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ABSTRACT: In 2013, Shukla [24] generalized both the concept of b-metric and partial metric spaces 

by introducing the partial b-metric spaces. In the present paper, we prove some fixed point theorems 

for self-mappings satisfying various expansive type conditions in the setting of a partial b-metric 

space.  The presented theorems extend, generalize and improve many existing results in the literature. 
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I. INTRODUCTION 
Fixed point theory is one of the most popular tool in nonlinear analysis. Most of the generalizations for metric 

fixed point theorems usually start from Banach contraction principle [4]. It is not easy to point out all the 

generalizations of this principle. In 1989, Bakhtin [3] introduced the concept of a b-metric space as a 

generalization of metric spaces. In 1993, Czerwik [7-8] extended many results related to the b-metric spaces. In 

1994, Matthews [19] introduced the concept of partial metric space in which the self distance of any point of 

space may not be zero. In 1996, O'Neill generalized the concept of partial metric space by admitting negative 

distances. In 2013, Shukla [24] generalized both the concept of b-metric and partial metric spaces by 

introducing the partial b-metric spaces. In 1984, Wang et.al [25] introduced the concept of expanding mappings 

and proved some fixed point theorems in complete metric spaces. In 1992, Daffer and Kaneko [9] defined an 

expanding condition for a pair of mappings and proved some common fixed point theorems for two mappings in 

complete metric spaces. Aage and Salunke [1] introduced several meaningful fixed point theorems for one 

expanding mapping. For more details on expanding mapping and related results we refer the reader to [10, 12-

13, 22, 26-27]. 

 

In this paper, we prove some fixed point theorems for surjective mappings satisfying various expansive type 

conditions in the setting of a partial b-metric space.  The presented theorems extend, generalize and improve 

many existing results in the literature. 

 

I. PRELIMINARIES 
Throughout this paper ℝ and ℝ + will represents the set of real numbers and nonnegative real numbers, 

respectively.  

 

The following definitions are required in the sequel. 

Definition 2.1 (see [3]) Let X be a nonempty set, 𝑠 ≥ 1 be a given real number and 𝑑 ∶  𝑋 × 𝑋 → ℝ + be a 

function. We say 𝑑 is a b-metric on 𝑋 if and only if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied: 

1. 𝑑(𝑥, 𝑦)  =  0  if and only if 𝑥 =  𝑦; 

2. 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥); 
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3. 𝑑 𝑥, 𝑦 ≤ 𝑠 𝑑 𝑥, 𝑧 + 𝑑(𝑧, 𝑦) . 
A triplet (𝑋,𝑑, 𝑠) is called a b-metric space. Obviously, for 𝑠 =  1, b-metric reduces to metric. 

 

Definition 2.2 (see [19]) Let X be a nonempty set, and 𝑝 ∶  𝑋 × 𝑋 → ℝ + be a function. We say 𝑝 is a partial 

metric on 𝑋 if and only if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied: 

1. 𝑥 = 𝑦 if and only if 𝑝 𝑥, 𝑥 = 𝑝 𝑥, 𝑦 = 𝑝 𝑦, 𝑦 ; 
2. 𝑝 𝑥, 𝑥 ≤ 𝑝(𝑥, 𝑦); 

3. 𝑝 𝑥, 𝑦 = 𝑝 𝑦, 𝑥 ; 
4. 𝑝 𝑥, 𝑦 ≤ 𝑝 𝑥, 𝑧 + 𝑝 𝑧, 𝑦 − 𝑝 𝑧, 𝑧  

The pair (𝑋, 𝑝) is called a partial metric space.  

 

Remark 2.3 It is clear that the partial metric space need not be a b-metric spaces, since in a partial metric space 

if 𝑝 𝑥, 𝑦 = 0 implies 𝑝 𝑥, 𝑥 = 𝑝 𝑥, 𝑦 = 𝑝 𝑦, 𝑦 = 0 then 𝑥 = 𝑦. But in a partial metric space if 𝑥 = 𝑦 then 

𝑝 𝑥, 𝑥 = 𝑝 𝑥, 𝑦 = 𝑝 𝑦, 𝑦  may not be equal zero. Therefore the partial metric space may not be a b-metric 

space. 

 

On the other hand, Shukla [24] introduced the notion of a partial b-metric space as follows: 

Definition 2.4 (see [24]) Let X be a nonempty set, 𝑠 ≥ 1 be a given real number and 𝑝𝑏 ∶  𝑋 × 𝑋 → ℝ + be a 

function. We say 𝑝 is a partial b-metric on 𝑋 if and only if for all 𝑥,𝑦, 𝑧 ∈ 𝑋 the following conditions are 

satisfied: 

1. 𝑥 = 𝑦 if and only if 𝑝𝑏 𝑥, 𝑥 = 𝑝𝑏 𝑥, 𝑦 = 𝑝𝑏 𝑦, 𝑦 ; 
2. 𝑝𝑏 𝑥, 𝑥 ≤ 𝑝𝑏(𝑥, 𝑦); 

3. 𝑝𝑏 𝑥, 𝑦 = 𝑝𝑏 𝑦, 𝑥 ; 
4. 𝑝𝑏 𝑥, 𝑦 ≤ 𝑠 𝑝𝑏 𝑥, 𝑧 + 𝑝𝑏 𝑧, 𝑦 − 𝑝𝑏 𝑧, 𝑧   

A triplet (𝑋, 𝑝𝑏 , 𝑠) is called a partial b-metric space. Obviously, for 𝑠 =  1, partial b-metric reduces to partial 

metric. 

 

Remark 2.5 The class of partial b-metric space (𝑋, 𝑝𝑏) is effectively larger than the class of partial metric 

space, since a partial metric space is a special case of a partial b-metric space (𝑋, 𝑝𝑏) when 𝑠 = 1. Also, the 

class of partial b-metric space (𝑋, 𝑝𝑏) is effectively larger than the class of b-metric space, since a b-metric 

space is a special case of a partial b-metric space (𝑋, 𝑝𝑏) when the self distance 𝑝(𝑥, 𝑥)  =  0. 

The following examples shows that a partial b-metric on 𝑋 need not be a partial metric, nor a b-metric on 𝑋 see 

also [21], [24]. 

 

Example 2.6 [21] Let 𝑋 = ℝ + . Define a function 𝑝𝑏 ∶  𝑋 × 𝑋 → ℝ + such that 𝑝𝑏 𝑥, 𝑦 =  max 𝑥, 𝑦  2 +
 𝑥 − 𝑦 2,∀ 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝𝑏) is a partial b-metric space on 𝑋 with the coefficient 𝑠 = 2 > 1. But, 𝑝𝑏  is 

neither a b-metric nor a partial metric on 𝑋. 

 

Proposition 2.7 [24] Let 𝑋 be a nonempty set, and let 𝑝 be a partial metric and 𝑑 be a b-metric with the 

coefficient 𝑠 ≥ 1 on 𝑋. Then the function 𝑝𝑏 ∶  𝑋 × 𝑋 → ℝ + defined by 𝑝𝑏 𝑥, 𝑦 = 𝑝 𝑥, 𝑦 + 𝑑 𝑥, 𝑦 ,∀𝑥. 𝑦 ∈
𝑋, is a partial b-metric on 𝑋 with the coefficient 𝑠. 

 

Proposition 2.8 [24] Let (𝑋, 𝑝) be a partial metric space and 𝑞 ≥ 1. Then (𝑋, 𝑝𝑏) is a partial b-metric space 

with coefficient 𝑠 = 2𝑞−1, where 𝑝𝑏  is defined by 𝑝𝑏 𝑥, 𝑦 =  𝑝 𝑥, 𝑦  𝑞 . 

On the other hand, Mustafa [21] modify the Definition 2.4 in order that each partial b-metric 𝑝𝑏  generates a b-

metric 𝑑𝑝𝑏  as follows: 

 

Definition 2.9 (see [21]) Let X be a nonempty set, 𝑠 ≥ 1 be a given real number and 𝑝𝑏 ∶  𝑋 × 𝑋 → ℝ + be a 

function. We say 𝑝 is a partial b-metric on 𝑋 if and only if for all 𝑥,𝑦, 𝑧 ∈ 𝑋 the following conditions are 

satisfied: 

1. 𝑥 = 𝑦 if and only if 𝑝𝑏 𝑥, 𝑥 = 𝑝𝑏 𝑥, 𝑦 = 𝑝𝑏 𝑦, 𝑦 ; 
2. 𝑝𝑏 𝑥, 𝑥 ≤ 𝑝𝑏(𝑥, 𝑦); 

3. 𝑝𝑏 𝑥, 𝑦 = 𝑝𝑏 𝑦, 𝑥 ; 

4. 𝑝𝑏 𝑥, 𝑦 ≤ 𝑠 𝑝𝑏 𝑥, 𝑧 + 𝑝𝑏 𝑧, 𝑦 − 𝑝𝑏 𝑧, 𝑧  +  
1−𝑠

2
  𝑝𝑏 𝑥, 𝑥 + 𝑝𝑏 𝑦, 𝑦   

The pair (𝑋, 𝑝𝑏) is called a partial b-metric space. The number 𝑠 ≥ 1 is called the coefficient of (𝑋, 𝑝𝑏). 

