Quest Journals Journal of Research in Applied Mathematics Volume 2 ~ Issue 12 (2016) pp: 16-19 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Distributive and Standard Ideals

Rakish Sharma

Manyavar Kanshiram Government Degree College H41, Nandgram, Ghukna, Ghaziabad, Uttar Pradesh 201003, India

ABSTRACT: This paper investigates the concepts of distributive ideal, dually distributive ideal and standard ideal in a join semilattice.

It concerns with the property of ideals in a distributive semilattice. We obtain a characterization theorem for distributive (dually distributive) and standard ideal in a join semi lattice. We establish the necessary and sufficient condition for a distributive ideal to be standard ideal.

KEYWORDS: Distributive ideal, Distributive semi lattice, Dually Distributive ideal, Standard ideal, Join Semi Lattice.

Received 15 April, 2016; Revised: 10 June, 2016; Accepted 26 September 2016, Published: 30 September 2016 © *The author(s) 2016. Published with open access at www.questjournals.org*

I. INTRODUCTION:

The concept of distributive ideal, Standard ideal and neutral ideal in lattice L have been introduced and studied by Hashimoto,J[9]., Gratzer,G.,and Schmidt,E.T[4]. In this chapter we study the concept of distributive and dually distributive ideal in a semilattice. We observed that every ideal need not be a distributive ideal(dually distributive). The properties of ideals in a Distributive semilattice were also studied. We study that for distributive (dually distributive) ideal of join semilattice a binary relation θ defined on set of all ideals of a semilattice I(S) is a congruence relation. We give notion of Standard and Dual standard ideal in a join semilattice and established characterization theorem for standard ideal in a join semilattice. And given necessary and sufficient condition for a distributive ideal to be standard ideal in a semilattice, also given the Fundamental theorem of homomarphism and isomorphism theorem for Standard ideals in a semilattice.

Distributive Ideals:

1.1 Definition : A semilattice is a partially ordered set (S, \leq) in which any two elements in S have the least upper bound in S.

1.2 Definition: A semilattice is a non empty set S with binary operation V defined on it and satisfy the following: Idempotent law : $a \lor a = a$ for all a in S, Commutative law : $a \lor b = b\lor a$ for all a, b in S, Associative law : $a \lor b = a \lor a = a$ for all a, b, c in S.

1.3 Theorem : In a semilattice S, define $a \le b$ if and only if $a \lor b = b$ for all a, b in S. Then (S, \le) is an ordered set in which every pair of elements has a least upper bound, conversely, given an ordered set P with that property, define $a \lor b = l.u.b.(a, b)$. then (P, \le) is a semilattice.

Proof : Let (S, \leq) be a semilattice and define \leq as a \leq b if and only if a \lor b = b. First, we check that \leq is a partial order.

Reflexive : Clearly $a \le a \Leftrightarrow a \lor a = a$ Anti symmetry : Suppose $a \le b$ and $b \le a$ Thus $a \lor b = b$ and $b \lor a = a \Leftrightarrow a = b \lor a = a \lor b = b \Leftrightarrow a = b$ Transitive : Suppose $a \le b, b \le c$, then $a \lor b = b$ and $b \lor c = c$ Now $a \lor c = a \lor (b \lor c) = (a \lor b) \lor c = b \lor c = c$ Therefore $a \lor c = c \Leftrightarrow a \le c 25$ Now $a \lor (a \lor b) = (a \lor a) \lor b = a \lor b$ Therefore $a \le a \lor b$

Therefore $a \lor b$ is an upper bound of a Similarly, we can prove $a \lor b$ is an upper bound of b.

Therefore a $\lor b =$ upper bound of $\{a, b\}$. Suppose c is any upper bound of $\{a, b\}$, Then $a \le c$ and $b \le c \Rightarrow a \lor c = c$ and $b \lor c = c$.

Now consider $c \lor (a \lor b) = (c \lor a) \lor b = c \lor b = c$, then $a \lor b \le c$.

Therefore a V b is a least upper bound of $\{a, b\}$ in S. Therefore (S, V) is a partial ordered set. Conversely, suppose that (S, \leq) is a partial ordered set. To show that (P, \leq) is a semilattice.

Define a relation $a \le b$ if and only a $\lor b = b$, that is a $\lor b = l.u.b$ {a, b} Let $a \le a$, then a $\lor a = a$ which is idempotent.

