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ABSTRACT: In this paper the concept of k-monophonic set and k-monophonic number of a connected graph 

were introduced.  For a connected graph G of order n ≥ 2, a set M ⊆ V is a k-monophonic set of G if each vertex 

x ∈ (V (G) - M) lies on a u-v monophonic path of length k, for some vertices u and v in M. The minimum 

cardinality of a k-monophonic set in G is the k-monophonic number of G, denoted by mk (G). The 2-monophonic 

sets and 2-monophonic numbers of Cartesian product graphs were studied. For each pair k, n of integers with  4 

≤ k ≤ n, there is a connected graph G of order n such that m2 (G × K2) = k. Also, k-monophonic numbers of 

certain standard graphs were identified.  

Keywords:  2- monophonic number, k- monophonic number, k-monophonic set, Monophonic number.  

  
I. INTRODUCTION 

 

              By a graph 𝐺 =  (𝑉, 𝐸), we mean a finite undirected connected graph without loops or multiple edges. 

For vertices 𝑢 and 𝑣 in a connected graph  𝐺, the distance 𝑑(𝑢, 𝑣) is the length of a shortest 𝑢 − 𝑣 path in  𝐺. A 

𝑢 − 𝑣 path of length 𝑑(𝑢, 𝑣) is called a 𝑢 − 𝑣  geodesic. The set of all vertices 𝑢, that are adjacent with 𝑣 is 

called the neighbourhood of 𝑣 and is denoted by  𝑁(𝑣). If the sub graph induced by the neighborhood of a 

vertex is complete, that vertex is called extreme vertex. A vertex of degree one is called end vertex. Every end 

vertices are extreme vertices [5, 8].  

  A chord of a path 𝑃: 𝑢1, 𝑢2… 𝑢n is an edge 𝑢i𝑢j with 𝑗 ≥  𝑖 + 2. Any chordless path connecting 𝑢 and 𝑣 

are called 𝑢 − 𝑣 monophonic path. The monophonic closure of a subset 𝑀 of 𝑉(𝐺) is 𝐽G 𝑀 =
 𝐽𝑢,𝑣∈𝑀 G 𝑢, 𝑣   where 𝐽G[𝑢, 𝑣] is the set containing u and v and all vertices lying in some 𝑢 − 𝑣 monophonic 

path. If  𝐽G 𝑀 = 𝑉 𝐺 , then 𝑀 is called monophonic set in G. The order of a minimum monophonic set is 

called monophonic number and is denoted by  𝑚(𝐺) [1, 2, 3, 7]. 

An integer  𝑘 ≥  1, is a geodesic in a connected graph 𝐺 of length 𝑘 is called a k-geodesic. A vertex 𝑣 

is called a k-extreme vertex if 𝑣 is not the internal vertex of a k-geodesic joining any pair of distinct vertices 

of  𝐺. Each extreme vertex of a connected graph 𝐺 is a k-extreme vertex of  𝐺. Each end vertex of 𝐺 is a k-

extreme vertex of   𝐺. A set 𝑆 ⊆  𝑉 is called a k-geodetic set of 𝐺 if each vertex in 𝑉 −  𝑆 lies on a k-geodesic 

of vertices in  𝑆. The minimum cardinality of a k-geodetic set of 𝐺 is its k-geodetic number and is denoted 

by  𝑔k(𝐺). There are interesting applications of these concepts to the problem of designing the route for a shuttle 

and communication network design [6, 10]. 

For two graphs 𝐺 and 𝐻, their Cartesian product is denoted by 𝐺 × 𝐻, and has the vertex set 𝑉(𝐺) 

× 𝑉(𝐻), where two distinct vertices (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝐺 × 𝐻 are adjacent if and only if either 𝑥1 =  𝑥2 

and 𝑦1 𝑦2 ∈  𝐸(𝐻), or 𝑦1 =  𝑦2 and  𝑥1𝑥2∈  𝐸(𝐺). The mappings 𝜋(𝐺) ∶  𝑉(𝐺 × 𝐻)  →  𝑉(𝐺) and  𝜋(𝐻) ∶  𝑉(𝐺 ×
𝐻)  →  𝑉(𝐻) defined by 𝜋G(𝑥, 𝑦)  =  𝑥 and 𝜋H(𝑥, 𝑦)  =  𝑦, respectively for all (𝑥, 𝑦)  ∈  𝑉(𝐺 × 𝐻) are called 

projections. For a set   𝑆 ⊆  𝑉(𝐺 × 𝐻), define the projection of 𝑆 on 𝐺 as 𝜋G(𝑆)  =  {𝑥 ∈  𝑉(𝐺) ∶  (𝑥, 𝑦)  ∈  𝑆 

for some 𝑦 ∈  𝑉(𝐻)} and the projection of 𝑆 on 𝐻 as πH (𝑆)  =  {𝑦 ∈  𝑉(𝐻) ∶  (𝑥, 𝑦)  ∈  𝑆 for some 𝑥 ∈
 𝑉(𝐺)}.[9] 

The eccentricity 𝑒(𝑣)of a vertex 𝑣 is the greatest geodesic distance between 𝑣 and any other vertex. 