 

Example 2.10 (see also [21]) Let 𝑋 = ℝ is the set of real numbers. Consider the metric space  𝑋,𝑑  where 𝑑 is 

the Euclidean distance metric d 𝑥, 𝑦 =  𝑥 − 𝑦 ,∀ 𝑥, 𝑦 ∈ 𝑋. Define 𝑝𝑏 𝑥,𝑦 =  𝑥 − 𝑦 2 + 5,∀ 𝑥, 𝑦 ∈ 𝑋. Then 
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𝑝𝑏  is a partial b-metric on 𝑋 with 𝑠 = 2, but it is not a partial metric on 𝑋. To see this, Let 𝑥 = 1, 𝑦 = 4 and 

𝑧 = 2. Then 

                    𝑝𝑏 1,4 =  1 − 4 2 + 5 = 14 ≰ 𝑝𝑏 1,2 + 𝑝𝑏 2,4 − 𝑝𝑏 2,2 = 6 + 9 − 5 = 10  

So, 𝑝𝑏  is not a b-metric since 𝑝𝑏 𝑥, 𝑥 ≠ 0,∀ 𝑥 ∈ 𝑋. 

 

Proposition 2.11 (see [21]) Every partial b-metric 𝑝𝑏  defines a b-metric 𝑑𝑝𝑏  , where 

                                         𝑑𝑝𝑏  𝑥, 𝑦 = 2𝑝𝑏 𝑥, 𝑦 − 𝑝𝑏 𝑥, 𝑥 − 𝑝𝑏 𝑦,𝑦 , 𝑥, 𝑦 ∈ 𝑋. 

 

Definition 2.12 (see [21]) A sequence   𝑥𝑛  𝑛=1
∞  in a partial b-metric space (X, 𝑝𝑏) is said to be: 

1. 𝑝𝑏 -convergent to a point  𝑥 ∈ 𝑋, written as limn→∞ 𝑝𝑏 𝑥, 𝑥𝑛 = 𝑝𝑏 𝑥, 𝑥 ;. 
2. a 𝑝𝑏 -Cauchy sequence if 𝑙𝑖𝑚𝑛 ,𝑚→+∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚   exists (and is finite); 

 

Definition 2.13 (see [21]) A partial b-metric space  (X, 𝑝𝑏) is said to be 𝑝𝑏 -complete if every 𝑝𝑏 -Cauchy 

sequence in 𝑋 𝑝𝑏 -converges to a point 𝑥 ∈ 𝑋 such that   

                                𝑝𝑏 𝑥, 𝑥 = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥 = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚   
 

Lemma 2.14 (see [21]) A sequence  𝑥𝑛  𝑛=1
∞  is a 𝑝𝑏 -Cauchy sequence in a partial b-metric space (X, 𝑝𝑏) if and 

only if it is a b-Cauchy sequence in the b-metric space  (X,𝑑𝑝𝑏 ). 

 

Lemma 2.15 (see [21]) A partial b-metric space (X, 𝑝𝑏) is 𝑝𝑏 -complete if and only if the b-metric space (X,𝑑𝑝𝑏 ) 

is b-complete. Moreover, 𝑙𝑖𝑚𝑛→∞ 𝑑𝑝𝑏 𝑥𝑛 , 𝑥𝑚  = 0 if and only if 

                                 𝑝𝑏 𝑥, 𝑥 = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥 = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚   
Definition 2.16 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1. A mapping 

𝑇:𝑋 → 𝑋 is said to be expansive mapping if 𝑝𝑏(𝑇𝑥,𝑇𝑦) ≥ 𝜆𝑝𝑏(𝑥, 𝑦)  ∀ 𝑥, 𝑦 ∈ 𝑋, where 𝜆 > 𝑠. 
 

II. FIXED POINT THEOREMS 
In this section, we prove some fixed point theorems satisfying expansive condition by considering surjective 

self-mappings in the context of partial b-metric space. 

 

We begin with a simple but a useful Lemma. 

Lemma 3.1 Let  𝑥𝑛  𝑛=1
∞  be a sequence in a partial b-metric space  𝑋, 𝑝𝑏  with the coefficient s ≥ 1 such that  

(3.1)                                          𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑝𝑏 𝑥𝑛−1, 𝑥𝑛   

where 𝜆 ∈  0,
1

𝑠
  and 𝑛 = 1,2,………. Then  𝑥𝑛  𝑛=1

∞  is a 𝑝𝑏 -Cauchy sequence in 𝑋. 

Proof By the simple induction with the condition (3.1), we have 

(3.2)                     𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 ≤ 𝜆2𝑝𝑏 𝑥𝑛−2, 𝑥𝑛−1 ≤ ⋯ ≤ 𝜆𝑛𝑝𝑏 𝑥0 , 𝑥1  
On the other hand, since 

                            max  𝑝𝑏 𝑥𝑛 , 𝑥𝑛 , 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  ≤ 𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1   
then from (3.2), we have 

(3.3)                    max  𝑝𝑏 𝑥𝑛 , 𝑥𝑛 , 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  ≤ 𝜆𝑛𝑝𝑏 𝑥0, 𝑥1   
Therefore 

(3.4)                    𝑑𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 = 2𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 − 𝑝𝑏 𝑥𝑛 , 𝑥𝑛 − 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  

                                                    ≤ 2𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 + 𝑝𝑏 𝑥𝑛 , 𝑥𝑛 + 𝑝𝑏 𝑥𝑛+1 , 𝑥𝑛+1  
                                                    ≤ 4𝜆𝑛𝑝𝑏 𝑥0, 𝑥1  
                

This show that lim𝑛→+∞ 𝑑𝑝𝑏  𝑥𝑛 , 𝑥𝑛+1 = 0. Now we have 

(3.5)    𝑑𝑝𝑏  𝑥𝑛 ,𝑥𝑛+𝑚  ≤ 𝑠 𝑑𝑝𝑏  𝑥𝑛 , 𝑥𝑛+1 + 𝑑𝑝𝑏  𝑥𝑛+1 , 𝑥𝑛+𝑚    

                                     ≤ 𝑠𝑑𝑝𝑏  𝑥𝑛 , 𝑥𝑛+1 + 𝑠2 𝑑𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+2 + 𝑑𝑝𝑏  𝑥𝑛+2 , 𝑥𝑛+𝑚    

                                     ≤ 𝑠𝑑𝑝𝑏  𝑥𝑛 , 𝑥𝑛+1 + 𝑠2𝑑𝑝𝑏  𝑥𝑛+1, 𝑥𝑛+2 + ⋯ 

                                     +𝑠𝑛+𝑚−1 𝑑𝑝𝑏  𝑥𝑛+𝑚−2, 𝑥𝑛+𝑚−1 + 𝑑𝑝𝑏 𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚    

                                     ≤ 4𝑠𝜆𝑛𝑝𝑏 𝑥0 , 𝑥1 + 4𝑠2𝜆𝑛+1𝑝𝑏 𝑥0 , 𝑥1 + ⋯ 

                                     +4𝑠𝑛+𝑚−1𝜆𝑛+𝑚−2𝑝𝑏 𝑥0 , 𝑥1 + 4𝑠𝑛+𝑚−1𝜆𝑛+𝑚−1𝑝𝑏 𝑥0 , 𝑥1    
                                     ≤ 4𝑠𝜆𝑛  1 +  𝑠𝜆 +  𝑠𝜆 2 + ⋯…… . .  𝑝𝑏 𝑥0 , 𝑥1  

                                     ≤
4𝑠𝜆𝑛

1−𝑠𝜆
𝑝𝑏 𝑥0 , 𝑥1 . 
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Note that 𝑠𝜆 < 1. This show that  𝑥𝑛  𝑛=1
∞  is a 𝑏-Cauchy sequence in b-metric space  𝑋,𝑑𝑝𝑏 , then from Lemma 

2.14,  𝑥𝑛  𝑛=1
∞  is a 𝑝𝑏 -Cauchy sequence in partial b-metric space  𝑋, 𝑝𝑏 . 

 

Theorem 3.2 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1. Assume that 

𝑇:𝑋 → 𝑋 is surjection and satisfies 

(3.6)                                           𝑝𝑏(𝑇𝑥,𝑇𝑦) ≥ 𝜆𝑝𝑏(𝑥, 𝑦)  

 ∀ 𝑥, 𝑦 ∈ 𝑋, where 𝜆 > 𝑠. Then 𝑇 has a unique fixed point in 𝑋. 