Let $a \le b$, then $a \lor b = b$ and $b \le a$ which implies $b \lor a = a$ by the property of anti symmetry a = b. Hence $a \lor b = b \lor a$ which is commutative.

Let $a \le b$ and $b \le c$, then by the property of transitive we have $a \le c$.

Thus a $\lor b = b$; b $\lor c = c$ and a $\lor c = c$ Now consider a $\lor (b \lor c) = a \lor c = c$ and $(a \lor b) \lor c = a \lor c = c$.

Therefore a V (b V c) = (a V b) V c, which is associative. Therefore (P, \leq) is idempotent, commutative and Associate. Hence, (P, \leq) is a semi lattice.

1.4 Definition: A non empty subset D of a join semi lattice S is called an ideal if (i) for x in D, y in D \Rightarrow x V y in D,

(ii) for x in D, t in S and $t \le x \Rightarrow t$ in D.

1.5 Theorem: If I(S) denote set of all ideals of a join semi lattice S, then I(S) is a lattice with respective to the following:

(i) $D1 \le D2$ if and only if $D1 \subseteq D2$

(ii) D1 V D2 = { x in S / x = x1 V x2 , where x1 is in D1, x2 is in D2}

(iii) D1 \land D2 = {x in S / x is in D1 and x is in D2}; where D1, D2 are in I(S). Proof: Let I(S) be set of all ideals of a semi lattice S. Claim : I(S) is a lattice. First we prove that I(S) is a partially order set .By using given three conditions (i), (ii) & (iii) we have Reflexive : D1 \leq D1 \Leftrightarrow D1 \subseteq D1 Ant symmetric : Suppose D1 \leq D2 and D2 \leq D1 \Rightarrow D1 \subseteq D2 and D2 \subseteq D1 \Rightarrow D1 \subseteq D2 and D2 \subseteq D1 \Rightarrow D1 \subseteq D2 and D2 \leq D3 \Rightarrow D1 \subseteq D2 and D2 \leq D3 \Rightarrow D1 \subseteq D3 and D1 \leq D3 Therefore (I(S), \leq) is partially ordered set.

Now, to show that I(S) has least upper bound (lub) and greatest lower bound (glb) To show that D1 \lor D2 is an ideal.

We give Proof of D1 V D2 is an ideal by different cases.

(i) Let x, $y \in D1 \lor D2 \Rightarrow x \in D1 \lor D2$ and $y \in D1 \lor D2$ $27 \Rightarrow x \in D1$ or $x \in D2$ and $y \in D1$ or $y \in D2 \Rightarrow x \lor y \in D1$ as D1 is an ideal and $x \lor y \in D2$ as D2 is an ideal. $\Rightarrow x \lor y \in D1 \lor D2$

(ii) Let x be any element in D1 \lor D2 and t \in S such that t \leq x, we examin the following cases. Since x \in D1 \lor D2, x = x1 \lor x2 where x1 \in D1 and x2 \in D2 (i) Suppose x1 \leq t and t \leq x2, then t \in D2 as D2 is an ideal and x2 \in D2 Now t \lor x1 = t as t \in D2 and x1 \in D1, thus t \in D1 \lor D2.

(ii) Let $x1 \le t$ and $x2 \le t$, thus $x1 \lor x2 \le t$ Since, we have $t \le x1 \lor x2$ Therefore $t = x1 \lor x2 \in D1 \lor D2$

(iii) Let $t \le x1$ and $x2 \le t$, thus $t \in D1$ as D1 is an ideal and $x2 \in D2$. Now $x2 \lor t = t$ as $x2 \in D2$ and $t \in D1$. Therefore $t \in D1 \lor D2$ (iv) Let $t \le x1$ and $t \le x2$, thus $t \in D1$ and $t \in D2$ as D1 and D2 are ideals. Now $t \lor t = t \in D1 \lor D2$. Therefore, by above different cases, we can conclude that D1 $\lor D2$ is an ideal. To prove that D1 $\subseteq D1$ $\lor D2$ and D2 $\subseteq D1 \lor D2$ Let $t \in D1$ and x2 be any element in D2 \Rightarrow $t \lor x2 \in D1 \lor D2$ Since $t \le t \lor x2$ and $t \lor x2 \in D1 \lor D2$ we have $t \in D1 \lor D2$.

