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ABSTRACT:-In this paper, we derive the mathematical implementation of the Penalty Function Method 

(PFM) imbedded in Conjugate Gradient Method (CGM), which enables Conjugate Gradient Method (CGM) to 

be employed for solving constrained optimization problems of either equality, inequality constraint or both. In 

the past, Penalty Function Method has been used extensively to solve constrained optimization problems. 

However, with some special features in CGM which makes it unique in solving unconstrained optimization 

problems, we intend to capitalize on the strength of the CGM to solve constrained optimization problems on 

adding or subtracting one or two things to the CGM. This, then call for the derivation of the new algorithm to 

show the numerical implementation of the new method that is aimed at taking care of any constrained 

optimization problems, either with equality or inequality constraint. The authors of this paper desire that, with 

the construction of the algorithm and the derivation of the numerical implementation of the algorithm, one will 

bypass the difficulties undergone using only PFM to solve constrained optimization problems and its application 

can easily be implemented following the procedures. It is observed that this invariably improves the result of the 

Conjugate Gradient Method in solving this class of optimization problems. 

 

Keywords:-Penalty Function Method, Constrained Optimization problem, Conjugate Gradient Method, 

Numerical implementation of Penalty Function Conjugate Gradient Method. 

 

I. INTRODUCTION 
The general optimization problem to be considered is of the form described by [1] and [2] as: 

Optimize: 𝑓 𝑥           1.1 

Subject to: 𝑕𝑖 𝑥 =  0  𝑖 =  1, 2, … , 𝑚1       1.2                                                           

                                 𝑔𝑗  𝑥 ≥ 0  𝑗 =  1, 2, … , 𝑚2       1.3                                                 

where 𝑥 ∈  𝑅𝑛 , 𝑕𝑖(𝑥), an equality vector equations of dimension  𝑚1, and 𝑔𝑗 (𝑥) is an inequality vector of 

dimension 𝑚2, such that the sum of the constraints m = (𝑚1 + 𝑚2). The functions 𝑓 𝑥 , 𝑕𝑖 𝑥  𝑎𝑛𝑑 𝑔𝑗 (𝑥)are 

differentiable functions. Methods for solving this model have been developed, tested and successfully applied to 

many important problems of scientific and economic interest. However, in spite of the proliferation of the 

methods, there is no universal method for solving all optimization problems which calls for application of 

ILMCGA to solve constrained optimization problems. 

 

II. CONJUGATE GRADIENT METHOD 
In 1952, Hestenes and Stiefel developed a Conjugate Gradient Method (CGM) algorithm for solving algebraic 

equations which was successfully applied to nonlinear equations with results reported by Fletcher and Reevesin 

1964.  

The CGM algorithm for iteratively locating the minimum  𝑥∗ of  𝑓(𝑥) in ℋ is described as follows:  

Step 1: Guess the first element 𝑥0 ϵ ℋ and compute the remaining members of the sequence with the aid of the 

formulae in the steps 2 through 6. 

Step 2: Compute the descent direction  𝑝0 =  −𝑔0       1.4 

Step 3: Set 𝑥𝑖+1=  𝑥𝑖 + 𝛼𝑖𝑝𝑖  ; where 𝛼𝑖  =  
 𝑔𝑖 , 𝑔𝑖 ℋ

 𝑝𝑖 , 𝐺𝑝 𝑖 ℋ
       1.5 

Step 4: Compute  𝑔𝑖+1  =  𝑔𝑖  +  𝛼𝑖𝐺𝑝𝑖         1.6 
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Step 5: Set 𝑝𝑖+1 =  −𝑔𝑖+1 + 𝛽𝑖𝑝𝑖 ;  𝛽𝑖 =
 𝑔
𝑖+1, 

 𝑔𝑖+1 ℋ

 𝑔𝑖 , 𝑔𝑖 ℋ
       1.7 

Step 6: If  𝑔𝑖  = 0 for some i, then, terminate the sequence; else set 𝑖 = 𝑖 +  1 and go to step 3. 