Proof; Let 𝑥0 ∈ 𝑋, since 𝑇 is surjection, then there exists 𝑥1 ∈ 𝑋 such that 𝑥0 = 𝑇𝑥1 . By continuing this 

process, we get 

(3.7)                   𝑥𝑛 = 𝑇𝑥𝑛+1 , ∀ 𝑛 ∈ ℕ ∪  0 . 
In case 𝑥𝑛0

= 𝑥𝑛0+1 for some 𝑛0 ∈ ℕ ∪  0 ,then it is clear that 𝑥𝑛0
 is a fixed point of 𝑇. Without loss of 

generality, we assume that  𝑥𝑛 ≠ 𝑥𝑛−1  for all 𝑛. Consider 

(3.8)                   𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 = 𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1  
Now by (3.7) and definition of the sequence 

                            𝑥𝑛−1, 𝑥𝑛 = 𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1  ≥ 𝜆𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1   
and so  

(3.9)                    𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 ≤
1

𝜆  
𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 = ℎ𝑝𝑏 𝑥𝑛−1, 𝑥𝑛   

where ℎ =
1

𝜆  
<

1

𝑠 
 . Then by Lemma.3.1,   𝑥𝑛  𝑛=1

∞  is a 𝑝𝑏 -Cauchy sequence in 𝑋. Since (𝑋, 𝑝𝑏) is a 𝑝𝑏 -complete, 

then from Lemma 2.15, (𝑋,𝑑𝑝𝑏) is b-complete and so the sequence   𝑥𝑛  𝑛=1
∞  is b-converges in the b-metric 

space (𝑋,𝑑𝑝𝑏), that is there exists 𝑥⋆ ∈ 𝑋 such that  lim𝑛→+∞ 𝑑𝑝𝑏  𝑥𝑛 , 𝑥⋆ = 0.  

Again from Lemma 2.15, we have 

(3.10)                  𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚   

Moreover, since  𝑥𝑛 𝑛=1
∞  is a b-Cauchy sequence in the b-metric space (𝑋,𝑑𝑝𝑏 ), 𝑙𝑖𝑚𝑛→∞ 𝑑𝑝𝑏  𝑥𝑛 , 𝑥𝑚  = 0, 

On the other hand, since  

                             max  𝑝𝑏 𝑥𝑛 , 𝑥𝑛 , 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  ≤ 𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1  
then by the simple induction with (3.9), we have 

(3.11)                   max  𝑝𝑏 𝑥𝑛 , 𝑥𝑛 , 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  ≤ ℎ𝑛𝑝𝑏 𝑥0 , 𝑥1  
Hence, we have 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑛 = 0. Thus from the definition of 𝑑𝑝𝑏 , we have  𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚  = 0. 

Therefore, from (3.10), we have 

                              𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚  = 0. 

Since 𝑇 is surjection on 𝑋, there exists 𝑝 ∈ 𝑋 such that 𝑥⋆ = 𝑇𝑝. From (3.6), we have  

(3.12)                     𝑝𝑏 𝑥𝑛 , 𝑥⋆ = 𝑝𝑏 𝑇𝑥𝑛+1 ,𝑇𝑝 ≥ 𝜆𝑝𝑏 𝑥𝑛+1, 𝑝   
Taking limit as 𝑛 → +∞ in the above inequality, we get 0 = 𝑝𝑏 𝑥

⋆, 𝑥⋆ ≥ 𝜆𝑝𝑏 𝑥
⋆, 𝑝 . This implies that 

𝑝𝑏 𝑥
⋆, 𝑝 = 0. Also from (3.6), we have 

                               0 = 𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑝𝑏 𝑇𝑝,𝑇𝑝 ≥ 𝜆𝑝𝑏 𝑝,𝑝   

and so 𝑝𝑏 𝑝, 𝑝 = 0. Thus 𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑝𝑏 𝑥

⋆, 𝑝 = 𝑝𝑏 𝑝, 𝑝  implies that 𝑥⋆ =  𝑝 = 𝑇𝑝. Hence 𝑥⋆ is a fixed 

point of 𝑇. Finally, assume 𝑥⋆ ≠ 𝑦⋆ is also another fixed point of 𝑇. From (3.6), we get 

(3.13)                     𝑝𝑏  𝑥
⋆, 𝑦⋆ = 𝑝𝑏  𝑇𝑥

⋆,𝑇𝑦⋆   ≥ 𝜆𝑝𝑏  𝑥
⋆, 𝑦⋆  

This is true only when 𝑝𝑏  x
⋆, y⋆ = 0. Also 𝑝𝑏  𝑥

⋆, 𝑥⋆ = 0 = 𝑝𝑏  𝑦
⋆, 𝑦⋆ . So x⋆ = y⋆. Hence 𝑇 has a unique 

fixed point in 𝑋.  

 

Corollary 3.3 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1. and 𝑇:𝑋 → 𝑋 be a 

surjection. Suppose that there exist a positive integer 𝑛  and a constant 𝜆 > 𝑠 such that 

(3.14)                         𝑝𝑏(𝑇𝑛𝑥,𝑇𝑛𝑦) ≥ 𝜆𝑝𝑏(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝑋.  

Then 𝑇 has a unique fixed point in 𝑋. 

Proof From Theorem 3.2, 𝑇𝑛  has a unique fixed point 𝑥⋆. But 𝑇𝑛 𝑇𝑥⋆ = 𝑇 𝑇𝑛𝑥⋆ = 𝑇𝑥⋆. So 𝑇𝑥⋆ is also a 

fixed point of 𝑇𝑛 . Hence 𝑇𝑥⋆ = 𝑥⋆, 𝑥⋆ is a fixed point of 𝑇. Since the fixed point of 𝑇 is also fixed point of 𝑇𝑛 , 

the fixed point of 𝑇 is unique. 

 

Theorem 3.4 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1 and 𝑇:𝑋 → 𝑋 is 

surjection. Suppose that 𝑎, 𝑏, 𝑐 ≥ 0 with 𝑎 + 𝑠𝑏 + 𝑐 > 𝑠 such that 

(3.15)                     𝑝𝑏 𝑇𝑥,𝑇𝑦 ≥ 𝑎𝑝𝑏 𝑥, 𝑦 + 𝑏𝑝𝑏 𝑥,𝑇𝑥 + 𝑐𝑝𝑏(𝑦,𝑇𝑦)  ∀ 𝑥, 𝑦 ∈ 𝑋.  
Then 𝑇 has a fixed point. 

Proof: Let 𝑥0 ∈ 𝑋. Similar to the proof of Theorem 3.2, we can obtain a sequence  𝑥𝑛  𝑛=1
∞  such that  

(3.16)               𝑥𝑛 = 𝑇𝑥𝑛+1, ∀ 𝑛 ∈ ℕ ∪  0 . 
In case 𝑥𝑛0

= 𝑥𝑛0+1 for some 𝑛0 ∈ ℕ ∪  0 ,then it is clear that 𝑥𝑛0
 is a fixed point of 𝑇. Without loss of 

generality, we assume that  𝑥𝑛 ≠ 𝑥𝑛−1  for all 𝑛. Consider, 
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(3.17)               𝑝𝑏 𝑥𝑛−1 , 𝑥𝑛 = 𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1  
Now by (3.15) and definition of the sequence  

                         𝑝𝑏 𝑥𝑛−1 , 𝑥𝑛 = 𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1   
                                               ≥ 𝑎𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 + 𝑏𝑝𝑏 𝑥𝑛 ,𝑇𝑥𝑛 + 𝑐𝑝𝑏(𝑥𝑛+1,𝑇𝑥𝑛+1)  

                                               = 𝑎𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 + 𝑏𝑝𝑏 𝑥𝑛 , 𝑥𝑛−1 + 𝑐𝑝𝑏(𝑥𝑛+1 ,𝑥𝑛) 

and so 

                               1 − 𝑏 𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 ≥  𝑎 + 𝑐 𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1  
If 𝑎 + 𝑐 = 0, then 𝑏 > 1. The above inequality implies that a negative number is greater than or equal to zero. 

That is impossible. So, 𝑎 + 𝑐 ≠ 0 and 1 − 𝑏 > 0. Therefore, 

(3.18)                       𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 ≤ ℎ𝑝𝑏 𝑥𝑛−1, 𝑥𝑛   

where ℎ =
1−𝑏

𝑎+𝑐  
<

1

𝑠 
 . Then by Lemma 3.1,   𝑥𝑛  𝑛=1

∞  is a Cauchy sequence in 𝑋. Since (𝑋, 𝑝𝑏) is a 𝑝𝑏 -complete, 

then from Lemma 2.14, (𝑋,𝑑𝑝𝑏) is b-complete and so the sequence   𝑥𝑛  𝑛=1
∞  is b-converges in the b-metric 

space (𝑋,𝑑𝑝𝑏), that is there exists 𝑥⋆ ∈ 𝑋 such that  lim𝑛→+∞ 𝑑𝑝𝑏  𝑥𝑛 , 𝑥⋆ = 0.  Again from Lemma 2.15, we 

have 

(3.19)                              𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚   

Moreover, since  𝑥𝑛 𝑛=1
∞  is a b-Cauchy sequence in the b-metric space (𝑋,𝑑𝑝𝑏 ),  𝑙𝑖𝑚𝑛→∞ 𝑑𝑝𝑏 𝑥𝑛 , 𝑥𝑚  = 0, 

On the other hand, since 

                                        max  𝑝𝑏 𝑥𝑛 , 𝑥𝑛 , 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  ≤ 𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1  
then by the simple induction with (3.18), we have 

(3.20)                              max  𝑝𝑏 𝑥𝑛 , 𝑥𝑛 , 𝑝𝑏 𝑥𝑛+1, 𝑥𝑛+1  ≤ ℎ𝑛𝑝𝑏 𝑥0 , 𝑥1  
Hence, we have 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑛 = 0. Thus from the definition of 𝑑𝑝𝑏 , we have 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚  = 0. 

