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ABSTRACT: In this paper, we study Jensen’s inequality for the case of convex functions to obtain a special case 

of Shum’s generalization of Opial’s inequality. The main objective of the work was to derive Opial’s inequality 

using Jensen’s inequality involving integral functions. The methodology adopted in this paper followed a new 

trend of establishing integral inequalities. The result obtained was a special case of Opial-type inequality of 

Shum’s. 
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I. INTRODUCTION 
 Some decades ago a Polish Mathematician called Zdzidlaw Opial established an inequality involving 

integrals of a function and its derivative, which was named after him as Opial’s inequality. 

Since it’s discovery in 1960, Opial’s inequality has proved to be one of the most useful inequalities in 

Analysis. Opial ([5]) first established the following interesting integral inequality. 

 

Theorem 1.1 ([5]) Let    bCtx 0,  be such 0=)(=(0) bxx  and 0>)(tx  in )(0,b . Then, the 

following inequality holds. 
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 In (1.1), the constant 
4

b
 is the best possible.  

Literature abounds with papers which generalized Opial’s inequality. (cf. [1, 2, 3, ?, 6, 7, ?] and the references in 

them).  

In these generalizations or extensions, the authors have used different methods to obtain their results. 

Among the different investigations is Shum’s generalizations [6, 7, 8]. Shum in ([7]) gave a general and shapened 

form of Opial’s inequality. 

Our objective in this paper is to use the Jensen’s inequality for convex functions to obtain an extension of a special 

form of Shum’s generalization in [7].  

 

II. SHUM’S INEQUALITIES RELATED TO OPIAL’S 
In 1974, Shum T. D added his own contribution to literature. He used differential inequality for a result that looked 

more complex in the expression than other generalizations. 

Shum ([7])obtained the following inequality. 

 

Theorem 2.1  Let )(tx  be absolutely continuous on ][0,b  and 0=(0)x . If 0>l  and 

,<|))((| 1
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 where  
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 If either  1< l   and both ,<|)(||)(|
0

 dttxtx l
b

 and ;<|))((| 1

0
 

 dttx l
b

  or  0<<1 l   and  

,<|)(||)(|
0

 dttxtx l
b

  the reverse inequality holds. Further, for  0>l   or  0<<1 l , equality holds 

in (1.2) if and only if ,=)( cttx  whereas for 1< l ,  equality never holds.  

  

Remark 2.1 In (1.1), equality holds if and only if )(tx  does not change sign on ].[0,b   In this case, the 

inequality (1.2) reduces to  
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 which is a special case of Shum’s generalization.  

  

 

Some Adaptations Of Jensen’s Inequalities : 

 Let   be continuous and convex and let ),( tsh  be non negative, 00,  ts  and   be non 

decreasing. Let ,<)()(  tt   and suppose   has a continuous inverse 
1 (which is necessarily 

concave).Then,  
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 with the inequality reversed if   is concave. The inequality (3.1) above is known as Jensen’s inequality for 

convex function . Setting 
luu =)( , tt =)(  and bt =)( , then as a consequence of (3.1), we have for 

1l   
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 which we write as  
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 and for  1,<<0 l  the inequality 
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 as the reverse of (3.3).  

Furthermore, if pl 1 , it follows from (3.3) that 
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III. MAIN RESULT 

In this section, we take a class of functions which does not change sign on ],[ ba  and we use it to obtain 

a direct extension of inequality (3.4). Towards this end we need the following lemma. 

 

Lemma 4.1  Let )(tf  be continuous function and non-decreasing on [a,b], and  <<0 ba   with  

0> for 0>)( ttf .  Suppose that  0.> and <0 0,>1, pqlqlp    Then,  
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Proof:In the inequality (3.4), let  
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Then, we have  
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Since 0,>q  we have ].,[  )()( btssftf qq   Consequently,  
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 Combining (4.4) and (4.3), yields, 
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 We have,  
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 Combining (4.5) and (4.7), we have  
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 On simplifying and arranging the above inequality (4.8), it becomes  
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 Let  
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 Putting inequality (4.10) into (4.9), we have  

 

p

ql

ql

lp

pp

ql

p

qllpl
b

t

ql dsssftdssftft






























)(1
)(1)()(

1 )(][)()(




   (4.11) 

   

 Multiplying both sides of (4.11) with  
1t  then,integrate over [a, b] with respect to t, we obtain  
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 Take the RHS of (4.12) and then integrate by parts to obtain  
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 Simplifying (4.13), we have  
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 using the fact that for  

 ],[  0,> btst    

we have  
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 Simplifying (4.15) further, we obtain,  
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 Evaluating the last integral on the RHS of the (4.16),we have  
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We combine (4.12) and (4.17) to obtain,  
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Since f is non-decreasing and  0>)(tf   whenever  0>t , on ,<],0,[  baba , we can take modulus 

of both sides without changing the inequality sign, to obtain.  
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 This completes the proof of the Lemma. 

 

Theorem 4.1  Let all assumptions of Lemma 4.1 hold. Then,  
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Proof :Suppose 1= and 1= lpq  in inequality (4.19) above .Then, 
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 Since    ][0,0,>)( bttf     we can write (4.21) as  
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Rearranging and factoring out   
1lt  gives  
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 Furthermore, since   0t  on  [a, b], it then follows from inequality (4.23) that  
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 Rearranging (4.24) gives  
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 Use the fact that  ],[ for batbt ll    (and  0>l ), the inequality (4.25) above to obtain  
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 Note that  .))((=)( tftf   Thus, from inequality (4.25) 
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 Now put  ll
1

)(1=    in the above inequality to obtain  
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 If we put dssftx
b

t
)(=)(   then, and noting that |)(|=|)('| tftx  , inequality (4.28) becomes inequality 

(4.20). 

 

Remark 4.1 If we let 
0 a  then, inequality (4.28) becomes inequality (1.4). 

We have succeeded in obtaining a special generalization of the inequality of Shum, using Jensen’s 

inequality for convex functions. 
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