 (t) = a2JV2]1dt - 2a22J‘V2'0V2‘1dt = (a2 - a22C2 )CZ (az - 2a2202 )E (51)
0 0
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t t t t t t

2
via(t)= —dljvlyzdt - Zallj.vl'ovlyzdt - allj.vM dt + alzjvl,ovz,zdt + 312J.V1,1V2,1dt + alZJ.vly Vo odt
0 0 0 0 0 0
2 2
=(—d1 — 2310 + alZC2)|:(_dl — 3110 + a0 )(_dlcl —2310" + El1201C2)+ a2 (a2 —axC) )0102 }E
t t3
+( =ty — ay36; + a3y )4 [ 8y (8 — 2895€5 ) Cp — 8141 (—dy — 1€y + 845, )]g +83201C5 (8 — 835C5 ) (82 — 2855 )g
(52)
t t t 2
2 2
Va3(t)= azIVz,zdt - 251‘22_|‘V2,0V2,2dt - a22J.V2,1 dt = (ap —aCy)c, [(az —28p,Cy )" —2895C; (82 —a95Cy )}E (53)
0 0 0
t t t t t
V1‘4( ) = —d]_J‘Vj_ 3dt 2a11J.V1 0V1 3dt - Zallj.vl 1V1 zdt + alzj.vl 0V2 3dt + alz'[vl 1V2 Zdt + alzj.vl 2V2 1dt + alzv[vly3V2'0dt
0 0 0 0 0
(*dl —2871C; +81Cp )[( dp — @16 +a15C) ( dic — za1101 +3170C) ) +3ay (az —axC )0102} t4
=(—d; — 2810 +23,C; ) —

+2(—dy —ay;0; +ag5C; )01[312 (a2 —az2€5)Cp —aysCy (—0dy — 81101 +815C, )} + 4201, (82 —822C; ) (82 — 2825C7 ) 24

t4
+(—dy — 2310y + a0 ) {31202 (82 —ap2Cy ) (B — 280, ) — 224 [(—d1 =810 + a0 )(_dlol — 28716, +84,C,Cy ) +23p (8 — a0, )Clcz]}g
2 t
+81501C5 (8 — 8C) )[(32 —28p,C5 )" —285,C; (82 — 35C, )J o
5 4
+81,C; (8 — azzcz)[(*dl — 316G +812C )(*dlol —2a110” + 501Gy ) +a2 (a2 — a0z )Clcz}g
(54)
t t t
Vaq(t)= azj.vmdt - 2a22J.v2’0v2’3dt - 2a227|.v2’1v2'2dt
0 0 0
t4
=(ap —285C; ) (ap —85C; )€, [(32 - 2a22c2) —8aypyCy (8 —apyCy )] 24
(55)
The approximate solution of N, (t),N,(t) is given by
Ny(t)= Lt vt ZV1 k( (56)
p-l
Ny (t)= Lt vy( )=Zv2vk(t) (57)
p—ol
k=0
which yield
2
Ny (t) = +(~d; —ag3¢; +aypCo ) ot + [(*dl — 810G +a1C )(*dlcl - 25111012 +8126,C ) +835 (8 — a0, )0102]?
. (—dy - 28300 + 31202)[(4‘1 — 3116 + 8156 )(*d1°1 - 2a11012 +8120C) ) +83 (82 — a0, )Clczjl f
+2(—d; — a1 +a35C) )01[312 (3 —2aCy ) cy — 81161 (—dy — 811G +81Cy )} +81261Cp (87 —8)C; ) (2 — 28p5C, )
(~dy - 28300 + 31202)[(*‘11 — 3116 + 8156 )(*dﬂ - 2311012 81268 ) +835 (8 — a0, )0102:‘
(—dy — 22316 +ay5Cy)
+2(—d1 — 110 +a12C; )01[312 (az —axC )Cz - 31101(—d1 — 1€ +315C) )} +3120C) (az — a0 )(az - 2a22c2)
t4
+ +3(—dy —ayg0) + 1265 ) {31292 (3 —agyCy ) (ap — 2a,C, ) — 23y, [(—d1 =310y +342Cp )(—dl‘ﬁ — 28,62 +a,0C, ) +ayp (8 —apyCy )0102}} %
+24501C (8 — 8258 )[(az — 28,0, )2 — 285,85 (8, — 855, )} +381,C; (82 —a2,C, )[(*d1 — 3116 + 812 )(*dlcl - 2311012 + a12‘31‘32) +ag5 (82 — a0, )0102]