Therefore, from (3.19), we have 

                                        𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑥𝑛 , 𝑥𝑚  = 0. 

Since 𝑇 is surjection on 𝑋, there exists 𝑝 ∈ 𝑋 such that 𝑥⋆ = 𝑇𝑝. From (3.15), we have  

(3.21)                               𝑝𝑏 𝑥𝑛 , 𝑥⋆ = 𝑝𝑏 𝑇𝑥𝑛+1,𝑇𝑝  
                                                           ≥ 𝑎𝑝𝑏 𝑥𝑛+1 , 𝑝 + 𝑏𝑝𝑏 𝑥𝑛+1,𝑇𝑥𝑛+1 + 𝑐𝑝𝑏 𝑝,𝑇𝑝  
                                                           = 𝑎𝑝𝑏 𝑥𝑛+1, 𝑝 + 𝑏𝑝𝑏 𝑥𝑛+1, 𝑥𝑛 + 𝑐𝑝𝑏 𝑝, 𝑥⋆  
Taking limit as 𝑛 → +∞ in the above inequality, we get  0 = 𝑝𝑏 𝑥

⋆, 𝑥⋆ ≥  𝑎 + 𝑐 𝑝𝑏 𝑥
⋆, 𝑝 .This implies that 

𝑝𝑏 𝑥
⋆, 𝑝 = 0. Also from (3.15), we have  

                                  0 = 𝑝𝑏 𝑥
⋆, 𝑥⋆ = 𝑝𝑏 𝑇𝑝,𝑇𝑝  ≥ 𝑎𝑝𝑏 𝑝, 𝑝 + b𝑝𝑏 𝑝,𝑇𝑝 + c𝑝𝑏 𝑝,𝑇𝑝   

                                                           = 𝑎𝑝𝑏 𝑝, 𝑝 + b𝑝𝑏 𝑝, 𝑥⋆ + c𝑝𝑏 𝑝, 𝑥⋆ = 𝑎𝑝𝑏 𝑝, 𝑝  
and so 𝑝𝑏 𝑝, 𝑝 = 0. Thus 𝑝𝑏 𝑥

⋆, 𝑥⋆ = 𝑝𝑏 𝑥
⋆, 𝑝 = 𝑝𝑏 𝑝, 𝑝  implies that 𝑥⋆ =  𝑝 = 𝑇𝑝. Hence 𝑥⋆ is a fixed 

point of 𝑇. Finally, assume 𝑥⋆ ≠ 𝑦⋆ is also another fixed point of 𝑇. Then 𝑝𝑏  𝑥
⋆, 𝑥⋆ = 0 = 𝑝𝑏  𝑦

⋆, 𝑦⋆ . From  

(3.15), we get 

(3.22)                               𝑝𝑏  𝑥
⋆,𝑦⋆ = 𝑝𝑏  𝑇𝑥

⋆,𝑇𝑦⋆    
                                                           ≥ 𝑎𝑝𝑏  𝑥

⋆, 𝑦⋆ + 𝑏𝑝𝑏  𝑥
⋆,𝑇𝑥⋆ + 𝑐𝑝𝑏  𝑦

⋆,𝑇𝑦⋆  
                                                           = 𝑎𝑝𝑏  𝑥

⋆, 𝑦⋆ + 𝑏𝑝𝑏  𝑥
⋆, 𝑥⋆ + 𝑐𝑝𝑏  𝑦

⋆, 𝑦⋆ = 𝑎𝑝𝑏  𝑥
⋆, 𝑦⋆  

This is true only when 𝑝𝑏  x
⋆, y⋆ = 0. Also 𝑝𝑏  𝑥

⋆, 𝑥⋆ = 0 = 𝑝𝑏  𝑦
⋆, 𝑦⋆ . So x⋆ = y⋆. Hence 𝑇 has a unique 

fixed point in 𝑋. 

 

Remark 3.5 Setting 𝑏 = 𝑐 = 0 and 𝑎 = 𝜆 in Theorem 3.4, we can obtain the Theorem 3.2. 

 

Theorem 3.6 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1 and 𝑇:𝑋 → 𝑋 is a 

continuous surjection. Suppose that there exists a constant 𝜆 > 𝑠 such that 

(3.23)                     𝑝𝑏 𝑇𝑥,𝑇𝑦 ≥ 𝜆𝑢, for some 𝑢 ∈  𝑝𝑏 𝑥, 𝑦 , 𝑝𝑏 𝑥,𝑇𝑥 , 𝑝𝑏(𝑦,𝑇𝑦)  ∀ 𝑥, 𝑦 ∈ 𝑋.  
Then 𝑇 has a fixed point. 

Proof: Similar to the proof of Theorem 3.1, we can obtain a sequence  𝑥𝑛  𝑛=1
∞  such that 

(3.24)               𝑥𝑛 = 𝑇𝑥𝑛+1, ∀ 𝑛 ∈ ℕ ∪  0 .  
In case 𝑥𝑛0

= 𝑥𝑛0+1 for some 𝑛0 ∈ ℕ ∪  0 , then it is clear that 𝑥𝑛0
 is a fixed point of 𝑇. Without loss of 

generality, we assume that  𝑥𝑛 ≠ 𝑥𝑛−1  for all 𝑛. Now by (3.24) and definition of the sequence 

(3.25)               𝑝𝑏 𝑥𝑛−1 , 𝑥𝑛 = 𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1 ≥ 𝜆𝑢𝑛   

where 𝑢𝑛 ∈  𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 , 𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1  . 
Now we have to consider the following two cases. 

If 𝑢𝑛 = 𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 , then 

                         𝑝𝑏 𝑥𝑛−1 , 𝑥𝑛 ≥ 𝜆𝑝𝑏 𝑥𝑛−1, 𝑥𝑛   
which implies that 𝑝𝑏 𝑥𝑛−1, 𝑥𝑛 = 0, that is, 𝑥𝑛−1 = 𝑥𝑛 .  This is a contradiction. 

If 𝑢𝑛 = 𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 , then                        
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                         𝑝𝑏 𝑥𝑛−1 , 𝑥𝑛 ≥ 𝜆𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1       
and so 

                          𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 ≤
1

𝜆
𝑝𝑏 𝑥𝑛−1 ,𝑥𝑛     

where 
1

𝜆
<

1

𝑠 
 . Then by Lemma 3.1,   𝑥𝑛  𝑛=1

∞  is a 𝑝𝑏 -Cauchy sequence in 𝑋. Since (𝑋, 𝑝𝑏) is a 𝑝𝑏 -complete, the 

sequence   𝑥𝑛  𝑛=1
∞  is 𝑝𝑏 -converges to a point 𝑥⋆ ∈ 𝑋. Since 𝑇 is 𝑝𝑏 -continuous, it is clear that 𝑥⋆ is a fixed point 

of 𝑇. This completes the proof. 

 

Example 3.7 Let 𝑋 = [0, +∞) and let 𝑝𝑏 𝑥, 𝑦 =  max 𝑥, 𝑦  2,∀𝑥, 𝑦 ∈ 𝑋. It is obvious that 𝑝𝑏  is a partial b-

metric on 𝑋 with 𝑠 = 2 > 1 and (𝑋, 𝑝𝑏) is complete. Also, 𝑝𝑏  is not a partial metric on 𝑋. Define 𝑇:𝑋 → 𝑋 be   

                          𝑇𝑥 =  

6𝑥                         if   𝑥 ∈  0,1 ,

5𝑥 + 1                 if  𝑥 ∈  1,2 ,

4𝑥 + 3                if  𝑥 ∈  2,∞ .

  

Also, clearly  𝑇 is surjection on 𝑋. Now we consider following cases. 

