Quest Journals Journal of Research in Applied Mathematics Volume 3 ~ Issue 3 (2016) pp: 05-11 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

K- Monophonic Number of A Connected Graph

P. Arul Paul Sudhahar¹, M. Mohammed Abdul Khayyoom²

¹Department of Mathematics, Rani Anna Govt. College (W), Tirunalveli-620 008, Tamilnadu, India arulpaulsudhahar@gmail.com

²HSST Mathematics, GHSS Pandikkad, Malappuram-676521, Kerala, India <u>khayyoom.m@gmail.com</u>

Received 28 Nov, 2016; Accepted 20 Dec, 2016 © The author(s) 2016. **P**ublished with open access at **www.questjournals.org**

ABSTRACT: In this paper the concept of k-monophonic set and k-monophonic number of a connected graph were introduced. For a connected graph G of order $n \ge 2$, a set $M \subseteq V$ is a k-monophonic set of G if each vertex $x \in (V(G) - M)$ lies on a u-v monophonic path of length k, for some vertices u and v in M. The minimum cardinality of a k-monophonic set in G is the k-monophonic number of G, denoted by $m_k(G)$. The 2-monophonic sets and 2-monophonic numbers of Cartesian product graphs were studied. For each pair k, n of integers with $4 \le k \le n$, there is a connected graph G of order n such that $m_2(G \times K_2) = k$. Also, k-monophonic numbers of certain standard graphs were identified.

Keywords: 2- monophonic number, k- monophonic number, k-monophonic set, Monophonic number.

I. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u - v path in G. A u - v path of length d(u, v) is called a u - v geodesic. The set of all vertices u, that are adjacent with v is called the neighbourhood of v and is denoted by N(v). If the sub graph induced by the neighborhood of a vertex is called *extreme vertex*. A vertex of degree one is called *end vertex*. Every end vertices are extreme vertices [5, 8].

A chord of a path $P: u_1, u_2... u_n$ is an edge $u_i u_j$ with $j \ge i + 2$. Any chordless path connecting u and v are called u - v monophonic path. The monophonic closure of a subset M of V(G) is $J_G[M] = \bigcup_{u,v \in M} J_G[u,v]$ where $J_G[u,v]$ is the set containing u and v and all vertices lying in some u - v monophonic path. If $J_G[M] = V(G)$, then M is called monophonic set in G. The order of a minimum monophonic set is called monophonic number and is denoted by m(G) [1, 2, 3, 7].

An integer $k \ge 1$, is a *geodesic* in a connected graph G of length k is called a k-geodesic. A vertex v is called a k-extreme vertex if v is not the internal vertex of a k-geodesic joining any pair of distinct vertices of G. Each extreme vertex of a connected graph G is a k-extreme vertex of G. Each end vertex of G is a k-extreme vertex of G. A set $S \subseteq V$ is called a k-geodetic set of G if each vertex in V - S lies on a k-geodesic of vertices in S. The minimum cardinality of a k-geodetic set of G is its k-geodetic number and is denoted by $g_k(G)$. There are interesting applications of these concepts to the problem of designing the route for a shuttle and communication network design [6, 10].

For two graphs *G* and *H*, their Cartesian product is denoted by $G \times H$, and has the vertex set $V(G) \times V(H)$, where two distinct vertices (x_1, y_1) and (x_2, y_2) in $G \times H$ are adjacent if and only if either $x_1 = x_2$ and $y_1 y_2 \in E(H)$, or $y_1 = y_2$ and $x_1 x_2 \in E(G)$. The mappings $\pi(G) : V(G \times H) \to V(G)$ and $\pi(H) : V(G \times H) \to V(H)$ defined by $\pi_G(x, y) = x$ and $\pi_H(x, y) = y$, respectively for all $(x, y) \in V(G \times H)$ are called *projections*. For a set $S \subseteq V(G \times H)$, define the projection of *S* on *G* as $\pi_G(S) = \{x \in V(G) : (x, y) \in S \text{ for some } x \in V(G)\}$ and the projection of *S* on *H* as $\pi_H(S) = \{y \in V(H) : (x, y) \in S \text{ for some } x \in V(G)\}$.[9]

The *eccentricity* e(v) of a vertex v is the greatest geodesic distance between v and any other vertex. The *centre* (or Jordan centre) of a graph is the set of all vertices of minimum eccentricity, that is, the set of all vertices A where the greatest distance d(A,B) to other vertices B is minimal. For basic graph theory notations, refer [4].