(58)
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2 t3

t
N2 (t) =Cy + (az - a22C2)C2t + (a2 - a22C2)CZ (az - 2a22C2)E + (az — a0y )Cz l:(az - 2a22C2 )2 - 232202 (az — a0y ):|€

t4

+(ap —2a,C; ) (8 — 802 )¢, [(az —23y,Cy )2 —8ay,C, (ap — a0, )}z

(59)

The values of the parameters in equation(2) which satisfy condition (B) (see section 2.2) are taken
as d,=0.4;a,=0.%a,=0.007;a,=13;a,, =0.15;N,; =L;N,, =1

The approximate solutions of equation (2) are obtained by using equations (58) and (59) and their
graphical representations are given in figure 3 and Figure 4 . In these figures solution obtained by 4" order
Runge- Kutta method are also depicted.

It is observed from the figures3 and 4 that the solutions obtained by the two methods agree up to the
calculated degree of accuracy.

1
HPM Method
=R K Method
0.95
\‘
0.9 \\
N
0.85 \\
o
=
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0.8 o
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~
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0.75 ~
~
~
~
S
0.7 <
~L
S~
\\
0.65
o 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

time(t)
Fig.3.For the values d, =0.4;a,, =0.1;a,, =0.007;a, =13;a,, =0.15;N,; =1;N,, =1 ,Comparison between the
solutions of N1 (Eq(2)) obtained by HPM ( calculated up to 4 terms) and R-K method

3 T T ;
‘ =-~ HPM Method
2.8 | = R K Method
2.6
-
2 -
.4 =
e
2.2 -
-~
o _-'.
= 2 =
...n‘
_——_
- ,,.-"'"..
1.6 v o
o
1.4
1.2 ’__,.=-"'
1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(t)
Fig.4.For the values d, =0.4;a,, =0.1;a,, =0.007;a, =13;a,, =0.15;N,, =1;N,, =1 ,Comparison between the
solutions of N2 (Eq(2)) obtained by HPM ( calculated up to 4 terms) and R-K method

3.1.3 Solution of Model-3
Consider the system of equations (3) with initial approximations

Vlo (t) = Nlo (t) = Vl(O) = C_L
V20 (t) = N20 (t) = V2 (O) = CZ
As explained in section 3.1, the equations (3) can be written as

(60)

’ ’ ’ 2 aVlVZ
Vp —=Nig + p| Nyg —agvy +ag3v” - =0
By,
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V) =Ny + P(Nzo, —apVp + aszzz) =0
Assume the approximate solutions of solutions of N, (t),N,(t) as
Vi (£) = Vi + P (1) + PV, (1) + P (1) + PV (1) # = - ——— === = - (62)
Vo (1) =V,0+ PV, (1) + PV, (1) + PVys (1) + Py, () +——————————

Vij(i=12j=1234,.... ) are to be determined by substituting equations (60) and (62) into equation (61) and
arranging the terms in the increasing powers of p .

(61)

{vm' (t)+ Nyg'(t) a0 (t) + anvy o2 (1) _% Vio () (t) _%vm (t)va 2 (t) +%v1'0(t)v2103 (t) -%vm ()20 (t)}} o

Juouat )+v111(t)v210(t)—%(Zvlyo(t)vzvo(t)vzyl(t)+v1'l(t)v2'02(t))
+avy o () —aqvyq (1) + 28V o (Ve (1) =
2 (0l oWualt) 5 %(3%0()vzyl(t)vzyoz(t)+vlyl(t)vzyo3(t))—%(4&0(t)v2,03(t)v2'l(t)+v1,l(t)v2,04(t))

+

st st sty )
Vi3 (t)—agvy o (t) +28vy o (t)vy o () + 311V1,12 (t) & TR0 Tt 120 p
B L [3%0 ()22 ()2 0% (1) +3vy () V0 (t)V2i (t)] 1 [4"1,0 ()03 ()5 () + Bvy 0 ()12 (V2,07 (1)
B

2| v (1)va (D)o 02 (1) + vy (V2,01 (t) B\ 48wy (1)va,03 ()van (1) +v o (v, (t)