 Let  𝑥, 𝑦 ∈  0,1 , then 

     𝑝𝑏 𝑇𝑥,𝑇𝑦 =  max 6𝑥, 6𝑦  2 = 36  max 𝑥, 𝑦  2    
                           ≥ 15 max 𝑥, 𝑦  2 = 15𝑝𝑏(𝑥, 𝑦) 

 Let  𝑥, 𝑦 ∈  1,2 , then   

    𝑝𝑏 𝑇𝑥,𝑇𝑦 =  max  5𝑥 + 1 ,  5𝑦 + 1   2   >  max 5𝑥. 5𝑦  2                             
                                      = 25 max 𝑥, 𝑦  2 ≥ 15 max 𝑥, 𝑦  2 = 15𝑝𝑏(𝑥, 𝑦) 

 Let  𝑥, 𝑦 ∈  2,∞ , then 

    𝑝𝑏 𝑇𝑥,𝑇𝑦 =  max  4𝑥 + 3 ,  4𝑦 + 3   2 >  max 4𝑥. 4𝑦  2      
                          = 16 max 𝑥, 𝑦  2 ≥ 15 max 𝑥, 𝑦  2 = 15𝑝𝑏(𝑥, 𝑦) 

 Let 𝑥 ∈  0,1  and 𝑦 ∈  1,2 , then  

   𝑝𝑏 𝑇𝑥,𝑇𝑦 =  max 6𝑥,  5𝑦 + 1   2 >  max 6𝑥. 5𝑦  2                            
                      > 25 max 𝑥, 𝑦  2 ≥ 15 max 𝑥, 𝑦  2 = 15𝑝𝑏(𝑥, 𝑦) 

 Let 𝑥 ∈  0,1  and 𝑦 ∈  2,∞ , then  

  𝑝𝑏 𝑇𝑥,𝑇𝑦 =  max 6𝑥,  4𝑦 + 3   2 >  max 6𝑥. 4𝑦  2                         
                                     > 16 max 𝑥, 𝑦  2 ≥ 15 max 𝑥, 𝑦  2 = 15𝑝𝑏(𝑥, 𝑦) 

 Let  𝑥 ∈  1,2  and 𝑦 ∈  2,∞ , then  

 𝑝𝑏 𝑇𝑥,𝑇𝑦 =  max  5𝑥 + 1 ,  4𝑦 + 3   2  >  max 5𝑥. 4𝑦  2                           
                    > 16 max 𝑥, 𝑦  2 ≥ 15 max 𝑥, 𝑦  2 = 15𝑝𝑏(𝑥, 𝑦) 

 

That is 𝑝𝑏 Tx, Ty ≥ λ𝑝𝑏 x, y ,∀x, y ∈ X where λ = 15 > 2 = 𝑠. The conditions of Theorem 3.2 are satisfied 

and 𝑇 has a unique fixed point 𝑥⋆ = 0 ∈ 𝑋. 
 

III. COMMON FIXED POINT THEOREMS 
In this section, we give a common fixed point theorem of two weakly compatible mappings in partial b-metric 

spaces. In [14] Jungck introduced the concept of commuting maps. In [15] Jungck introduced the concept of 

compatible mappings which generalize the concept of commuting maps. Jungck in [16] further generalized the 

concept of weakly compatible maps as follows.  

 

Let 𝑆 and 𝑇 be two self-mappings on a nonempty set 𝑋. Then 𝑆 and 𝑇 are said to be weakly compatible if they 

commute at all of their coincidence points; that is, 𝑆𝑥 =  𝑇𝑥 for some 𝑥 ∈  𝑋 and then 𝑆𝑇𝑥 = 𝑇𝑆𝑥. 

 

Theorem 4.1 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1. Let 𝑆 and 𝑇 be two 

self-mappings of 𝑋 and 𝑇(𝑋) ⊆ 𝑆(𝑋). Suppose that there exists a constant 𝜆 > 𝑠 such that  

(4.1)                           𝑝𝑏(𝑆𝑥,𝑆𝑦) ≥ 𝜆𝑝𝑏(𝑇𝑥,𝑇𝑦)  

∀ 𝑥, 𝑦 ∈ 𝑋. If one of the subspaces 𝑇(𝑋) or 𝑆(𝑋) is complete, then 𝑆 and 𝑇 have a unique point of coincidence 

in 𝑋. Moreover, if 𝑆 and 𝑇 are weakly compatible, then 𝑆 and 𝑇 have a unique common fixed point in 𝑋.Then 𝑆 

and 𝑇 have a unique common fixed point in 𝑋.  

Proof: Let 𝑥0 ∈ 𝑋. Since 𝑇(𝑋) ⊆ 𝑆(𝑋), choose 𝑥1 ∈ 𝑋 such that 𝑦1 = 𝑆𝑥1 = 𝑇𝑥0. In general, choose 𝑥𝑛+1 ∈ 𝑋 

such that 𝑦𝑛+1 = 𝑆𝑥𝑛+1 = 𝑇𝑥𝑛 . Now by (4.1), we have  

                            𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1 = 𝑝𝑏 𝑆𝑥𝑛 , 𝑆𝑥𝑛+1  ≥ 𝜆𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1 = 𝜆𝑝𝑏 𝑦𝑛+1 , 𝑦𝑛+2   
and so             

(4.2)                     𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+2 ≤
1

𝜆  
𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1 = ℎ𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1   
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where ℎ =
1

𝜆  
<

1

𝑠 
 . Then by Lemma 3.1,   𝑥𝑛  𝑛=1

∞  is a 𝑝𝑏 -Cauchy sequence. Since 𝑇(𝑋) ⊆ 𝑆(𝑋) and  𝑇(𝑋) or 

𝑆(𝑋) is a complete subspace of 𝑋. Then from Lemma 2.15, (𝑆(𝑋),𝑑𝑝𝑏) is b-complete and so the sequence 

 𝑦𝑛   =  𝑇𝑥𝑛−1  ⊆ 𝑆(𝑋)  is b-converges in the b-metric space (𝑆(𝑋),𝑑𝑝𝑏 ) , that is, there exists 𝑧⋆ ∈ 𝑋 such that   

lim𝑛→+∞ 𝑑𝑝𝑏 𝑦𝑛 , 𝑧⋆ = 0.  

Consequently, we can find 𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧⋆. Again from Lemma 2.15, we have 

(4.3)                 𝑝𝑏 𝑆𝑢, 𝑧⋆ = 𝑝𝑏 𝑧
⋆, 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑚   

Moreover, since  𝑦𝑛 𝑛=1
∞  is a b-Cauchy sequence in the b-metric space (𝑆(𝑋),𝑑𝑝𝑏 ),  𝑙𝑖𝑚𝑛→∞ 𝑑𝑝𝑏  𝑦𝑛 , 𝑦𝑚  = 0, 

On the other hand, since  

                        max  𝑝𝑏 𝑦𝑛 , 𝑦𝑛 , 𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+1  ≤ 𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1  
then by the simple induction with (3.2), we have 

(4.4)                max  𝑝𝑏 𝑦𝑛 , 𝑦𝑛 , 𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+1  ≤ ℎ𝑛𝑝𝑏 𝑦0 , 𝑦1  
Hence, we have 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑛 = 0. Thus from the definition of 𝑑𝑝𝑏 , we have  𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑚  = 0. 

Therefore, from (4.3), we have  

                        𝑝𝑏 𝑆𝑢, 𝑧⋆ = 𝑝𝑏 𝑧
⋆, 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑚  = 0. 

Now to show that 𝑇𝑢 = 𝑧⋆. From (4.1), we have  

(4.5)                𝑝𝑏 𝑇𝑢,𝑇𝑥𝑛 ≤
1

𝜆
𝑝𝑏 𝑆𝑢, 𝑆𝑥𝑛  

Taking limit as 𝑛 → +∞ in the above inequality, we get 

                        𝑝𝑏 𝑇𝑢, 𝑧⋆ ≤
1

𝜆
𝑝𝑏 𝑆𝑢, 𝑧⋆ = 0, 

This implies that 𝑝𝑏 𝑇𝑢, 𝑧⋆ = 0 and so 𝑇𝑢 = 𝑧⋆. Therefore, 𝑆𝑢 = 𝑇𝑢 = 𝑧⋆. Since 𝑆 and 𝑇 be weakly 

compatible, 𝑆𝑇𝑢 = 𝑇𝑆𝑢, that is, 𝑆𝑧⋆ = 𝑇𝑧⋆.  
Now we show that 𝑧⋆ is a common fixed point of 𝑆 and 𝑇. From condition (4.1) 

                        𝑝𝑏 𝑆𝑧
⋆, 𝑆𝑥𝑛 ≥ 𝜆𝑝𝑏 𝑇𝑧

⋆,𝑇𝑥𝑛   
Proceeding to the limit as 𝑛 → +∞, we have  

                        𝑝𝑏 𝑆𝑧
⋆, 𝑧⋆ ≥ 𝜆𝑝𝑏 𝑇𝑧

⋆, 𝑧⋆ = 𝜆𝑝𝑏 𝑆𝑧
⋆, 𝑧⋆ ,  

which implies that 𝑝𝑏 𝑆𝑧
⋆, 𝑧⋆ = 0. Also 𝑝𝑏 𝑆𝑧

⋆, 𝑆𝑧⋆ = 0 = 𝑝𝑏 𝑧
⋆, 𝑧⋆ . Hence 𝑆𝑧⋆ = 𝑧⋆  and so 𝑆𝑧⋆ = 𝑇𝑧⋆ =

𝑧⋆. 
Finally, assume 𝑧⋆ ≠ 𝑤⋆ is also another common fixed point of 𝑆 and 𝑇. From (4.1), we get 

(4.6)                   𝑝𝑏  𝑧
⋆,𝑤⋆ = 𝑝𝑏  𝑆𝑧

⋆, 𝑆𝑤⋆   ≥ 𝜆𝑝𝑏 𝑇𝑧
⋆,𝑇𝑤⋆ = 𝜆𝑝𝑏 𝑧

⋆,𝑤⋆  
This is true only when 𝑝𝑏  𝑧

⋆,𝑤⋆ = 0. Also 𝑝𝑏  𝑧
⋆, 𝑧⋆ = 0 = 𝑝𝑏  𝑤

⋆,𝑤⋆ . So 𝑧⋆ = 𝑤⋆. Hence 𝑆 and  𝑇 have 

a unique fixed point in 𝑋. This completes the proof. 