In the iterative steps 2 through 6 above, 𝑝𝑖  denotes the descent direction at 𝑖𝑡𝑕 step of the algorithm, 𝛼𝑖 , is the 

step length of the descent sequence   𝑥𝑖  and 𝑔𝑖  denotes the gradient of 𝑓at 𝑥𝑖 . Steps 3, 4 and 5 of the algorithm 

reveal the crucial role of the linear operator G in determining the step length of the descent sequence and also in 

generating a conjugate direction of search.  

 Doctoral Thesis of [3] threw light on the theoretical applicability of the CGM, which was extended to 

optimal control problems by [4], [5] and [6]. Applicability of the CGM algorithm thus depends solely on the 

explicit knowledge of the linear operator, G.Generally, for optimization problems, G is readily determined and 

such enjoys the beauty of the CGM as a computational scheme since the CGM exhibits quadratic convergence 

and requires only a little more computation per iteration. 

 

The Concept of Penalty Function Method 

 Considering the equality constrained optimization problem such as (1.1) and (1.2), where 𝑓 𝑋  and 

𝑕(𝑋) are the objective function and the equality constraint respectively. The unconstrained optimization 

problem of (1.1) and (1.2) is: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑋 +  𝜇𝑕2(𝑋)         1.8 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 ∈  ℝ𝑛  

where𝜇 is the PFM parameter which must be greater than zero, (i.e. 𝜇 > 0). 

Intuitively we see that an optimal solution to (1.8) must have 𝑕2(𝑋) close to zero, else, a large penalty term 

𝜇𝑕2(𝑋) will be incurred and (1.8) approaches infinity which makes it difficult to minimize (1.8). Bazaraa et al, 

(2006). 

Now, considering (1.1) and (1.3), is not appropriate to write the unconstrained form of (1.1) and (1.3) as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑋 +  𝜇𝑔2(𝑋)         1.9 

Since a PFM parameter, 𝜇, will be incurred where 𝑔(𝑋) < 0 or 𝑔(𝑋) > 0; which means that a PFM parameter 

is added to the objective function whether 𝑋 is inside or outside the feasible region. Needless to say, a penalty is 

desired only if the point is not feasible, that is, if 𝑔(𝑋) > 0. A suitable  unconstrained problem for (1.1) and 

(1.3) is therefore given as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑋 +  𝜇𝑚𝑎𝑥𝑖𝑚𝑢𝑚 0,  𝑔(𝑋)         1.10 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 ∈ ℝ𝑛  

It must be noted that if 𝑔(𝑋) ≤ 0, then 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜,  𝑔(𝑋) = 0, and no penalty is incurred on the other hand 

but if 𝑔(𝑋) > 0, then the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜,  𝑔(𝑋) > 0, and the penalty term 𝜇𝑔 𝑋  is realized. Now, it is however 

observe that at points 𝑋where 𝑔 𝑋 = 0, the forgoing objective function might not be differentiable, even if 𝑔 is 

differentiable.  

 

III. PENALTY FUNCTION METHOD ALGORITHM 
The use of Penalty Function Method (PFM) to solving constrained optimization problems is generally 

attributed to Courant.In 1943, Courant introduced the earliest PFM with equality constraint and in 1969; 

Pietrgykowski discussed this approach to solve nonlinear problems. 

The significant progress of PFM to solving practical problems follows the classic work of Fiacco and 

McCormick which is titled sequential unconstrained minimization technique (SUMT) and the algorithm is as 

follows: 

Step 1: Select a growth parameter, 𝜂 > 1, a stopping parameter, 𝜀 > 0, and an initial value of the penalty 

parameter, 𝐶0. 