V10 (t)V2,3 (1) + Vi1 (6)Va,2 (t) + Va2 (t)v21 (1) + i3 (t)va (1)
{Zvlo(t)vzo t)Va,3(t)+2vp o (t)Var (E)Vo 2 (t) +2v4 (t)vao(t )vzz(t)J
B vy ()02 () + 2vp 5 (Vg 0 (t)va (1) +vaa (t)va 0 (t)
+ V1,4’(t)—31V1,3(t)+2311V1,0(I)V1,3(t)+2311V1,1(t)"1,2(t)_% +[3VI,O(I)V23(t)V20 (t) +6v,0 ()V2,0 (t)Va (t)v22 (1) +vio )V’ (1) J N
2 (

Vi +3vp4 (t)vy (t)vz,o (t)+3vy g (t)vp(t )v212 t)+3vy 5 (t)vay (t )Vzo (t)+vya(t )v20 (t)

(1) )
1[4v1,0( Wao® (1)Va5(t) +12v1 o (t)Va1 ()22 (t) V20 ( )+ 4y ot )v21 (t)va0(t) }
(t) (

__ B\ +vy3 (0)V2,0% (6)Va2 (1) + 61 (0)Var? (V2,07 (6) + A2 (1) v 0 (1) v (1) + vaa(E) v (1) i

[Vai (1) + Nao! (1) = ag¥2,0(6) + 320 ()| P+ v (1) ~ 8gVaa (1) + 2820¥5 0 (t)v2s (1) | P
# Va5 (1) = V22 () + 202V, 0 ()22 (1) + 8av2 2 (1) | P2+ [ Vo (€)= v 5 (6) + 285230 (123 (1) + 2302 (Vv 2 (1) | 4= = === —=0

(63)
To obtain the unknowns vij(t),i=12j=1234 solve the following system of linear differential equations with

the initial conditions given in (36)
From (63)

vig (t)+Nyg (t)—avyo(t)+ 311V1,02 (t) —% vio(t)Vao(t)- %VLO (t)VZ,OZ (t)+ %Vl,o (t)vzyo3 (t)- %Vl,o (t)vzyo"' (t)|=0, v1(0)=0

(64)
Vai +Nag =8V o +agVp0° =0, Vo4(0)=0 (65)
Vo (Va1 (1) + Vi1 ()0 (1) —%(ZVLO(t)vZYO(t)vzyl(t)+v111(t)v2‘02(t))
V12 (t)—agvy g (t)+2ag3v o (t) Va4 (1) —% 1 1 =0,vy,(0)=0
+F(3v10(t)v21(t)v2'02 (t)+v1y1(t)v2’03(t))—F(4vl,o(t)v2’03(t)v2,1(t)+v1’1(t)v2,04 (1))
(66)
Va2 —@Vp1 +235Vp Va1 =0, V5,(0)=0 (67)
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1 [va(t)vz,o(t)vzvz(t)+v1v0(t)v2112(t) J

vw(t)vz,z(t)+v1v1(t)v2v1(t)+v1v2(t)vzvo(t)—ﬂ 202 (a0 (OWVat) 2 (O z(t)

Vi3 (t)—avy o (t)+2ag3v o (t)ve o (t +311V1,12 t)-<& =0, v3(0)=0
() () 1tz (t) ® B +1[3v1,o(t)Vz,z(t)Vz,oz(t)+Wl,o(t)vz,o(t)Vz,lz(t)]_1[4"1,00)"2,03(0"22(t)+6V1v0(t)vlez(t)vzvoz(t)] !
Vs +3v1v1(t)v2v1(t)v2'02(t)+v1v2(t)v2v03(t) s +4v1v1(t)v2,03(t)v2,1(t)+v1¥2(t)v2v04(t)
(68)
V2’3' - a2V2’2 + 2322V2’0V22 + 322V2’12 = O, V213 (0) = 0 (69)
(V10 (t)Va3 (1) +Via (t)Vo,2 (1) + Va2 (1)Vo (1) + Vi3 (t)V20 (1) 1
{Zvlo (t)Va,0(t)va,3 (1) +2v o (t)Va (t)Va 2 (t) + 2v14 (Vo0 (t)V2 2 (I)J
+v11(t)v21 (t)+2vy 2 (t)vo 0 (t)vaa(t) +v13(t)v2'02(t)
vig (1) — vy 3(t) + 28035 o (t)vy 3 (1) + 28034 (t)vy o (1) - ( )+6vy g (t)Vp0(t)vas(t =0, v4(0)=

% 1 [:wm(t)v 23(t)Va0

Vo (1) +vio (Va2 (1) J

)
212 () +3vy 5 (1)1 (£)va 07 (1) + vy (t)va, 03 (1)