Therefore D1 \subset D1 \vee D2. 28 Similarly D2 \subset D1 \vee D2 Now to show that D1 \vee D2 is the smallest ideal containing D1 and D2. Let D be an ideal such that D1 \subset D and D2 \subset D To show that D1 \vee D2 \subset D Let t \in D1 \vee D2 \Rightarrow t = t1 \vee t2 where t1 \in D1; t2 \in D2 t1 \in D1 \Rightarrow t1 \in D (since D1 \subset D) and t2 \in D2 \Rightarrow t2 \in D (since D2 \subset D) Now t1 \in D and t2 \in D \Rightarrow t1 \vee t2 \in D (since D is an ideal) \Rightarrow t \in D Therefore D1 \vee D2 \subset D

Hence, D1 \vee D2 is the smallest ideal containing both D1 and D2.

Define a relation as follows If $D1 \le D2 \Leftrightarrow D1 \lor D2 = D2$ and $D1 \land D2 = D1$ Now $D1 \lor (D1 \lor D2) = (D1 \lor D2)$ $\lor D2 = D1 \lor D2$ then $D1 \le D1 \lor D2$. Therefore $D1 \lor D2$ is an upper bound of D1 Similarly $D2 \lor (D1 \lor D2) = D2 \lor D1 \lor D2 = D1 \lor D2 \lor D2 = D1 \lor D2 \Rightarrow D2 \le D1 \lor D2$ Therefore $D1 \lor D2$ is an upper bound of D2,

Therefore D1 \lor D2 is an upper bound of { D1, D2} If D is any upper bound of D1, D2, then D1 \leq D and D2 \leq D 29 Thus D1 \lor D = D and D2 \lor D = D Now (D1 \lor D2) \lor D = D1 \lor (D2 \lor D) = D1 \lor D = D Therefore D1 \lor D2 is a least upper bound of { D1, D2} To show that D1 \land D2 is an ideal of S.

(i)Let $x \in D1 \land D2$, $y \in D1 \land D2$.

Then $x \in D1$ and $x \in D2$, $y \in D1$ and $y \in D2$ Which implies $x \lor y \in D1$ as D1 is an ideal and $x \lor y \in D2$ as D2 is an ideal Therefore $x \lor y \in D1 \land D2$.

(ii)Let $x \in D1 \land D2$ and $t \in S$ such that $t \le x$ Then $x \in D1$ and $x \in D2$. As $x \in D1$ and $t \le x$. We have $t \in D1$. As $x \in D2$ and $t \le x$, we have $t \in D2$. Therefore $t \in D1 \land D2$ Hence $D1 \land D2$ is an ideal of S.

Now D1 \land (D1 \land D2) = (D1 \land D2) \land D2 = D1 \land D2 Which implies D1 \land D2 \leq D1. Similarly D1 \land D2 \leq D2 Therefore D1 \land D2 is a lower bound of {D1,D2} Suppose D is any lower bound of {D1,D2} Then D1 \land D = D = D \land D2 Now (D1 \land D2) \land D = D1 \land (D2 \land D) = D1 \land D = D,

Which implies $D \le D1 \land D2$ Therefore $D1 \land D2$ is a greatest lower bound of { D1,D2} Therefore I(S) has both lub and glb.

Hence I(S) is a lattice.

1. 6 Definition: The smallest ideal containing x in a join semi lattice S is denoted by (x] and is given by (x] = { s in S / s \leq x} such ideal is called principal ideal generated by x. 30 1.7 Definition: An ideal D of a join semi lattice S is called distributive ideal if and only if DV (X \land Y) = (D \lor X) \land (D \lor Y) for all X, Y in I(S). 1.8 Definition: An ideal D of a join semi lattice S if called dually distributive ideal if and only if D \land (X \lor Y) = (D \land X) \lor (D \land Y) for all X, Y in I(S).

1.7 Theorem: A join semi lattice S is distributive if and only if

(i) S is directed below.

(ii) The lattice I(S) of all ideals of S is a distributive lattice.

Proof: Suppose a semi lattice S is distributive.

(i) To prove that S is directed below: Let a, b are in $S \Rightarrow a \lor b \in S$. Since $a \le a \lor b \Rightarrow$ there exists x, y in S such that $x \le a$, $y \le b$ and $a = x \lor y$. Since $y \le x \lor y = a \Rightarrow y \le a$ also $y \le b$. Therefore for a, b in S there exists y in S such that $y \le a$, $y \le b$. Therefore S is directed below.