The centre (or Jordan centre) of a graph is the set of all vertices of minimum eccentricity, that is, the set of all 
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vertices A where the greatest distance d(A,B) to other vertices B is minimal. For basic graph theory notations, 

refer [4]. 

II. K-MONOPHONIC NUMBER OF A GRAPH 

 

Definition 2.1 Let 𝐺 be connected graph of order  𝑛 ≥ 2. For an integer 𝑘 ≥ 1, a vertex 𝑣 ∈ 𝑉(𝐺) is k-

monophonic by a pair 𝑥, 𝑦 ∈ 𝑉 if 𝑣 lies on an 𝑥 − 𝑦  monophonic path of length 𝑘 in 𝐺. The minimum 

cardinality of a k-monophonic set of 𝐺 is the k-monophonic number of 𝐺 and it is denoted by 𝑚k(𝐺). That set is 

called  minimum k-monophonic set or k-m set. 

 

Example 2.1 Consider the following graph given in figure 01. The minimum k-monophonic set and k-

monophonic number of   𝐺  for different values of   𝑘 is shown in the following table (Table 1). 

 

 
Fig. 1. Graph 𝐺 with 𝑚k 𝐺 = 3,4 𝑎𝑛𝑑 7 

 

k Minimum k-monophonic set 𝑚k(𝐺) 

4 {𝑣2,𝑣6,𝑣7} 3 

3 {𝑣2,𝑣5,𝑣6,𝑣7} 4 

2 {𝑣2,𝑣4,𝑣6,𝑣7} 4 

1 {𝑣1,𝑣2,𝑣3,𝑣4,𝑣5,𝑣6,𝑣7} 7 

Table 1 

 

Theorem 2.1  Let 𝐺 be a connected graph. Then each vertex of 𝐺 belongs to every 1-monophonic set of 𝐺  
Proof: Let 𝑀 be a 1-monophonic set of G and 𝑢 ∈ 𝑉(𝐺) such that 𝑢 ∉ 𝑀.Then 𝑢 lies in a 𝑥 − 𝑦 monophonic 

path of length 1 such that both 𝑥 and 𝑦 are in 𝑀. Then 𝑢 is either 𝑥 or 𝑦 which implies that 𝑢 ∈ 𝑀, a 

contradiction. Thus 𝑀 = 𝑉(𝐺) 

 

Corollary 2.2  If 𝐺 = 𝐾p, the complete graph with 𝑝 vertices. Then 𝐺 has only 1-monophonic set and 𝑚k 𝐺 =
 𝑝. 

Proof: Since any two vertices of 𝐺 are adjacent maximum length of any monophonic path is 1. Thus 𝐺 has only 

1-monophonic set. Hence by theorem 2.1   𝑚k(𝐺) =  𝑝. 

 

Theorem 2.3  Each extreme vertex belongs to every k-monophonic set. 

Proof: Let 𝑢 be an extreme vertex and 𝑀 be a k-monophonic set of 𝐺. Suppose 𝑢 ∉ 𝑀. By theorem 2.1, 𝑘 ≠
1.Then u is an internal vertex of an 𝑥 − 𝑦 monophonic path 𝑃 having length 𝑘. Let 𝑣 and 𝑤 are neighbours of 

𝑢  in   𝑃. Then they are not adjacent and 𝑢 is not an extreme vertex which is a contradiction to the hypothesis. 

Thus 𝑢 ∈ 𝑀. 
 

Theorem 2.4  Let 𝐺 be a connected graph and 𝑦 be a cut vertex. If 𝑀 is a k-monophonic set, then every 

component of 𝐺 contains at least one element of 𝑀. 

Proof: Let there is a component 𝐴  of   𝐺 − 𝑦 such that 𝐴 has no vertex of   𝑀. Let 𝑥 be any vertex in 𝐴. Since 𝑀 

is a k-monophonic set, there is a pair of vertices  𝑢 and 𝑣 in 𝑀 such that 𝑥 lies on some pair of 𝑢 − 𝑣 k-

monophonic path  𝑆: 𝑢 = 𝑥0, 𝑥1, 𝑥2,…𝑥 … , 𝑥n = 𝑣  with 𝑥 ≠ 𝑢, 𝑣. Since 𝑦 is a cut vertex of 𝐺, the 𝑢 − 𝑥 sub path 

𝑆1 of 𝑆 and the 𝑥 − 𝑣 sub path 𝑆2  of  𝑆 both contain 𝑦, so that 𝑆 is not a path. This contradicts 𝐴 has no vertex of 

𝑀. 
 