B +3vy1 (1) 2 ()02 (1) + 31 () Va0 (t)V
1 vy o (t)vy, OS(t)vz 3(t)+12vy g (t)v 1 (t)vo 2 (t)va0 ( )+ 4vy ot )vzyf’(t)vzyo(t)
L B2\ +u1 (0)v0° (Vv (1) + By (1) v (1)V,0% (6) + 402 (0)Va,0% (E)Vaa (1) + s (D) v (1) ]
(70)
Va4 —8gVp 3+ 2a9V5 0Va 3 + 2893V21V2,2 =0, V2,4(0)=0 (71)
Solutions of the differential equations (64)-(71) are given by
t t t 1 t 1 t 1 t
2 a 2 4
via(t)= al_[Vl,odt - allij0 dt + 3 Jvl,ovz,odt —EJ‘VLOVZVO dt + = 7 Jvl V2,0 St — 7 jvl V20" (1)
0 0 0 0 0 0 (72)
_ a
=Cp| @ — a0 +—CoVy |t
Vij
t t
2
Vz]l (t) = a2J‘V2'0dt - a22J‘V2'0 dt = (az - a22C2)C2t (73)
0 0
t t 1 t t
. . J.V1,0V2,1dt + j vy 1Vp ot _E 2 J vy, gV2,0V2.10t + J.V1,1V2,02dt
vlvz(t):aljvlyldt72a11.|‘v1'0v1'1dt+Z 0 . 0 . 0 to .
0 0 +i2 3J‘V1’0V2’1V2'02dt + J‘Vl’lVZOgdt — ia 4J.V1'0V2’03V2’1dt + J‘V111V2’04dt
ﬂ 0 0 ﬂ 0 0
a a a t?
= 01(31 -6 + _szlj[al —2ay50; + —02V1J +—CCVo (8 —apty) |~
[ B B B ( ) 2
(74)
t t 2
t
V2’2 (t) =ay V2,1dt - 2a22 V2’0V2'1dt = (az — a0y )CZ (az - 2a2202 )? (75)
0 0
C . . .
. . ZJVLOVZVOVZ’Zdt + IV1,0V2,12dt
1
J.V1,0V2,2dt + J.vmvmdt + J.V1,2V2,0dt _E 0
\ . . 0 0 0 +2J.v1,1v2,0v211dt + ‘[vlyzvzyozdt
via(t)= "’11J‘V1,2dt - ZI a1V oV 20t — j.allvl,lzdt + ° °
0 0 0 p 2 t 2 3 2, 2
3J‘VLOVZVZV2'0 dt+3J- Vy,gV,0V21 dt AJVLOVZ_O Vo0t + GJ.Vl.OVZ,l Vv, o“dt
1| o 0 1| o
+F t t 7? t t
+3J'v1v1v2v1v2v02dt + JV1,2V2,03dt +4J-v1v1v2v03v2‘ldt + J.V1,2V2,04dt
0 0 0 0
a a a a t8 2 a z t
=4| a3 —2a1¢; + —CV, a; — 310+ —CoVy || @ — 28110 + —CyV) [+ —CiCV5 (@ —ay,C ——a a; — 10 + —CV, —
{[1 41C1 ﬂ21]{01[1 41C1 ﬂ21j[1 41C1 ﬁzlj ﬁCLZZ(Z 222):”6 1101[1 41C1 ﬂ21] 3
+| Z ey (a2 — 8526 ) (8 — 2a,C7) ﬁ* ZocN, (82 —aCo)| & — a0 +— ZeMy ¢ +| e, (a2 —azc, )2 ¢
B 6 |5 B 3 3
(76)
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t t t

t
Vo3(t)= azJVz,zdt - 2<”‘22J‘V2,0V2,2dt - azzsz,lzdt =(ap —ax0;)c, [(az — 285,y )2 —2a,C, (8 —8,C; )}E

0 0 0

t
IV1.0V2,3dt +V
0

|

t

t

11V2,20t + JV1,2V2,1dt + J‘V1‘3V2,0dt

0

0

(77)

t t
t
2Iv1 0V2,0V2,3dt + ZI Vy gV2 1V odt + 2J.v1 1V Vo odt
, o L0¥21Y2, 1V2,0V2,
0

0
t t t

+J.v1 V21 2dt + Zjlvl 2V2,0V21dt + J-v1 3V2,0 2dt
0 0 0

t t t t
[24
vig(t)= J.alvmdt - 2-[ g1V gVy gdt — 2J. agqVy vy o0t + i 3J.v1v0v2'3v2’02dt + GIV1,0V2,0V2,1V2,2dt + J‘V1.0V2,13dt
0 0