(ii) To prove that the lattice I(S) is distributive: To show that (a) $D1 \vee (D2 \wedge D3) = (D1 \vee D2) \wedge (D1 \vee D3)$ (b) $D1 \wedge (D2 \vee D3) = (D1 \wedge D2) \vee (D1 \wedge D3)$ where D1, D2, D3 are in I(S) Define D1 $\vee D2 = \{x \text{ in } S/x = x1 \vee x2, \text{ for } x1 \text{ in } D1, x2 \text{ in } D2 \} D1 \wedge D2 = \{x \text{ in } S/x \text{ in } D1 \text{ and } x \text{ in } D2 \}$.

Let $x \lor y \in D1 \lor (D2 \land D3)$ then $x \lor y \in D1$ or $x \lor y \in (D2 \land D3)$. $\Leftrightarrow x \in D1, y \in (D2 \land D3) \Leftrightarrow x \in D1, y \in D2$ and $y \in D3 \Leftrightarrow x \in D1$, $y \in D2$ and $x \in D1$, $y \in D3 \Leftrightarrow x \lor y \in D1 \lor D2$ and $x \lor y \in D1 \lor D3 \Leftrightarrow x \lor y \in (D1 \lor D2) \land (D1 \lor D3)$ Therefore D1 $\lor (D2 \land D3) = (D1 \lor D2) \land (D1 \lor D3)$. (b) Let $x \lor y \in (D1 \land D2) \lor (D1 \land D3)$, then $x \lor y \in (D1 \land D2)$ or $x \lor y \in (D1 \land D3) \Leftrightarrow x \in D1 \land D2$, $y \in D1 \land D3 \Leftrightarrow x \in D1$ and $x \in D2$, $y \in D1$ and $y \in D3 \Leftrightarrow x \in D1$, $y \in D1$ and $x \in D2$, $y \in D3 \Leftrightarrow x \lor y \in D1$ and $x \lor y \in D2 \lor D3 \Leftrightarrow x \lor y \in D1 \land D3$.

Therefore D1 \land (D2 \lor D3) = (D1 \land D2) \lor (D1 \land D3). Hence I(S) is a distributive lattice. Conversely, suppose that S is directed below and I(S) is distributive lattice.

Claim: S is distributive semi lattice. Let $w \le a \lor b$ where a, b, $w \in S$. Now $(w] = (w] \land ((a] \lor (b]) = ((w] \land (a]) \lor ((w] \land (b]) = a0 \lor a1$, where $a0 \in (a]$, $a1 \in (b]$. Hence there exists a0, a1 in S such that $a0 \le a$; $a1 \le b$ and $(w] = a0 \lor a1$. Therefore S is distributive semi lattice.

1.7 Definition: A binary relation θ on a lattice L is called congruence relation if (i) θ is reflexive : $x \equiv x(\theta)$ for all x in L

(ii) θ is symmetric : $x \equiv y(\theta) \Rightarrow y \equiv x(\theta)$ for all x, y in L

(iii) θ is transitive : $x \equiv y(\theta)$ and $y \equiv z(\theta) \Rightarrow x \equiv z(\theta)$ for all x, y, z in L (iv) Substitution Property : $x \equiv x1(\theta)$ and $y \equiv y1(\theta) \Rightarrow x \lor y \equiv x1 \lor y1(\theta)$ and $x \land y \equiv x1 \land y1(\theta)$ for all x, y, x1, y1 in L.

1.8 Theorem: Let D be an ideal of join semilattice S. Then the following conditions are equivalent.

(i) D is distributive.

(ii) The map $\phi : X \to D \lor X$ is a homomorphism of I(S) onto [D) = {X in I(S) / X \ge D}.

(iii) The binary relation θD on I(S) is defined by $X \equiv Y(\theta D)$ if and only if $D \lor X = D \lor Y$, where X, Y in I(S) is a congruence relation. Proof: Let D be an ideal of join semi lattice S.