Remarks 2.1  No cut vertex of a connected graph 𝐺 belongs to any minimum monophonic set. (see [10]). 

Generally, this is not true for k-monophonic sets. Consider the path graph 𝑃4 of four vertices in Figure 2. 

Its 𝑚k(𝐺)is given in Table-2. Here 𝑣2 and 𝑣3 are cut vertices. 
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Theorem 2.5  For any connected 𝐺, 2 ≤ 𝑚k 𝐺 ≤ 𝑛. 

Proof: Any k-monophonic path contains at least two vertices. Therefore 𝑚k(𝐺) ≥ 2. Since  𝑉(𝐺) is always a k-

monophonic set for any k, 𝑚k 𝐺 ≤ 𝑛. 
 

 
Fig. 2. Path graph 𝑃4 with 𝑚k(𝑃5)= 2,3 𝑎𝑛𝑑 4 

       

k Minimum k-monophonic set 𝑚k(𝐺) 

1 𝑉(𝐺) 4 

2 {𝑣1,𝑣3, 𝑣4} 3 

3 {𝑣1,𝑣4} 2 

Table 2 

 

Theorem 2.6  For any connected graph 𝐺  of order 𝑛, 2 ≤ 𝑚k(𝐺) ≤ 𝑔k 𝐺 ≤ 𝑛. 
Proof: Since every k-geodetic path is also a k-monophonic path, every minimum k-monophonic set is also a k-

geodetic set. Thus 𝑚k(𝐺) ≤ 𝑔k 𝐺 . Other inequalities are trivial from theorem 2.5. 

 

Example 2.2(a)  Consider the following graph 𝐺 in Figure 03. Note that 𝑔k(𝐺) is not defined for some 𝑘 where 

𝑚k(𝐺) is defined and is equal to 4. (Refer Table 3) 

 

 
Fig. 3 Graph 𝐺 with 𝑚k 𝐺 = 4 but 𝑔k 𝐺  is not defined for  𝑘 = 4. 

 

 

 

 

 

 

 

 

Table 3 

 

Example 2.2(b)  Let 𝐺 be the complete bipartite graph 𝐾m,n. Then  

𝑚k(𝐾m,n) =   
𝑚 + 𝑛,     if     𝑘 = 1

min 𝑚, 𝑛 ,     if            𝑘 ≠ 1
  

Proof: For 𝑘 =1, the result follows by theorem 2.1, since 𝐺 has 𝑚 + 𝑛 vertices. For 𝑘 ≠ 1, maximum length of 

any monophonic path is 2. For, let 𝐴 =  {𝑢1, 𝑢2, 𝑢3…𝑢m} and 𝐵 =  {𝑣1, 𝑣2,…,𝑣n} are two patricians of 𝐺.Then 

any path 𝑢i𝑣j𝑢k𝑣t of length three does not form a monophonic path. Thus every k-monophonic set is a 2-

monophonic set. Then both 𝐴 and 𝐵 are monophonic set [7] and minimum of {𝑚, 𝑛}is a minimum 2- 

monophonic set. 

 

Theorem 2.7: Let 𝐺 =  𝐶n, cycle graph of n vertices. If n is even, there exist some k such that 𝑚k(𝐺) = 2. If n 

is odd, then any k-monophonic set of 𝐺 contains at least three vertices. 

Proof: Let 𝐺 be the cycle graph of 𝑛 vertices with closed walk 𝐶 ∶ 𝑣1, 𝑣2,…,𝑣n, 𝑣1.  If 𝑛 is even, then 𝑛 = 2𝑝 for 

some 𝑝. Consider the set 𝑀 = {𝑣1, 𝑣p+1}. Then 𝑀 is a p-monophonic set. Take 𝑘 = 𝑝, then the first part is clear. 

Let 𝑛 is odd. On the contrary suppose there is a k-monophonic set 𝑀 with at most two vertices for some 𝑘, 

k Minimum k-geodetic 

set 
𝑔k(𝐺) Minimum k-

monophonic set 
𝑚k(𝐺) 

1 𝑉(𝐺) 7 𝑉(𝐺) 7 

2 {𝑣1, 𝑣2,𝑣4,𝑣6,𝑣7} 5 {𝑣1, 𝑣2,𝑣4,𝑣6,𝑣7} 5 

3 {𝑣2,𝑣3,𝑣6,𝑣7}        4 {𝑣2,𝑣3,𝑣6,𝑣7}             4 

4 Not defined  {𝑣2,𝑣3,𝑣6,𝑣7}             4 
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1 ≤  𝑘 ≤  𝑛. Since any k-monophonic set contains at least two vertices, 𝑀 contains exactly two elements, say 𝑣i 

and 𝑣j. Since 𝑣i and 𝑣j lies in a cycle, there exist two paths 𝑃1 and 𝑃2 connecting 𝑣i and 𝑣j. Since 𝑀 is a 

monophonic set, we have 𝑖 ≥  𝑗 + 2 or 𝑖 ≤  𝑗 + 2. Now given 𝑛 is odd. There for 𝑃1 and 𝑃2 are not of the same 

length. Thus the vertex 𝑣i+1 or 𝑣i-1 does not lies any k- monophonic path connecting 𝑣i and 𝑣j, contradicts the 

hypothesis that 𝑀 is a k-monophonic set. Thus 𝑀 contains at least three vertices. 