II. K-MONOPHONIC NUMBER OF A GRAPH

Definition 2.1 Let G be connected graph of order $n \ge 2$. For an integer $k \ge 1$, a vertex $v \in V(G)$ is k-monophonic by a pair $x, y \in V$ if v lies on an x - y monophonic path of length k in G. The minimum cardinality of a k-monophonic set of G is the k-monophonic number of G and it is denoted by $m_k(G)$. That set is called minimum k-monophonic set or k-m set.

Example 2.1 Consider the following graph given in *figure 01*. The minimum k-monophonic set and k-monophonic number of G for different values of k is shown in the following table (Table 1).

Fig. 1. Graph *G* with $m_k(G) = 3,4 \text{ and } 7$

k	Minimum k-monophonic set	$m_{\rm k}(G)$			
4	$\{v_2, v_6, v_7\}$	3			
3	$\{v_{2}, v_{5}, v_{6}, v_{7}\}$	4			
2	$\{v_{2}, v_{4}, v_{6}, v_{7}\}$	4			
1	$\{v_{1,}v_{2,}v_{3},v_{4},v_{5},v_{6},v_{7}\}$	7			
Table 1					

Theorem 2.1 Let G be a connected graph. Then each vertex of G belongs to every 1-monophonic set of G *Proof:* Let M be a 1-monophonic set of G and $u \in V(G)$ such that $u \notin M$. Then u lies in a x - y monophonic path of length 1 such that both x and y are in M. Then u is either x or y which implies that $u \in M$, a contradiction. Thus M = V(G)

Corollary 2.2 If $G = K_p$, the complete graph with *p* vertices. Then *G* has only 1-monophonic set and $m_k(G) = p$.

Proof: Since any two vertices of G are adjacent maximum length of any monophonic path is 1. Thus G has only 1-monophonic set. Hence by theorem 2.1 $m_k(G) = p$.

Theorem 2.3 Each extreme vertex belongs to every k-monophonic set.

Proof: Let u be an extreme vertex and M be a k-monophonic set of G. Suppose $u \notin M$. By theorem 2.1, $k \neq 1$. Then u is an internal vertex of an x - y monophonic path P having length k. Let v and w are neighbours of u in P. Then they are not adjacent and u is not an extreme vertex which is a contradiction to the hypothesis. Thus $u \in M$.

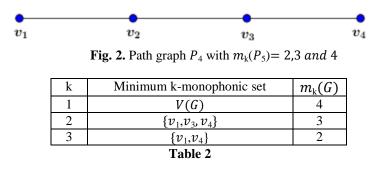
Theorem 2.4 Let G be a connected graph and y be a cut vertex. If M is a k-monophonic set, then every component of G contains at least one element of M.

Proof: Let there is a component A of G - y such that A has no vertex of M. Let x be any vertex in A. Since M is a k-monophonic set, there is a pair of vertices u and v in M such that x lies on some pair of u - v k-monophonic path $S: u = x_0, x_1, x_2, ..., x_n = v$ with $x \neq u, v$. Since y is a cut vertex of G, the u - x sub path S_1 of S and the x - v sub path S_2 of S both contain y, so that S is not a path. This contradicts A has no vertex of M.

Remarks 2.1 No cut vertex of a connected graph G belongs to any minimum monophonic set. (see [10]). Generally, this is not true for k-monophonic sets. Consider the path graph P_4 of four vertices in Figure 2. Its $m_k(G)$ is given in Table-2. Here v_2 and v_3 are cut vertices.