 

Theorem 4.2 Let  𝑋, 𝑝𝑏  be a 𝑝𝑏 -complete partial b-metric space with the coefficient 𝑠 ≥ 1. Let 𝑆 and 𝑇 be two 

self-mappings of 𝑋 and 𝑇(𝑋) ⊆ 𝑆(𝑋). Suppose that 𝑎, 𝑏, 𝑐 ≥ 0 with 𝑎 + 𝑠𝑏 + 𝑐 > 𝑠 such that  

(4.7)                     𝑝𝑏(𝑆𝑥,𝑆𝑦) ≥ 𝑎𝑝𝑏 𝑇𝑥,𝑇𝑦 + 𝑏𝑝𝑏 𝑆𝑥,𝑇𝑥 + 𝑐𝑝𝑏(𝑆𝑦,𝑇𝑦)  

∀ 𝑥, 𝑦 ∈ 𝑋. If one of the subspaces 𝑇(𝑋) or 𝑆(𝑋) is 𝑝𝑏 -complete, then 𝑆 and 𝑇 have a point of coincidence in 𝑋. 

Moreover, if 𝑎 > 1, then point of coincidence is unique. If 𝑆 and 𝑇 be weakly compatible and 𝑎 > 1, then  𝑆 and 

𝑇 have a unique common fixed point in 𝑋.  

Proof: Let 𝑥0 ∈ 𝑋. Since 𝑇(𝑋) ⊆ 𝑆(𝑋), choose 𝑥1 ∈ 𝑋 such that 𝑦1 = 𝑆𝑥1 = 𝑇𝑥0. In general, choose 𝑥𝑛+1 ∈ 𝑋 

such that 𝑦𝑛+1 = 𝑆𝑥𝑛+1 = 𝑇𝑥𝑛 . Now by (4.7), we have  

                𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1 = 𝑝𝑏 𝑆𝑥𝑛 , 𝑆𝑥𝑛+1    
                                     ≥ 𝑎𝑝𝑏 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1 + 𝑏𝑝𝑏 𝑆𝑥𝑛 ,𝑇𝑥𝑛 + 𝑐𝑝𝑏(𝑆𝑥𝑛+1,𝑇𝑥𝑛+1 

                                     = 𝑎𝑝𝑏 𝑦𝑛+1 , 𝑦𝑛+2 + 𝑏𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1 + 𝑐𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+2  
and so 

            1 − 𝑏 𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1 ≥  𝑎 + 𝑐 𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+2  
If 𝑎 + 𝑐 = 0, then 𝑏 < 1. The above inequality implies that a negative number is greater than or equal to zero. 

That is impossible. So, 𝑎 + 𝑐 ≠ 0 and 1 − 𝑏 > 0. Therefore, 

(4.8)                             𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+2 ≤ ℎ𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1   

where ℎ =
1−𝑏

𝑎+𝑐  
<

1

𝑠 
. Then by Lemma 3.1,   𝑥𝑛  𝑛=1

∞  is a Cauchy sequence. Since 𝑇(𝑋) ⊆ 𝑆(𝑋) and  𝑇(𝑋) or 

𝑆(𝑋) is a 𝑝𝑏 -complete subspace of 𝑋. Then from Lemma 2.15, (𝑆(𝑋),𝑑𝑝𝑏 ) is b-complete and so the sequence 

 𝑦𝑛   =  𝑇𝑥𝑛−1  ⊆ 𝑆(𝑋)  is b-converges in the b-metric space (𝑆(𝑋),𝑑𝑝𝑏 ) , that is, there exists 𝑧⋆ ∈ 𝑋 such that  

𝑙𝑖𝑚𝑛→+∞ 𝑑𝑝𝑏  𝑦𝑛 , 𝑧⋆ = 0.  

Consequently, we can find 𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧⋆. Again from Lemma 2.15, we have 

(4.9)                            𝑝𝑏 𝑆𝑢, 𝑧⋆ = 𝑝𝑏 𝑧
⋆, 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑚   

Moreover, since  𝑦𝑛 𝑛=1
∞  is a b-Cauchy sequence in the b-metric space (𝑆(𝑋),𝑑𝑝𝑏 ), 𝑙𝑖𝑚𝑛→∞ 𝑑𝑝𝑏  𝑦𝑛 , 𝑦𝑚  = 0, 

On the other hand, since 
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                                   𝑚𝑎𝑥  𝑝𝑏 𝑦𝑛 , 𝑦𝑛 , 𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+1  ≤ 𝑝𝑏 𝑦𝑛 , 𝑦𝑛+1  
then by the simple induction with (4.8), we have 

(4.10)                         𝑚𝑎𝑥  𝑝𝑏 𝑦𝑛 , 𝑦𝑛 , 𝑝𝑏 𝑦𝑛+1, 𝑦𝑛+1  ≤ ℎ𝑛𝑝𝑏 𝑦0 , 𝑦1  
Hence, we have 

                                  𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑛 = 0.  

Thus from the definition of 𝑑𝑝𝑏 , we have 

                                  𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑚  = 0. 

Therefore, from (4.9), we have 

                                  𝑝𝑏 𝑆𝑢, 𝑧⋆ = 𝑝𝑏 𝑧
⋆, 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑧⋆ = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑏 𝑦𝑛 , 𝑦𝑚  = 0. 

Now to show that 𝑇𝑢 = 𝑧⋆. From (4.7), we have  

(4.11)                        𝑝𝑏 𝑆𝑢, 𝑆𝑥𝑛 ≥ 𝑎𝑝𝑏 𝑇𝑢,𝑇𝑥𝑛 + 𝑏𝑝𝑏 𝑆𝑢,𝑇𝑢 + 𝑐𝑝𝑏 𝑆𝑥𝑛 ,𝑇𝑥𝑛                                        
Taking limit as 𝑛 → +∞ in the above inequality, we get 

                                  0 = pb Su, z⋆ ≥ apb Tu, z⋆ + bpb z
⋆, Tu   

                                                           =  𝑎 + 𝑏 𝑝𝑏 𝑇𝑢, 𝑧⋆  
This implies that 𝑝𝑏 𝑇𝑢, 𝑧⋆ = 0 and so 𝑇𝑢 = 𝑧⋆. Therefore, 𝑆𝑢 = 𝑇𝑢 = 𝑧⋆.  Therefore, 𝑧⋆ is a point of 

coincidence of 𝑆 and 𝑇.  

Now we suppose that 𝑎 > 1. Let 𝑤⋆ be another point of coincidence of 𝑆 and 𝑇. So 𝑆𝑣 = 𝑇𝑣 = 𝑤⋆ for some 

𝑣 ∈ 𝑋. Then from (4.7), we have 

                                  pb  z
⋆, w⋆ = pb  Su, Sv   

                                                     ≥ apb Tu, Tv + bpb Su, Tu + cpb Sv, Tv  
                                                     = apb z

⋆, w⋆     
This is true only when 𝑝𝑏  𝑧

⋆,𝑤⋆ = 0. Also 𝑝𝑏  𝑧
⋆, 𝑧⋆ = 0 = 𝑝𝑏  𝑤

⋆,𝑤⋆ . So  𝑧⋆ = 𝑤⋆.                                   
Since 𝑆 and 𝑇 be weakly compatible, 𝑆𝑇𝑢 = 𝑇𝑆𝑢, that is, 𝑆𝑧⋆ = 𝑇𝑧⋆. Now we show that 𝑧⋆ is a common fixed 

point of 𝑆 and 𝑇. If 𝑎 > 1, then from condition (4.7), we have 

                                 𝑝𝑏 𝑆𝑧
⋆, 𝑆𝑥𝑛 ≥ 𝑎𝑝𝑏 𝑇𝑧

⋆,𝑇𝑥𝑛 + 𝑏𝑝𝑏 𝑆𝑧
⋆,𝑇𝑧⋆ + 𝑐𝑝𝑏 𝑆𝑥𝑛 ,𝑇𝑥𝑛  

Proceeding to the limit as 𝑛 → +∞, we have 

                                 𝑝𝑏 𝑆𝑧
⋆, 𝑧⋆ ≥ 𝑎𝑝𝑏 𝑇𝑧

⋆, 𝑧⋆ = 𝑎𝑝𝑏 𝑆𝑧
⋆, 𝑧⋆ ,  

which implies that 𝑝𝑏 𝑆𝑧
⋆, 𝑧⋆ = 0.  

Also 𝑝𝑏 𝑆𝑧
⋆, 𝑆𝑧⋆ = 0 = 𝑝𝑏 𝑧

⋆, 𝑧⋆ . Hence 𝑆𝑧⋆ = 𝑧⋆  and so 𝑆𝑧⋆ = 𝑇𝑧⋆ = 𝑧⋆. Hence 𝑆 and  𝑇 have a unique 

fixed point in X. This completes the proof. 