To prove that (i) \Rightarrow (ii): Suppose (i) holds. Then DV (X \land Y) = (D \lor X) \land (D \lor Y) for all X, Y in I(S) Define a map ϕ : X \rightarrow D \lor X by ϕ (X) = D \lor X. 34 To prove that ϕ is a homomorphism: Let X, Y in I(S) be arbitrary. Consider ϕ (X \lor Y) = D \lor (X \lor Y) = (D \lor D) \lor (X \lor Y) = D \lor [D \lor (X \lor Y) = D \lor (D \lor X) \lor Y] = ϕ (X) $\lor \phi$ (Y). Similarly, ϕ (X \land Y) = D \lor (X \land Y) = (D \lor X) \land (D \lor Y) = ϕ (X) $\land \phi$ (Y). Therefore ϕ is homomorphism.

To prove that ϕ is onto: Let X in [D) \Rightarrow X in I(S) such that $X \ge D \Rightarrow \phi(X) = D \lor X = X$ Therefore for any X in [D), there exists X in I(S) such that $\phi(X) = X$ Therefore ϕ is homomorphism of I(S) onto [D). To prove (ii) \Rightarrow (iii): Suppose the map $\phi : X \to D \lor X$ is a homomorphism of I(S) onto [D) = { X in I(S) / X ≥ D}. Define the binary relation θ D in I(S).

as $X \equiv Y(\theta D)$ if and only if $D \lor X = D \lor Y$ where X, Y in I(S). To show that the relation is congruence: (a) Let X in I(S) be arbitrary then $D \lor X = D \lor X \Rightarrow X \equiv X(\theta D)$ for all X in I(S).

REFERENCES

- [1]. Birkhoff. G Lattice theory, Amer.Math.Soc.,Callog publication XXV.providence,R.I(1967)
- [2]. Cornish, W.H.- Characterization of distributive and Modularsemilattices, Math.Japanica, 22,159-174.(1977).
- [3]. Cornish, W.H.- Pseudo complemented Modular semilattices, J.Aust Math, Sci, Vol.XVIII, 239-251(1974).
- [4]. Fried, E and E.T.Schmidt Standard sublattices, "Algebra Universalis" 5,203-211(1975).
- [5]. Frink, O.-Pseudocomplements in Semilattices, Duke.Math.J.Vol.29 (1962), 505-514.
- [6]. Gratzer G.- General Lattice theory, Academic press Inc.,(1978).
- [7]. Gratzer, G. and Schmidt, H.T. On congruence lattices of lattices, Acta. Math.Acad. Sci.Hung Vol .13 (1962), 179-185.
- [8]. Gratzer, G. and E.T.Schmidt. Standard ideals in lattices Acta, Math.Sci, Hung, 12, 17-86(1961).
- [9]. Hashimoto, J Ideal theory for lattices, Math, Japan, 2 149-186(1952). (10)Hossain, M.A. Distributive filters of a Meet semilattice Directed above, Jahangirnagar University, Journal of Science, Vol.27, p.p. 291-298,2004. (11)Iqbalunnisa and W.B.Vasantha – Characterization of Supermodular Lattices.

*Corresponding Author: Rakish Sharma

- [10]. Iqbalunnisa "Lattice Translattes and Congruences", J.Indian Math.Soc., Vol.26, 81-96(1968).
- [11]. Iqbalunnisa On Neutral elements in a lattice, J, Indian.Math.Soc, 28, 25-31(1964).
- [12]. Katrinak, T- Die Kennzeich der distributive pseudocomplementaran Halbverbande, J.Veine and angewandte Mathematik, Vol.241 (1970), 160-179.
- [13]. Katrinak, T- Pseudo complemented, Halbrerbande Mateasol 18,121-143(1968).
- [14]. Krishna murthy.M.- Doctorial thesis, Andhra University, Waltair, India (1980).
- [15]. Malliab, C. and Bhatta, S.P.- A generalization of Distributive ideals to convex sublattices. Acta. Math. Hungar, Vol.48 (1-2) p.p., 73-77, 1986.
- [16]. Natarajan.R and P.Punithavathi Supermodular joinsemilattice, Acta, Cinecia India, Vol.XXVIIM No.4, 493(2002).
- [17]. Noor, A.S.A and Hossain, M.A. Some Characterizations of Modular and Distributive Meetsemilattice, Rajshahi Univ.Stud.Part B, J.Sci.Vol.31, p.p.95-106, 2003.
- [18]. Ramana Murth, P.V. and Ramam, V. Permutability of Distributive congruence relations in Joinsemilattice directed below, Math. Slovaca Vol.35, p.p.43-49,1985