0 0 0 1

t t t
+3_[ ViaVa, zvz'ozdt + 3Iv1|1v2v0v2‘12dt + BI vllzvzllvz_ozdt + J'vlv3v2‘03dt
0 0 0 0

t
4J‘v110v2v03v213dt +12 I V1,0V2,1V oV2 02t + 4J‘v110v2'13v210dt
1 0 0 0

t t t t
+4J.v1v1v2v03v2’2dt + Gjlvlylvzvlzvzvozdt + 4-..v1’2v2’03v2v1dt + _[V1,3V2,04dt
0 0 0 0

o o o o
[al —2ay,C; + EczvlJ{cl[al —ay,C; + Eczvlj[al —2a,,C; + EczvlJ + Eclczvz(az — azzcz)}

2
2 (24 (24
—2ay1Cy (al —ayiC + EC2V1J + ;CICZVZ(aZ —a5;C;)(az —2a5:C5) 22

[24
:(al —2a,1C) + ECZVlJ

o
+2Z B —c\V, (al — 10 + ;CZ\/lJ(aZ —aCy )‘32 +2-2 /i’ 5 C1C2 V3 (32 - a22c2)

- 2a, ol(a —a ol—»—gcvj cl(a —a ol+zcvj(a - 2a ol+chJ+gclcV (az —ayycy) ﬁ
2G| & TG g 1 AnG OV | & 110+ 25OV [+ gtV (@2 — 82202 ) g

4
+ZeV, [al — 10 + Eczvljcz (a2 —az207 ) (a2 — 2a5C; )—

B

(24
+ EC.I.CZVZ (a2 - a2202)[(32 - 2a2202) — 2a5,C; (A — apC; )}
o o o o t4
+;V2 |:01 (al — 10 + ECZVlJ[al — 22116 + Eczvlj + E%C2V2 (a2 —apnyCy )} Co (a2 —anCs )E

4
o 2 2 t a a 2 ot
+_/5'2 2cVa (@ —a,C5) c2° (8, — Zazzcz)g’r—ﬂz O_I.V?:(al —a110 +ECZV1J(32 —a03) ¢, x

4
+%°1[1—%02j023(32 —32202)3%
(78)
t t t
Vo4a(t)= a2J.V2'3dt - 2a22'|.v210v2'3dt - 2a22J-v211v22dt
0 0 0 (79)
t4
=(a — 28250, ) (8 — 803 )2 [(az - 232202) ~8a5,C5 (8 — 82,C, )] 22
1 1 1 1 1
where V; =1—=c¢, +—¢,2 ——¢,%; V, =1-—=2c +—3c 240 Vg =1+ = La ——6c
1 ﬂ 2 ,82 2 ,33 2 2 ﬂ 2 2 ﬁ 2 3 ﬂ 2 ﬂ 2
The approximate solution of Ny (t),N,(t) is given by (by considering the first 4 terms)
N;(t)= Lt v v 80
1(1)= Ltu(t Z 1 (80)
4
N2 (t)= Lt va(t)= ) v (t) (81)
p—ol pry
which
yield
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a a a a t?
Ny(t)=c +¢ | ag —a1C +—CVy |t+ a; —a10 +—CoVy || 83 — 28110 + —CoVy |+ —C1CoVo (89 —@90Cy ) |[—
1(t)=c 01[ 4 —a10 B 2 1] {01[ 4 — 810 B 2 1]( 4 — 2810 B 2 1] ﬁcl V2 (82 — a0 2)} 2

2

[31 —2a1C; + ZCZVJ{%[% a0 + Zczvlj(al — 28910y + gc2V1] +Z o, (a2 — 2y, )} - 22,6 [31 -0 + gc2V1] 3
. B B B B B £
6

2
+%0102V2 (a2 —az0;) (82 — 2855C5 ) + 2%01(:2\/2 (a2 —a2,C, )[31 —ayyG + %‘32V1] + 2%01022% (a2 —aC;)

(al — 28,0y + %%le:cl[al —aG + %02V1J[31 — 281G + %szl] + %QLCZVZ (a2 — a0, )}

2
2 a a a a a 2
—2a¢ (31 — a0+ *szlj + E‘&szz (a2 —a02 ) (82 — 285582 ) + ZECLVZ [31 —ay10 + ;%W](az — 8,07 )Co + Zﬁfhczzvs (a2 —azc;)