 

Remark 4.3  

1. If we take  𝑠 = 1 in Theorem 3.2, then we get Corollary 2.1 of Huang et al. [26]. 

2. If we take  𝑠 = 1 in Corollary 3.3, then we get Corollary 2.2 of Huang et al. [26]. 

3. If we take 𝑠 = 1 in Theorem 3.4, then we get Theorem 2.1 of Huang et al. [26]. 

4. If we take 𝑠 = 1 in Theorem 3.6, then we get Theorem 2.2 of Huang et al. [26]. 

5. If we take 𝑠 = 1, 𝑏 = 𝑐 = 0 and 𝑎 = 𝜆 in Theorem 3.4, then we get Corollary 2.1 of Huang et al. [26]. 

6. If we take 𝑠 = 1, 𝑏 = 𝑐 = 0 and 𝑎 = 𝜆 in Theorem 4.2, then we get Theorem 2.3 of Huang et al. [26]. 

7. If we take  𝑏 = 𝑐 = 0 and 𝑎 = 𝜆 in Theorem 4.2, then we get Theorem 4.1. 

8. If we take 𝑠 = 1, 𝑆 = 𝑇,𝑇 = 𝐼 in Theorem 4.2, then we get Theorem 2.1 of Huang et al. [26]. 

9. If we take  𝑆 = 𝑇,𝑇 = 𝐼 in Theorem 4.2, then we get Theorem 3.4. 

 

Now, we prove the following common fixed point theorem, which is generalization of Theorem 2.2 of 

Shatanawi et al. [22] in the setting of partial b-metric space. 

 

Theorem 4.4 Let 𝑇, 𝑆:𝑋 → 𝑋 be two surjective mappings of a pb-complete partial b-metric space (X, pb ) with 

the coefficient 𝑠 ≥ 1. Suppose that T and S satisfying inequalities  

(4.12)                     𝑝𝑏 𝑇 𝑆𝑥 , 𝑆𝑥 + 𝑘𝑝𝑏(𝑇 𝑆𝑥 , 𝑥) ≥ 𝑎𝑝𝑏 𝑆𝑥, 𝑥  
(4.13)                     𝑝𝑏 𝑆 𝑇𝑥 ,𝑇𝑥 + 𝑘𝑝𝑏 𝑆 𝑇𝑥 , 𝑥 ≥ 𝑏𝑝𝑏 𝑇𝑥, 𝑥   
for 𝑥 ∈ 𝑋 and some nonnegative real numbers 𝑎, 𝑏 and 𝑘 with 𝑎 > 𝑠 1 + 𝑘 + 𝑠2𝑘 and 𝑏 > 𝑠 1 + 𝑘 + 𝑠2𝑘.. If  

𝑇 or 𝑆 is 𝑝𝑏 -continuous, then 𝑇 and 𝑆 have a common fixed point in 𝑋. 
Proof Let 𝑥0 be an arbitrary point in 𝑋. Since 𝑇 is surjective, there exists 𝑥1 ∈ 𝑋 such that 𝑥0 = 𝑇𝑥1 . Also, since 

𝑆 is surjective, there exists 𝑥2 ∈ 𝑋 such that 𝑥2 = 𝑆𝑥1 . Continuing this process, we construct a sequence  𝑥𝑛   in 

𝑋 such that 

(4.14)                                       𝑥2𝑛 = 𝑇𝑥2𝑛+1 and 𝑥2𝑛+1 = 𝑆𝑥2𝑛+2  

 

for all 𝑛 ∈ 𝑁 ∪  0 , Now for 𝑛 ∈ ℕ ∪  0 , by (4.12) we have 

                          𝑝𝑏 𝑇 𝑆𝑥2𝑛+2 , 𝑆𝑥2𝑛+2 + 𝑘𝑝𝑏 𝑇 𝑆𝑥2𝑛+2 , 𝑥2𝑛+2 ≥ 𝑎𝑝𝑏 𝑆𝑥2𝑛+2 ,𝑥2𝑛+2  
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Thus, we have  

                           𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1 + 𝑘𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+2 ≥ 𝑎𝑝𝑏 𝑥2𝑛+1, 𝑥2𝑛+2  
which implies that  

                𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1 + 𝑠𝑘 𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1 + 𝑝𝑏 𝑥2𝑛+1, 𝑥2𝑛+2 − 𝑝𝑏 𝑥2𝑛+1, 𝑥2𝑛+1  ≥ 𝑎𝑝𝑏 𝑥2𝑛+1 , 𝑥2𝑛+2  
That is, 

                     𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1 + 𝑠𝑘 𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1 + 𝑝𝑏 𝑥2𝑛+1, 𝑥2𝑛+2  ≥ 𝑎𝑝𝑏 𝑥2𝑛+1, 𝑥2𝑛+2  
Hence  

(4.15)            𝑝𝑏 𝑥2𝑛+1 ,𝑥2𝑛+2 ≤
1+𝑠𝑘

𝑎−𝑠𝑘
 𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1  

On other hand, we have (from (4.13))  

                      𝑝𝑏 𝑆 𝑇𝑥2𝑛+1 ,𝑇𝑥2𝑛+1 + 𝑘𝑝𝑏 𝑆 𝑇𝑥2𝑛+1 , 𝑥2𝑛+1 ≥ 𝑏𝑝𝑏 𝑇𝑥2𝑛+1 , 𝑥2𝑛+1   
Thus we have  

                      𝑝𝑏 𝑥2𝑛−1, 𝑥2𝑛 + 𝑘𝑝𝑏 𝑥2𝑛−1, 𝑥2𝑛+1 ≥ 𝑏𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1  
which implies that 

                       𝑝𝑏 𝑥2𝑛−1 , 𝑥2𝑛 + 𝑠𝑘 𝑝𝑏 𝑥2𝑛−1, 𝑥2𝑛 + 𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1 − 𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛   ≥ bpb x2n , x2n+1   
That is, 

                       𝑝𝑏 𝑥2𝑛−1 , 𝑥2𝑛 + 𝑠𝑘 𝑝𝑏 𝑥2𝑛−1, 𝑥2𝑛 + 𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1  ≥ 𝑏𝑝𝑏 𝑥2𝑛 , 𝑥2𝑛+1  
Hence  

(4.16)             𝑝𝑏 𝑥2𝑛−1, 𝑥2𝑛 ≤
1+𝑠𝑘

𝑏−𝑠𝑘
 𝑝𝑏 𝑥2𝑛−1, 𝑥2𝑛  

Let ℎ = 𝑚𝑎𝑥  
1+𝑠𝑘

𝑎−𝑠𝑘
,

1+𝑠𝑘

𝑏−𝑠𝑘
 <

1

𝑠
 

Then by combining (4.15) and (4.16), we have 

(4.17)              𝑝𝑏 𝑥𝑛 , 𝑥𝑛+1 ≤ ℎ 𝑝𝑏 𝑥𝑛−1, 𝑥𝑛    

where  ℎ ∈  0,
1

𝑠
 , ∀ 𝑛 ∈ ℕ ∪  0 . Then by Lemma 3.1,  𝑥𝑛  𝑛=1

∞  is 𝑝𝑏 -Cauchy sequence in the 𝑝𝑏 -complete 

partial b-metric space. Then there exists 𝑥⋆ ∈ 𝑋 such that 𝑥𝑛 → 𝑥⋆ as 𝑛 → +∞. Therefore 𝑥2𝑛+1 → 𝑥⋆ and 

𝑥2𝑛+2 → 𝑣 as 𝑛 → +∞. Without loss of generality, we may assume that 𝑇 is 𝑝𝑏 -continuous, then 𝑇𝑥2𝑛+1 →
𝑇𝑥⋆as 𝑛 → +∞. But  𝑇𝑥2𝑛+1 = 𝑥2𝑛 → 𝑥⋆ as 𝑛 → +∞.Thus, we have 𝑇𝑥⋆ = 𝑥⋆. since 𝑆 is surjective, there 

exists 𝑝 ∈ 𝑋 such that 𝑆𝑝 = 𝑥⋆.  
Now 

                                            𝑝𝑏 𝑇 𝑆𝑝 , 𝑆𝑝 + 𝑘𝑝𝑏 𝑇 𝑆𝑝 , 𝑝 ≥ 𝑎𝑝𝑏 𝑆𝑝, 𝑝  
implies that 𝑘𝑝𝑏  𝑥

⋆, 𝑝 ≥ 𝑎𝑝𝑏  𝑥
⋆, 𝑝  

Then 𝑝𝑏  𝑥
⋆, 𝑝 ≤

𝑘

𝑎
𝑝𝑏  𝑥

⋆, 𝑝 . Since 𝑎 > 𝑘, we conclude that 𝑝𝑏  𝑥
⋆, 𝑝 = 0. so 𝑥⋆ = 𝑝. Hence 𝑇𝑥⋆ = 𝑆𝑥⋆ =

𝑥⋆. Therefore 𝑥⋆ is a common fixed point of 𝑇 and 𝑆. 

By taking 𝑏 = 𝑎 in theorem 4.4, we have the following result. 