 

III 2-MONOPHONIC SETS IN 𝑮 × 𝑲2 

 

Let 𝐺 be a non-trivial connected graph. Take 𝐻1 and 𝐻2 as two copies of 𝐺 such that 𝑣1𝑣2 is an edge of 

𝐺 × 𝐾2 and 𝑣i ∈  𝑉(𝐻i) for 𝑖 = 1,2. Note that, if both 𝑢 and 𝑣 are in 𝑉(𝐻i) for 𝑖 = 1,2 then there are minimum 

𝑢 − 𝑣  monophonic path that completely lies in 𝐻i. Thus: 

Lemma 3.1  Let 𝐺 be a non-trivial connected graph and let 𝐻1 and 𝐻2 as two copies of 𝐺. If 𝑀 is a 2-

monophonic set in 𝐺 × 𝐾2, then  𝑀 ∩ 𝑉(𝐻1) and 𝑀 ∩ 𝑉(𝐻2) are non-empty. 

 

Theorem 3.2  If 𝐺  is a connected graph of order 𝑛 ≥ 4, then 4 ≤ 𝑚2(𝐺 ×  𝐾2) ≤ 𝑛. 

Proof: First, prove 4 ≤ 𝑚2(𝐺 ×  𝐾2). On the contrary assume that there is a connected graph 𝐺 of order 

𝑛 ≥ 4 such that 𝑚2(𝐺 ×  𝐾2) ≤ 3. Then 𝐺 × 𝐾2 contain a 2-monophonic set 𝑀 of cardinality 3, say   {𝑎, 𝑏, 𝑐}. 

In 𝐺 × 𝐾2  let 𝐻1 and 𝐻2 are two copies of 𝐺 with 𝑉(𝐻1) =  {𝑢1, 𝑢2, 𝑢3…𝑢n} and 𝑉(𝐻2) =  {𝑣1, 𝑣2,…,𝑣n} so that 

𝑢i𝑣i is an edge in 𝐺 × 𝐾2 for 1 ≤ 𝑖 ≤ 𝑛. By lemma 3.1  𝑀 ∩ 𝑉(𝐻1) and 𝑀 ∩ 𝑉(𝐻2) are non-empty. Thus 

assume that 𝑎, 𝑏 ∈ 𝑉(𝐻1) and 𝑐 ∈  𝑉(𝐻2), say 𝑎 = 𝑢1, 𝑏 = 𝑢2 and 𝑐 = 𝑣i for   1 ≤ 𝑖 ≤ 𝑛. Since 𝑛 ≥ 4, the set 
 1,2, … , 𝑛 − {1,2, 𝑖} is non-empty and let 𝑗 belongs to this set. Then 𝑣j∉ 𝑀. Now 𝑣j is 2-monophonic by 𝑢j,  𝑣i 

and 𝑢j are not in 𝑀 which follows that 𝑣j does not lie on 2-monophonic path of any vertices of 𝑀 and it is a 

contradiction. Thus  𝑚2(𝐺 ×  𝐾2) ≥ 4. 

 

 Next, prove 𝑚2(𝐺 × 𝐾2) ≤ 𝑛. Let 𝑑𝑖𝑎𝑚 𝐺, 𝑑 ≥ 2 and let 𝑢1∈ 𝑉(𝐻1) such that 𝑒(𝑢1)= 𝑑. Let 𝑣1 ∈
𝑉(𝐻2) such that 𝑣1 corresponds to 𝑢1 in 𝐺 × 𝐾2. For each integer 1 ≤ 𝑖 ≤ 𝑑, let 𝑋i= {𝑥 ∈ 𝑉(𝐻1): 𝑑(𝑢1, 𝑥) = 𝑖} 

and 𝑌i= {𝑦 ∈ 𝑉(𝐻2): 𝑑(𝑣1, 𝑦)= 𝑖}. Then 𝑋0 = {𝑢1} and 𝑌0 = {𝑣1}. Take the set 𝑀 as the union of the sets 