Step2: Choose a starting point,𝑋0, that violates at least one of the constrained(incase of multiple constraints) 

and formulate the augmented objective function, 𝜃(𝐶0.,  𝑋). Let 𝑘 = 1 

Step3: Starting from𝑋𝑘−1, use an unconstrained search techniques to find the point that 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝜃(𝐶𝑘−1.,  𝑋), call it 𝑋𝑘  and determine which constraints are violated at this point. 

Step4: If the distance between 𝑋𝑘−1 and 𝑋𝑘  is smaller than 𝜀(i.e.   𝑋𝑘−1 −  𝑋𝑘 < 𝜀) or the difference between 

two successive objective functions values is smaller than 𝜀 (i.e.  𝑓  𝑋𝑘−1 − 𝑓( 𝑋𝑘) < 𝜀), stop with 𝑋𝑘  an 

estimate of the optimal solution. Otherwise, put 𝐶𝑘 ← 𝜂𝐶𝑘−1, formulate the new 𝜃(𝐶𝑘.,  𝑋) based on which 

constraints are violated at 𝑋𝑘 , put 𝑘 ← 𝑘 + 1 and return to the iteration step 3. 
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In  changing the PFM parameters in numerical problems have been investigated by several authors 

such as: Fiacco and McCormick (1968) and Himmelblau (1972) which discusses the effectiveness of  the 

unconstrained optimization algorithms since the constrained optimization problems must be converted to 

unconstrained with the help of PFM parameter,𝜇. Furthermore, Fletcher recorded that several extensions to the 

concepts of PFM have been made in which one of them how to avoid the difficulties is associated with the ill-

conditioning as the PFM parameter tends to infinity. 

The Philosophy of Penalty Function methods is  violating the constraints and obtain approximate 

solutions to the original problem by balancing the objective function and a penalty term involving the 

constraints. 

Increasing the penalty parameter, 𝜇, the approximate solution is forced to approach the feasible domain and 

hopefully, the solution of the original constrained problem is attained.  

 

IV. IMBEDDED PENALTY FUNCTION CONJUGATE GRADIENT METHOD 

(IPFCGM) ALGORITHM 
Haven investigated the two methods; we now draw out the following steps which will be used to solve some 

constrained optimization problems. The steps are as follows: 

Step 1: Equate the constraint to zero and square (in case of equation is of the form:𝐴𝑋 = 𝑏 .i.e. (𝐴𝑋 − 𝑏)2 = 0) 

Step 2: Append the new equation in step1 (i. e. (𝐴𝑋 − 𝑏)2) into the performance index using Lagrange 

Multiplier 𝜆to form Lagrangian or Augmented Lagrangian function [i.e. L 𝑥, 𝜆 = 𝑓 𝑥 +  𝜆(𝐴𝑋 − 𝑏)2 = 0] 

Step 3: Guess the initial elements 𝑥0, 𝜆 > 0 

Step 4: Compute the initial gradient, 𝑔0 , as well as the initial descent direction, 𝑝0 = −𝑔0 

Step 5: Compute the Hessian Matrix, 𝐻, in step 2  

Step 6: Set𝑥𝑖+1 =  𝑥𝑖 + 𝛼𝑖𝑝𝑖 ,  𝑤𝑕𝑒𝑟𝑒 𝛼𝑖 =  
𝑔𝑇 𝑖𝑔𝑖

𝑝𝑇𝑖𝐻𝑝 𝑖
,  𝑖 = 1,  2,  … ,  𝑛 

Step 7: Update the gradient using: 𝑔𝑖+1 =  𝑔𝑖 + 𝛼𝑖𝐻𝑝𝑖 ,   𝑖 = 1,  2,  … ,  𝑛 

Step 8: Update the descent direction using:  𝑝𝑖+1 =  −𝑔𝑖 + 𝛽𝑖𝑝𝑖 ,  𝑤𝑕𝑒𝑟𝑒 𝛽𝑖 =  
𝑔𝑇 𝑖+1𝑔𝑖+1

𝑔𝑇 𝑖𝑔𝑖
, 𝑖 = 1,  2,  … ,  𝑛 

Step 9: If  𝑔𝑖 = 0 stop, else, set  𝑖 = 𝑖 + 1  and return to step 6. 