 

Corollary 4.5 Let 𝑇, 𝑆:𝑋 → 𝑋 be two surjective mappings of a 𝑝𝑏 -complete partial b-metric space (𝑋, 𝑝𝑏) with 

the coefficient 𝑠 ≥ 1. Suppose that 𝑇 and 𝑆 satisfying inequalities  

(4.18)                𝑝𝑏 𝑇 𝑆𝑥 , 𝑆𝑥 + 𝑘𝑝𝑏(𝑇 𝑆𝑥 , 𝑥) ≥ 𝑎𝑝𝑏 𝑆𝑥, 𝑥  
(4.19)                𝑝𝑏 𝑆 𝑇𝑥 ,𝑇𝑥 + 𝑘𝑝𝑏 𝑆 𝑇𝑥 , 𝑥 ≥ 𝑎𝑝𝑏 𝑇𝑥, 𝑥   
for 𝑥 ∈ 𝑋 and some nonnegative real numbers a and k with 𝑎 > 𝑠 1 + 𝑘 + 𝑠2𝑘 .  If 𝑇 or 𝑆 is continuous, then 

𝑇 and 𝑆 have a common fixed point in 𝑋. 
By taking 𝑆 = 𝑇 in Corollary 4.5, we have the following Corollary. 

 

Corollary 4.6 Let 𝑇:𝑋 → 𝑋 be a surjective mappings of a 𝑝𝑏 -complete partial b-metric space (𝑋,𝑝𝑏) with the 

coefficient 𝑠 ≥ 1. Suppose that T satisfying inequality  

(4.20)                        𝑝𝑏 𝑇 𝑇𝑥 ,𝑇𝑥 + 𝑘𝑝𝑏(𝑇 𝑇𝑥 , 𝑥) ≥ 𝑎𝑝𝑏 𝑇𝑥, 𝑥  
for 𝑥 ∈ 𝑋 and some nonnegative real numbers 𝑎 and 𝑘 with 𝑎 > 𝑠 1 + 𝑘 + 𝑠2𝑘 .  If 𝑇 is continuous, then 𝑇 has 

a fixed point in 𝑋. 
Now, we present an example to illustrate the usability of Corollary 4.6. 

 

Example 4.7 Let 𝑋 = [0, +∞) and define 𝑝𝑏 :𝑋 × 𝑋 → ℝ+ by 

                                    𝑑 𝑥, 𝑦 = 𝑝𝑏 𝑥, 𝑦 =  𝑚𝑎𝑥 𝑥, 𝑦  2 +  𝑥 − 𝑦 2 ,∀ 𝑥, 𝑦 ∈ 𝑋.  
Then (X, pb ) is a complete partial b-metric space with s = 2. Define T: X → X by T(x) = 2x. Then T has a fixed 

point. 

 

Proof Note that 

  𝑝𝑏(𝑇(𝑇𝑥),𝑇𝑥)  + 𝑝𝑏(𝑇(𝑇𝑥), 𝑥)  = 𝑝𝑏(4𝑥, 2𝑥) + 𝑝𝑏(4𝑥, 𝑥) 

                                                       =  𝑚𝑎𝑥 4𝑥, 2𝑥  2 +  4𝑥 − 2𝑥 2 +  𝑚𝑎𝑥 4𝑥, 𝑥  2 +  4𝑥 − 𝑥 2     
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                                                       = 16𝑥2 + 4𝑥2 + 16𝑥2 + 9𝑥2 = 45𝑥2 

                                                       > 40𝑥2 = 8 4𝑥2 + 𝑥2  
                                                       = 8  𝑚𝑎𝑥 2𝑥, 𝑥  2 +  2𝑥 − 𝑥 2  
                                                       = 8𝑝𝑏(𝑇𝑥, 𝑥) 

for all 𝑥 ∈ 𝑋. Here 𝑘 = 1 and 𝑎 = 8. Clearly  8 = 𝑎 > 𝑠 1 + 𝑘 + 𝑠𝑘2 = 2 1 + 1 + 2 1 2 = 6. Also 𝑇 is 

surjection on 𝑋. Thus 𝑇 satisfies all the hypotheses of Corollary 4.5 and hence 𝑇 has a fixed point. Here 0 ∈ 𝑋 is 

the fixed point of 𝑇. 

 

CONFLICT OF INTEREST 
No conflict of interest was declared by the authors.  

AUTHOR’S CONTRIBUTIONS 
All authors contributed equally and significantly to writing this paper. All authors read and approved the final 

manuscript. 

 

REFERENCES 
[1]. Aage, CT, Salunke, JN: Some fixed point theorems for expansion onto mappings on cone metric  spaces. Acta Math. Sin. Engl. 

Ser. 27(6), 1101-1106 (2011). 

[2]. Aydi, H., Some fixed point results in ordered partial metric spaces, Journal of Nonlinear Sciences and Applications, 3 (2011), 
210-217.  

[3]. Bakhtin, IA: The contraction mapping principle in almost metric spaces. Funct. Anal., Gos. Ped. Inst.  Unianowsk 30, 26-37 

(1989).  
[4]. Banach, S: Sur les operations dans les ensembles abstrait et leur application aux equations, integrals. Fundam. Math. 3, 133-181 

(1922). 

[5]. Boriceanu, M, Bota, M, Petrusel, A: Mutivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010).  
[6]. Bota, M, Molnar, A, Csaba, V: On Ekeland’s variational principle in b-metric spaces. Fixed Point  Theory 12, 21-28 (2011). 

[7]. Czerwik, S., “Contraction mappings in b-metric spaces,” Acta Mathematica et Informatica  Universitatis Ostraviensis, 

vol. 1, pp. 5–11, 1993. 
[8]. Czerwik, S., “Nonlinear set-valued contraction mappings in b-metric spaces,” Atti del Seminario matematico e fisico 

dell’Universit`a di Modena, vol. 46, no. 2, pp. 263–276, 1998. 

[9]. Daffer, P. Z., Kaneko, H., On expansive mappings, Math. Japonica. 37 (1992), 733-735. 
[10]. Daheriya, R. D., Jain, R., Ughade, M., “Some Fixed Point Theorem for Expansive Type Mapping in Dislocated Metric Space”, 

ISRN Mathematical Analysis, Volume 2012, Article ID 376832, 5 pages, doi:10.5402/2012/376832. 

[11]. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985). 
[12]. Jain, R., Daheriya, R. D., Ughade, M., Fixed Point, Coincidence Point and Common Fixed Point Theorems under Various 

Expansive Conditions in b-Metric Spaces, International Journal of Scientific and Innovative Mathematical Research, vol.3, no.9, 

pp. 26-34, 2015.  
[13]. Jain, R., Daheriya, R. D., Ughade, M., Fixed Point, Coincidence Point and Common Fixed Point Theorems under Various 

Expansive Conditions in Parametric Metric Spaces and Parametric b-Metric Spaces, Gazi University Journal of Science, 

Accepted, 2015. 
[14]. Jungck, G., “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no.4, pp. 261-263, 1976. 

[15]. Jungck, G., “Compatible mappings and common fixed points,” International Journal of Mathematics and Mathematical Sciences, 

vol. 9, no.4, pp. 771-779, 1986. 
[16]. Jungck, G., “Fixed points for non-continuous non-self mappings on non-metric space,” Far East Journal of Mathematical 

Sciences, vol. 4, pp. 199-212, 1996. 

[17]. Kaewcharoen, A., Yuying, T., Unique common fixed point theorems on partial metric spaces, Journal of Nonlinear Sciences and 
Applications, 7 (2014), 90-101.  

[18]. Marta Demma and Pasquale Vetro, Picard Sequence and Fixed Point Results on 𝑏-Metric Spaces, Journal of Function Spaces, 
Volume 2015, Article ID 189861, 6 pages http://dx.doi.org /10.1155/2015/189861. 

[19]. Matthews, S. G., Partal metric topology Proc. 8th Summer Conference on General Topology and Applications, Ann. N.Y. Acad. 
Sci., 728 (1994), 183-197. 

[20]. Mehmet, K., Kiziltunc, H., On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of Analysis and 

Number Theory, 1 (2013), 13-16. 
[21]. Mustafa, Z., Roshan, J. R., Parvaneh, V., Kadelburg, Z., Some common fixed point result in ordered partial b-metric spaces, 

Journal of Inequalities and Applications, (2013), 2013:562.  

[22]. Shatanawi, W., Awawdeh, F., Some fixed and coincidence point theorems for expansive maps in cone metric spaces, Fixed Point 
Theory and Applications 2012, 2012:19, doi:10.1186/1687-1812-2012-19. 

[23]. Shatanawii, W., Nashineb,, H. A generalization of Banach's contraction principle for nonlinear contraction in a partial metric 

space, Journal of Nonlinear Sciences and Applications, 5 (2012), 37-43.  
[24]. Shukla, S., Partial b-metric spaces and fixed point theorems, Mediterranean Journal of Mathematics, doi:10.1007/s00009-013-

0327-4, (2013). 

[25]. Wang, S. Z., Li, B. Y., Gao, Z. M., Iseki, K., Some fixed point theorems for expansion mappings, Math. Japonica. 29 (1984), 
631-636.  

[26]. Xianjiu Huang, Chuanxi Zhu, Xi Wen, Fixed point theorems for expanding mappings in partial metric spaces, An. St. Univ. 

Ovidius Constanta Vol. 20(1), 2012, 213-224.  
[27]. Yan Han and Shaoyuan Xu, Some new theorems of expanding mappings without continuity in cone metric spaces, Fixed Point 

Theory and Applications, 2013, 2013:3.  

 

 

 