𝑋0, 𝑋2. . . 𝑋d, 𝑌1, 𝑌3. . . 𝑌d-1 if 𝑑 is even and union of the sets  𝑋0, 𝑋2… 𝑋d-1, 𝑌1, 𝑌3… 𝑌d, if 𝑑 is odd. Then 𝑀 is a 2-

monophonic set of 𝐺 × 𝐾2. Let 𝑣 ∈ 𝑉(𝐺 ×  𝐾2) − 𝑀. If 𝑑 is even, then either 𝑣 ∈ 𝑋i for odd 𝑖 or 𝑣 ∈ 𝑉j for 

even  𝑗. Suppose the first. Let 𝑣′  be the vertex of 𝐻2 that corresponds to 𝑣 in 𝐺 × 𝐾2 and so 𝑣′ ∈ 𝑉i⊆ 𝑀. Let 𝑢 

be a vertex that is either in 𝑋i-1 or in 𝑋i+1 such that 𝑢 is adjacent to  𝑣. Then 𝑢 ∈ 𝑀 by the definition of 𝑀 and 𝑣 

is 2-monophonic by 𝑣 ′and  𝑢. Thus 𝑀 is a 2-monophonic set of 𝐺 × 𝐾2 if 𝑑 is even. Similarly 𝑀 is 2-

monophonic when 𝑑 is odd. Thus, 𝑚2 (𝐺 × 𝐾2) ≤ 𝑛. Hence the theorem. 

 

Example 3.1  Consider the product graph 𝐶4 × 𝐾2 given in Figure 04. Its minimum 2-monophonic set contains 

four elements. That is 𝑚2(𝐺 ×  𝐾2) = 4. The sets  {𝑢1, 𝑢3, 𝑣2, 𝑣4}  or {𝑢2, 𝑢4, 𝑣1, 𝑣3} are minimum 2-monophonic 

set of 𝐶4 × 𝐾2.  

 

 
Fig 4. Graph of   𝐶4 × 𝐾2   with 𝑚2 𝐺 = 4 

 

Note that 𝑚2 (𝐾n× 𝐾2) = 𝑛 for all  𝑛 ≥ 2. That is the upper bond in the above theorem is sharp. The next results 

show the lower bond is also sharp. 

 

Theorem 3.3  Let 𝐻1 and   𝐻2 are two copies of 𝐾m,n where 2 ≤ 𝑚 ≤ 𝑛 in 𝐾m,n × 𝐾2. If 𝑀 is a 2-monoponic set 

of 𝐾m,n × 𝐾2 then 𝑀 ∩ 𝑉(𝐻1) and 𝑀 ∩ 𝑉(𝐻2) contains at least two vertices. 
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Proof: On the contrary suppose 𝑀 ∩ 𝑉(𝐻1) and 𝑀 ∩ 𝑉(𝐻2) contain at most one element. By lemma 3.1 they 

contain exactly one element. Let 𝑈 =  {𝑢1, 𝑢2, 𝑢3…𝑢m}  and 𝑉 =  {𝑣1, 𝑣2,…,𝑣n} be two patricians of 𝐻1. Thus 

𝑀 ∩ 𝑉(𝐻1) ={𝑢i} , 1 ≤ 𝑖 ≤ 𝑚  or 𝑀 ∩ 𝑉(𝐻2) = {𝑣j} for 1 ≤ 𝑗 ≤ 𝑛. If 𝑀 ∩ 𝑉(𝐻1) ={𝑢i},  then 𝑈 − {𝑢i} is not a 

2-monophonic set which leads to a contradiction. Similarly the second case also leads to a contradiction.. 

 

Theorem 3.4  If 𝐺 = 𝐾m, n, 1 ≤ 𝑚 ≤ 𝑛, then  

𝑚2(𝐺 × 𝐾2) =  
m + n         if     m = 1

min 2m, 8        if     m ≠ 1, 4, 5
m + 2            if     m = 4,5

  

 

Proof: Let 𝐺 = 𝐾m,n and let  𝐻1 and 𝐻2 are two copies of 𝐾m,n . Let 𝑈 =  {𝑢1, 𝑢2, 𝑢3…𝑢m} and 𝑉 =  {𝑣1, 

𝑣2,…,𝑣n} be two particians of 𝐻1 and   𝑋 = {𝑥1, 𝑥2….,𝑥m} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦n} be the particians of 𝐻2. 

Case 1: Let  𝑚 = 1. Then 𝑢1 and 𝑥1 are respectively central vertices of 𝐻1 and  𝐻2. Take 𝑀 as the 𝑚2-

set of 𝐺 ×  𝐾2.  If 𝑣i ∉ 𝑀,  1 ≤ 𝑖 ≤ 𝑛, then 𝑣i is 2-monophonic by 𝑢1 and 𝑦I and so 𝑢1, 𝑦i lies in 𝑀. Similarly if 

𝑦i is not in 𝑀 then 𝑥1,  𝑣i are in 𝑀. Thus 𝑀 contains at least one vertex from {𝑢1,𝑥1} and each set {𝑣i,𝑦i} for  

1 ≤ 𝑖 ≤ 𝑛. Thus 𝑀 contains at least 1 + 𝑛 vertices. By theorem 3.2,  𝑚2(𝐺 × 𝐾2) = 1 + 𝑛 = 𝑚 + 𝑛. 