 

V. NUMERICAL IMPLEMENTATION OF THE PFCGM 
Considering (1.1) and (1.2), there exists a Penalty Function parameter,𝜇,which imbed (1.2) into (1.1) to give a 

Modified Penalty Function such as: 

𝐿 𝑋,  𝜇 = 𝑓 𝑋 +   𝜇𝑖𝑕
2
𝑖(𝑋)𝑛

𝑖=1         3.1 

Let the initial guess be: 

𝑥0 =  

 

 
 
 

𝑥1(0)

𝑥2(0)

.

.

.
𝑥𝑛(0) 

 
 
 

            3.2 

𝜇0 =  

 

 
 
 

𝜇1(0)

𝜇2(0)

.

.

.
𝜇𝑛(0) 

 
 
 

           3.3 

Putting (3.2) and (3.3) in (1.1) and (3.1) respectively gives the initial functions values i.e. 𝑓(𝑥0) and 𝐿(𝑥0 , 𝜆0). 

Computing the gradient of (3.1) with respect to  𝑥1 ,  𝑥2 ,  … ,  𝑥𝑛  
𝑇

 we have: 

 

 
 
 
 
 

𝜕

𝜕𝑥1
𝐿 𝑋, 𝜇 =

𝜕

𝜕𝑥1
𝑓 𝑋 + 𝜇𝑖

𝜕

𝜕𝑥1
 𝑕2

𝑖(𝑋)𝑛
𝑖=1

𝜕

𝜕𝑥2
𝐿 𝑋, 𝜇 =

𝜕

𝜕𝑥2
𝑓 𝑋 + 𝜆𝑖

𝜕

𝜕𝑥2
 𝑕2

𝑖(𝑋)𝑛
𝑖=1

.

.

.
𝜕

𝜕𝑥𝑛
𝐿 𝑋, 𝜇 =

𝜕

𝜕𝑥𝑛
𝑓 𝑋 + 𝜆𝑖

𝜕

𝜕𝑥𝑛
 𝑕2

𝑖(𝑋)𝑛
𝑖=1  

 
 
 
 
 

      3.4 
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Putting (3.2) and (3.3) for 𝑋 and  𝜆 respectively in (3.4) gives us the initial gradient as: 

𝑔0 =

 

 
 
 
 
 

𝜕

𝜕𝑥1
𝐿(𝑥0, 𝜇0)

𝜕

𝜕𝑥2
𝐿(𝑥0, 𝜇0)

.

.

.
𝜕

𝜕𝑥𝑛
𝐿(𝑥0 , 𝜇0) 

 
 
 
 
 

         3.5 

Multiplying (3.5) by negative gives the decent direction as: 

𝑝0 = −𝑔0 =

 

 
 
 
 
 

−
𝜕

𝜕𝑥1
𝐿(𝑥0, 𝜇0)

−
𝜕

𝜕𝑥2
𝐿(𝑥0, 𝜇0)

.

.

.

−
𝜕

𝜕𝑥𝑛
𝐿(𝑥0 , 𝜇0) 

 
 
 
 
 

        3.6 

Computing the Hessian Matrix of (3.1) using (3.4) gives: 

H = 

 

 
 
 
 
 
 

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
1

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥21
.
.
.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚1

 

 
𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥12
 .  .  .

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
2

 .  .  .  
.
.
.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚2
 .  .  .  

  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥1𝑛

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2𝑛
.
.
.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚𝑛

 

 

 
 
 
 
 
 

       3.7 

On transposing (3.5) and (3.6) respectively, we have: 

𝑔0
𝑇 =  

𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  

𝜕

𝜕𝑥2
𝐿 𝑥0, 𝜇0 …  

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

𝑇

     3.8 

and  

𝑝0
𝑇 =  −

𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  −

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  …  −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

𝑇

     3.9 

 Multiplying (3.5) and (3.8) gives us a scalar, 𝑘 .i.e. 