B

a a a a
— 61| 8 — ay1C; + —C,V; 8 —a1C +—CVp || & — 28410 + —CVy [+ —C1CV5 (8, — ay,C
J 1101( Y — 8101 B 2 1]{%( y — 810 B 2 1][ 4 — 2810 B 2 1J ﬁ,cl V2 (a2 —ag 2)} 4

o
+| 8 — 2810, + —CyV4
( Yy 410 8 2V1 o

+%0102V2 (a2 —agc, )[(az —2ay,C, )2 —28p,Cy (8 — a0, )} + 3%01Vz [31 a0+ %CMJCZ (a2 —azt; ) (2 — 28555

o a a a [24 2
+SEV2 {01[31 -0 + ECZVIJ(al —2ay6 + ECZVJ + E‘hczvz (a2 —azcC, )} ca (a2 — a5, ) + 5?°1V3 (2 —a9)" 62 (32 — 2856, )

a a 2 a 4 3
5?%V3[31—31101+EC2V1J(32 —a0)) ¢ +6F01[1—Eczjcz3(az ~20;)

(82)
2 3
N (t) = + (@ —aCy )t + (@2 —aCy )Cp (82 — 282,C; )% +(ap —apyCy )y [(az —28,,Cy )2 —289,C) (87 —ap,Cy )]%
4
+(ap —289,C; ) (82 — a7 ) C; [(az —2a,)C) )2 —8a9,C; (8 —ag,Cy )}ﬂ

(83) The values of the parameters in equation(3) which satisfy condition (C) (see section 2.2) are taken as
a =La, =24,p=2,q=3.La,=0.03a, =0.65N,, =L N, =1

The approximate solutions of equation (3) are obtained by using equations (82) and (83) and their
graphical representations are given in figure 5 and Figure 6 . In these figures solution obtained by 4™ order
Runge- Kutta method are also depicted.

It is observed from the figures5 and 6 that the solutions obtained by the two methods agree up to the
calculated degree of accuracy.

1 I
\ ----- HPM Method
0.98 N === R K Method
s
NN
0.96 \.:\
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0.94 AN s
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z N "\,\
0.92 NS
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>
N .
0.9 hY \»
N
\\\ ."’
\\
0.88 \\
\\

0.86 .

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
time(t)

Fig.5. For the values a =2%a,=24;p=2;9=3.3a,=0.03;a,, =0.65N,, =1;N,, =1,Comparison between the
solutions of N1 (Eq(3)) obtained by HPM ( calculated up to 4 terms) and R-K method
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Fig.5. For the values a =La,=24;p=2q=3.1a,=0.03a, =0.65N,,=1N,, =1,Comparison between the
solutions of N2 (Eq(3)) obtained by HPM ( calculated up to 4 terms) and R-K method

V. CONCLUSIONS AND RESULTS.

In this paper using He’s homotopy perturbation method, approximate analytical solutions of a system
of nonlinear differential equations which represent the interaction between two species are evaluated. Three
different models of population dynamics with commensalism between the species are considered and their
approximate solutions (first four terms of the series solutions, see sections 3.2.1-3.2.3) are obtained. The
solutions of the population models are also evaluated by R-K method of 4™ order and compared with that of the
solutions obtained by utilising HPM.

In Figs.1and 2 the solution curves of the mathematical model of population dynamics (equation (1))
obtained by the HPM and R-K methods are depicted. It can be observed in Fig 1&2 that there is a very close
approximation between the solutions for N1 (Commensal population) and N2 (Host population) in the time
interval [0, 0.45] by using only 4 terms of the series given by Eqg. (11), which indicates that the speed of

convergence of HPM is very fast. A better approximate analytical solution for t > 0.45 can be achieved by
adding more terms to the series in Eq. (11).

In the similar way for the other two models (Eqns(2)&(3)) are also depicted in figs 3,4,5and 6 . The
graphs indicate that the approximate solution curves obtained HPM (by considering the first four terms in the
series) agree with the solution curves obtained by R-K method of 4" order
Figs.3 and 4 indicate that the solution curves of Eq.(2) by HPM for N1 and N2 almost identical with the
solution curves by R-K method in the time interval [0, 0.5].

Figs.5 and 6 demonstrate that the solution curves by four-term HPM and R-K method of the system in Eq. (3)
are indistinguishable in the time interval [0, 0.38]
These numerical solutions are obtained by using ode45, an ordinary differential equation solver of MATLAB .
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