 Case 2: For 𝑚 ≠ 4,5 take 𝑀1= {𝑢1, 𝑢2,…, 𝑣1, 𝑣2, 𝑥1, 𝑥2,  𝑦1,  𝑦2} and 𝑀2 =  𝑈 ∪ 𝑋 are 2-monophonic 

sets of 𝐺 × 𝐾2, it follows that 𝑚2(𝐺 ×  𝐾2) ≤ │𝑀1│ = 8 and 𝑚2(𝐺 × 𝐾2)= │𝑈 ∪  𝑋│ = 2𝑚. Thus 𝑚2(𝐺 ×
 𝐾2) ≤  min 8, 2𝑚 . 

Next, it is enough to prove that 𝑚2(𝐺 ×  𝐾2) ≥ min 8, 2𝑚 . On the contrary suppose 𝑚2(𝐺 × 𝐾2) <
min  8, 2𝑚 . Let 𝑀 be a 2-monophonic set of (𝐺 ×  𝐾2) with 𝑀 =  min {8, 2𝑚} − 1. Then there exists three 

cases. 

Sub Case 1: Let 𝑚 = 2. Then min {8, 2𝑚} = 4 implies  𝑀 has three vertices. This contradicts theorem 

3.2 

Sub Case 2: Let  𝑚 = 3. Then 𝑀 contain six elements. By theorem 3.3   𝑀 contains two vertices from 

𝐻1 and 𝐻2. There for 𝑈 −  𝑀 ∩ 𝑉(𝐻1) and 𝑉 − 𝑀 ∩ 𝑉(𝐻2) are non-empty.  If 𝑀 ∩ 𝑉(𝐻1) ⊆ 𝑈 then no vertices 

in 𝑈 − 𝑀 ∩ 𝑉(𝐻1) can be 2-monophonic by 𝑀. Similarly if 𝑀 ∩ 𝑉(𝐻2) ⊆ 𝑉, then no vertices in  𝑉 − 𝑀 ∩
𝑉(𝐻2) can be 2-monophonic. Thus 𝑀 ∩  𝑈 and 𝑀 ∩  𝑉 are non-empty. Suppose 𝑀 ∩ 𝑉(𝐻1) = {𝑢1,𝑣1}. Each 

vertex 𝑢j is 2- monophonic by 𝑥i and a vertex in 𝑉. There for 𝑋 − {𝑥i}  ⊆  𝑀. Similarly 𝑌 − {𝑦i} ⊆ 𝑀 implies 

that 𝑀 contains more than six vertices and is a contradiction. 

Sub Case 3:  Let 𝑚 ≥ 6. Then, min  {8, 2𝑚} = 8. Therefore 𝑀 contains seven vertices. Suppose 𝑀 

contains at most three vertices of 𝐻1. Then as in sub case 2,  𝑀 contains minimum 12 vertices which leads to a 

contradiction. Thus 𝑀 contains exactly three vertices of 𝐻1 and let it be {𝑢1, 𝑢2, 𝑣1} or {𝑢1, 𝑣1, 𝑣2}. In first 

case 𝑋 − {𝑥1, 𝑥2} lies in  𝑀. Also 𝑥1 is 2-monophonic by 𝑢1 and a vertex in  𝑌 and 𝑥2 is 2-monophonic by 𝑢2 and 

a vertex in  𝑌. Thus either 𝑥1, 𝑥2  ∈ 𝑀 or there is a vertex 𝑦 ∈  𝑌 that also in 𝑀. Then 𝑀 contains at least eight 

elements that also leads to a contradiction. Similar arguments lead to a contradiction in the second case. Hence 

𝑚2(𝐺 ×  𝐾2) = min {8, 2𝑚} for 𝑚 ≠ 4,5. 
Case 3: Let  𝑚 =  4 or 5. First show that 𝑚2(𝐺 × 𝐾2) ≤  𝑚 + 2. Take 𝑀1=  {𝑢1, 𝑢2, 𝑣1,  𝑦1} ∪ (𝑋 −

{𝑥1, 𝑥2}. Then 𝑀1 is a 2-monophonic set of (𝐺 ×  𝐾2) and 𝑚2(𝐺 × 𝐾2) ≤ 4 +  𝑚 − 2 = 𝑚 + 2. To prove the 

lower limits, consider two cases. 