𝑘 = 𝑔0
𝑇𝑔0

 k =  
𝜕

𝜕𝑥1

𝐿 𝑥0 , 𝜇0 
𝜕

𝜕𝑥2

𝐿 𝑥0, 𝜇0 …
𝜕

𝜕𝑥𝑛
𝐿 𝑥0 , 𝜇0  

𝑇

 

 
 
 
 
 
 

𝜕

𝜕𝑥1

𝐿 𝑥0 , 𝜇0 

𝜕

𝜕𝑥2

𝐿(𝑥0 , 𝜇0)

.

.

.
𝜕

𝜕𝑥𝑛
𝐿(𝑥0, 𝜇0)

 

 
 
 
 
 
 

 

 

k =   
𝜕

𝜕𝑥1
𝐿 𝑥0, 𝜇0  

2

+  
𝜕

𝜕𝑥2
𝐿 𝑥0, 𝜇0  

2

+  …+  
𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

2

 

 

    3.10 

Similarly, multiplying (3.9), (3.7) and (3.6) gives a scalar, z .i.e. 

𝑧 = 𝑝0
𝑇𝐻𝑝0

  

𝑧 =  − 
𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0 − 

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0 … − 

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 , 𝜇0  

𝑇

 

 
 
 
 
 
 

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
1

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥21
.
.
.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚1

 

 
𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥12
 .  .  .

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
2

.  .  .  
.
.
.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚2
 .  .  .  

  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥1𝑛

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2𝑛
.
.
.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚𝑛

 

 

 
 
 
 
 
 

 

 
 
 
 
 

−
𝜕

𝜕𝑥1
𝐿(𝑥0 , 𝜇0)

−
𝜕

𝜕𝑥2
𝐿(𝑥0 , 𝜇0)

.

.

.

−
𝜕

𝜕𝑥𝑛
𝐿(𝑥0 , 𝜇0) 

 
 
 
 
 

 3.11 
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𝐻𝑝0
 =

 

 
 
 
 
 
 
 

𝜕2𝐿 𝑥0, 𝜇0 

𝜕𝑥2
1

𝜕2𝐿 𝑥0, 𝜇0 

𝜕𝑥21.
.
.

𝜕2𝐿 𝑥0, 𝜇0 

𝜕𝑥𝑚1

  

𝜕2𝐿 𝑥0 , 𝜇0 

𝜕𝑥12

 .  .  .

𝜕2𝐿 𝑥0 , 𝜇0 

𝜕𝑥2
2

 .  .  .  

.

.

.
𝜕2𝐿 𝑥0 , 𝜇0 

𝜕𝑥𝑚2

 .  .  .  

  

𝜕2𝐿 𝑥0 , 𝜇0 

𝜕𝑥1𝑛

𝜕2𝐿 𝑥0 , 𝜇0 

𝜕𝑥2𝑛.
.
.

𝜕2𝐿 𝑥0 , 𝜇0 

𝜕𝑥𝑚𝑛

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
−

𝜕

𝜕𝑥1

𝐿(𝑥0, 𝜇0)

−
𝜕

𝜕𝑥1

𝐿(𝑥0, 𝜇0)

.

.

.

−
𝜕

𝜕𝑥𝑛
𝐿(𝑥0 , 𝜇0)

 

 
 
 
 
 
 

 

  

         = 

 

 
 
 
 
 
 
 
 
𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
1

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥21
 −

𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  +

.

.

.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚1
 −

𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  +

 

 
𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥12
 −

𝜕

𝜕𝑥2
𝐿 𝑥0, 𝜇0  +  .  .  . +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
2

 −
𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  .  +

.

.

.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚2
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  .  +

  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥1𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

.

.

.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

 

 

 
 
 
 
 
 
 
 

 3.12 

Putting (3.12) into (3.11), we have: 

𝑧 =  − 
𝜕

𝜕𝑥1
𝐿 𝑥0, 𝜇0 − 

𝜕

𝜕𝑥2
𝐿 𝑥0, 𝜇0 … − 

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

𝑇

 

 
 
 
 
 
 
 
 
𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
1

 −
𝜕

𝜕𝑥1
𝐿 𝑥0, 𝜇0  +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥21
 −

𝜕

𝜕𝑥1
𝐿 𝑥0, 𝜇0  +

.

.

.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚1
 −

𝜕

𝜕𝑥1
𝐿 𝑥0, 𝜇0  +

 

 
𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥12
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  . +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
2

 −
𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  .  +

.

.

.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚2
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  .  +

  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥1𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

.

.

.

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

 

 

 
 
 
 
 
 
 
 

  3.13 

 With matrix multiplication, (3.13) becomes: 

𝑧 =

 

 
 
 
 
 
 
 
 
−

𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2
1

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥12
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  . +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥1𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 , 𝜇0   

−
𝜕

𝜕𝑥2
𝐿 𝑥0, 𝜇0  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥  
21

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  +

𝜕2𝐿 𝑥0 ,𝑣0 

𝜕𝑥2
2

 −
𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝑣0  +  .  .  . +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥2𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 , 𝜇0   

.

.

.

−
𝜕

𝜕𝑥𝑛
𝐿 𝑥0, 𝜇0  

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥  
𝑚1

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 , 𝜇0  +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚2
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 , 𝜇0  +  .  .  . +

𝜕2𝐿 𝑥0 ,𝜇0 

𝜕𝑥𝑚𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 , 𝜇0   

 

 
 
 
 
 
 
 
 

  3.14 

Dividing (3.10) and (3.14) .i.e.: 

𝛼0 =  
  

𝜕

𝜕𝑥1
𝐿 𝑥0 ,𝜇0  

2

+ 
𝜕

𝜕𝑥2
𝐿 𝑥0 ,𝜇0  

2

+ …+ 
𝜕

𝜕𝑥𝑛
𝐿 𝑥0 ,𝜇0  

2

 

 

 
 
 
 
 
 
 
 
−

𝜕

𝜕𝑥1
𝐿 𝑥0 ,𝜇0  

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥2
1

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 ,𝜇0  +

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥12
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 ,𝜇0  + . . .+

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥1𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 ,𝜇0   

−
𝜕

𝜕𝑥2
𝐿 𝑥0 ,𝜇0  

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥  
21

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 ,𝜇0  +

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥2
2

 −
𝜕

𝜕𝑥2
𝐿 𝑥0 ,𝜇0  + . . .+

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥2𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 ,𝜇0   

...

−
𝜕

𝜕𝑥𝑛
𝐿 𝑥0 ,𝜇0  

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥  
𝑚1

 −
𝜕

𝜕𝑥1
𝐿 𝑥0 ,𝑣0  +

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥𝑚2
 −

𝜕

𝜕𝑥2
𝐿 𝑥0 ,𝜇0  + . . .+

𝜕2𝐿 𝑥0,𝜇 0 

𝜕𝑥𝑚𝑛
 −

𝜕

𝜕𝑥𝑛
𝐿 𝑥0 ,𝜇0   

 

 
 
 
 
 
 
 
 

  3.15 

 

(3.15) is the step length. Now set𝑥𝑖+1 =  𝑥𝑖 +  𝛼𝑖𝑝𝑖 ,  𝑖 = 0,  1,  2,  … ,  𝑛 . 
 

VI. CONCLUSION 
 This paper has been able to show clearly the derivation of the numerical implementation of the Penalty 

Function Method imbedded in the Conjugate Gradient Method which is the interpretation of the new algorithm 

for easy applicability of this method to solving either equality or inequality constrained optimization problems. 

 In future, we hope to devote more attention on the application of this method to solving constrained 

optimization of both equality and inequality such as the form of(1.1). 
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