Sub Case A:  Let  𝑚 = 4. Then,  𝑚2(𝐺 × 𝐾2) ≥ 6. On the contrary let 𝑚2 (𝐺 × 𝐾2) ≤ 5. Take 𝑀 as a 

2-monophonic set with five vertices.Suppose 𝑀 contains exactly two vertices of 𝐻1. Then 𝑀 ∩  𝑈 and 𝑀 ∩
 𝑉 containes common vertices. Let 𝑀 ∩ 𝑉(𝐻1) = {𝑢1,𝑣1}. Since each 𝑢i is 2-monophonic by 𝑥i and 𝑣1,  𝑋 − {𝑥i} 

lies in  𝑀. Similarly 𝑌 − {𝑦i} lies in  𝑀. Thus 𝑀 containes more than two vertices of 𝐻1.This is a contradiction. 

Sub Case B: Let  𝑚 = 5. Clearly 𝑚2(𝐺 × 𝐾2) ≥ 7. On the contrary suppose  𝑚2(𝐺 × 𝐾2) ≤ 6. Let 𝑀 

be a 2-monophonic set of (𝐺 ×  𝐾2) with six vertices and suppose at most three vertices are from 𝐻1. If  𝑀 

contains exactly two vertices of 𝐻1, as in sub case A, 𝑀 contains more than eight elements and is a 

contradiction. Hence 𝑀 contains exactly three vertices of 𝐻1.  Since 𝑀 ∩ 𝑈 and 𝑀 ∩ 𝑉 are non - empty, assume 

{𝑢1, 𝑢2, 𝑣1} or {𝑢1, 𝑣1, 𝑣2} lies in 𝑀 ∩ 𝑉(𝐻1). In first case, 𝑀 = {𝑢1, 𝑢2, 𝑣1, 𝑥3, 𝑥4, 𝑥5} and 𝑥1 and 𝑥2 are not 2-

monophonic by  𝑀. In second case, 𝑀 = {𝑢1, 𝑣1, 𝑣2 } ∪ 𝑌 − {𝑦1,𝑦2} and 𝑦1 and 𝑦2 are not 2-monophonic by  𝑀. 

This contradicts the fact that 𝑀 is a 2- monophonic set. Hence 𝑚2(𝐺 × 𝐾2) =  𝑚 + 2 when 𝑚 =  4 and  5. 

 

Theorem 3.5: Let 𝑛 ≥ 3. If 𝐺 = 𝑃n or 𝐶n, then 𝑚2(𝐺 × 𝐾2) = 𝑛 

Proof: Theorem 3.2 gives the upper bond of 𝑚2(𝐺 × 𝐾2). That is 𝑚2(𝐺 × 𝐾2) ≤ 𝑛  for 𝐺 = 𝑃n or 𝐶n. For 

𝐺 = 𝑃n, take 𝑉(𝐻1) = {𝑥1, 𝑥2, 𝑥3…, 𝑥n }  and 𝑉(𝐻2) =  { 𝑦1, 𝑦2,…,𝑦n },  two copies of 𝐺. It is enough to show 

that 𝑚2(𝐺 ×  𝐾2) ≥ 𝑛 .  Consider two cases. 

Case 1: If n is even. Let   𝑛 = 2𝑝,  𝑝 ≥ 2.  Take 𝑀 as 𝑚2 set of   (𝐺 × 𝐾2). Then 𝑀 contains at least two 

elements from the set {𝑢2i-1 , 𝑢2i,  𝑣2i-1 , 𝑣2i }. If not, 𝑀 contains at most one vertex. Suppose { 𝑢2i-1,  𝑢2i, 𝑣2i-1 }  
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are not in 𝑀 or  { 𝑢2i-1, 𝑢2i, 𝑣2i }  ∉ 𝑀. In first case 𝑢2i-1 does not lies in 2-monophonic set and in second case  

𝑣2i-1 is not 2-monophonic.  Thus there is a contradiction. So 𝑀 contains at least two elements as desired. Hence 

𝑚2(𝐺 ×  𝐾2) = 𝑛 

Case 2: If 𝑛 is odd, then 𝑛 − 1 is even. Take  𝑛 − 1 = 2𝑝. If 𝑀 is a 2-monophonic set as in case 1 it 

contains at least two vertices from the sets {𝑢2i-1, 𝑢2i, 𝑣2i-1, 𝑣2i }  for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝. Clearly, 𝑢n is 2-

monophonic by 𝑢n-1 and 𝑣n and 𝑣n by 𝑢n and 𝑣n-1. There for 𝑀 contains at least one vertex from {𝑢n, 𝑣n}. Hence,  

𝑚2(𝐺 ×  𝐾2) = 𝑛. The proof of 𝐺 = 𝐶n is similar to this steps and leave to an exercise. 

 

Theorem 3.6   For each pair 𝑘, 𝑛 of integers with  4 ≤ 𝑘 ≤ 𝑛, there is a connected graph 𝐺 of order 𝑛 such that 

𝑚2(𝐺 × 𝐾2) = 𝑘. 

Proof:  Let the inequality were strict. That is 4< 𝑘 < 𝑛. Take the path 𝑃n-2: 𝑥1, 𝑥2… 𝑥n-2. 𝐺 be the graph derived 

from 𝑃n-2 by adding 𝑥n-1 and 𝑥n. Then join each 𝑥n-1 and 𝑥n to the vertices 𝑥i for all i,  𝑘 − 3 ≤ 𝑖 ≤ 𝑛 − 2. Thus 

𝐺 contains 𝑛 vertices. Let 𝐻 be the other copy of 𝐺 in (𝐺 × 𝐾2) and let 𝑉(𝐻) =  { 𝑦1,𝑦2…𝑦n } such that 𝑥i is 

adjacent with 𝑦I (see Figure 05). Then 𝑚2(𝐺 × 𝐾2) = 𝑘. Take 𝑀 is the set {  𝑥1, 𝑦2, 𝑥3, 𝑦4 …, 𝑦k-5,  𝑥k-4,  𝑥n-1,  

𝑦n-1, 𝑥n,  𝑦n } if 𝑘 is odd and the set { 𝑥1,  𝑦2,  𝑥3,  𝑦4, … , 𝑥k-5,  𝑦k-4,  𝑥n-1,  𝑦n-1,  𝑥n,  𝑦n }   if 𝑘 is even. Since 𝑀 

is 2-monophonic of (𝐺 × 𝐾2),  𝑚2(𝐺 × 𝐾2) ≤ 𝑘. 

For the converse, assume the contrary. That is 𝑚2(𝐺 × 𝐾2) < 𝑘.  Let 𝑀 be a 2-m set of (𝐺 × 𝐾2) 

having 𝑘 − 1 vertices. Then for each  𝑖, 1 ≤ 𝑖 ≤ 𝑘 − 4, the vertex 𝑥i is 2-monophonic by itself,  then by 𝑥i-1 and 

by 𝑦i. Hence 𝑀 contains the vertices { 𝑥i, 𝑦I }. If 𝐴 = { 𝑥k-3,  𝑥k-2 … 𝑥n } and 𝐵 = {𝑦k-3, 𝑦k-2 … 𝑦n },  then 𝑀 

contains four vertices from 𝐴 ∪ 𝐵. Otherwise 𝑀 contains at most three vertices from 𝐴 ∪ 𝐵. So 𝑀 contains one 

vertex from 𝐴 and one from  𝐵. Then there exist the following cases. 

Case 1: If 𝑀 contains no elements of  𝐴, then each 𝑥i is 2-monophonic by a pair 𝑢, 𝑣 such that 𝑢 and 𝑣 

belongs to 𝐴 so that 𝑥i is not 2-monophonic leads to a contradiction. 

Case 2:  𝑀 contains one element of  𝐴. For 𝑥 = 𝑥n or 𝑥 = 𝑥n-1, then 𝑥n-1 is not 2-monophonic which is 

not true. Hence, take 𝑥 = 𝑥i for some 𝑖 with   𝑘 − 3 ≤ 𝑖 ≤ 𝑛 − 2. When  𝑛 − 𝑘 ≥ 4, either 𝑥i-2 lies in 𝐴 or 𝑥i+2 

lies in 𝐴, say 𝑥i-2. Then also, 𝑥i-2 not 2-monophonic by 𝑀 and is false. For  1 ≤ 𝑛 − 𝑘 ≤ 3, each vertex 𝑥j is 2-

monophonic by 𝑥i and 𝑦j so that 𝐵 − {𝑦i } lies in  𝑀. Since 𝐵 − {𝑣i} contain at least three vertices, 𝑀 contains at 

least three vertices of 𝐵 so that 𝑀 contains at least four vertices of  𝐴𝑈𝐵. This is also a contradiction. There for 

𝑀 contains four vertices of 𝐴𝑈𝐵. Thus we have 𝑚2(𝐺 × 𝐾2) ≥  𝑘 − 4 + 4 = 𝑘 vertices. Combining these two 

we get 𝑚2(𝐺 × 𝐾2) = 𝑘. When  𝑘 = 4, take the bipartite graph 𝐾2, n-2. Then, by theorem 3.5 𝑚2(𝐺 ×  𝐾2) = 𝑘. 

To prove the upper limit, take 𝐺 = 𝐾n. Then we get 𝑚2(𝐺 ×  𝐾2) = 𝑛. Hence the theorem is proved. 

 

 

 
Fig. 5 Graph 𝐺 with  𝑚2(𝐺 × 𝐾2) = 𝑘 

 

IV  CONCLUSION 
The concept of k- monophonic set and k-monophonic number of graphs can extend to find k-edge 

monophonic number of a graph, k-monophonic domination number of a graph and k-edge monophonic 

domination number of graphs. 
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