Theorem 2.5 For any connected $G, 2 \le m_k(G) \le n$.

Proof: Any k-monophonic path contains at least two vertices. Therefore $m_k(G) \ge 2$. Since V(G) is always a k-monophonic set for any k, $m_k(G) \le n$.



Theorem 2.6 For any connected graph *G* of order $n, 2 \le m_k(G) \le g_k(G) \le n$.

Proof: Since every k-geodetic path is also a k-monophonic path, every minimum k-monophonic set is also a k-geodetic set. Thus $m_k(G) \le g_k(G)$. Other inequalities are trivial from theorem 2.5.

Example 2.2(a) Consider the following graph G in Figure 03. Note that $g_k(G)$ is not defined for some k where $m_k(G)$ is defined and is equal to 4. (Refer Table 3)

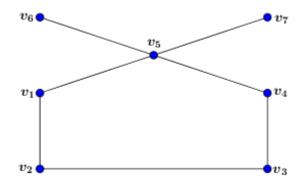


Fig. 3 Graph *G* with $m_k(G) = 4$ but $g_k(G)$ is not defined for k = 4.

k	Minimum k-geodetic	$g_k(G)$	Minimum k-	$m_{\rm k}(G)$		
	set		monophonic set			
1	V(G)	7	V(G)	7		
2	$\{v_1, v_2, v_4, v_6, v_7\}$	5	$\{v_1, v_2, v_4, v_6, v_7\}$	5		
3	$\{v_2, v_3, v_6, v_7\}$	4	$\{v_{2}, v_{3}, v_{6}, v_{7}\}$	4		
4	Not defined		$\{v_{2}, v_{3}, v_{6}, v_{7}\}$	4		
Table 3						

Example 2.2(b) Let *G* be the complete bipartite graph $K_{m,n}$. Then $m_k(K_{m,n}) = \begin{cases} m+n, & \text{if } k = 1\\ \min\{m,n\}, & \text{if } k \neq 1 \end{cases}$

Proof: For k = 1, the result follows by theorem 2.1, since G has m + n vertices. For $k \neq 1$, maximum length of any monophonic path is 2. For, let $A = \{u_1, u_2, u_3...u_m\}$ and $B = \{v_1, v_2, ..., v_n\}$ are two patricians of G.Then any path $u_i v_j u_k v_t$ of length three does not form a monophonic path. Thus every k-monophonic set is a 2-monophonic set. Then both A and B are monophonic set [7] and minimum of $\{m, n\}$ is a minimum 2-monophonic set.

Theorem 2.7: Let $G = C_n$, cycle graph of n vertices. If n is even, there exist some k such that $m_k(G) = 2$. If n is odd, then any k-monophonic set of G contains at least three vertices.

Proof: Let *G* be the cycle graph of *n* vertices with closed walk $C : v_1, v_2, ..., v_n, v_1$. If *n* is even, then n = 2p for some *p*. Consider the set $M = \{v_1, v_{p+1}\}$. Then *M* is a p-monophonic set. Take k = p, then the first part is clear. Let *n* is odd. On the contrary suppose there is a k-monophonic set *M* with at most two vertices for some *k*,

*Corresponding Author: M. Mohammed Abdul Khayyoom

 $1 \le k \le n$. Since any k-monophonic set contains at least two vertices, *M* contains exactly two elements, say v_i and v_j . Since v_i and v_j lies in a cycle, there exist two paths P_1 and P_2 connecting v_i and v_j . Since *M* is a monophonic set, we have $i \ge j + 2$ or $i \le j + 2$. Now given *n* is odd. There for P_1 and P_2 are not of the same length. Thus the vertex v_{i+1} or v_{i-1} does not lies any k-monophonic path connecting v_i and v_j , contradicts the hypothesis that *M* is a k-monophonic set. Thus *M* contains at least three vertices.

III 2-MONOPHONIC SETS IN $G \times K_2$

Let *G* be a non-trivial connected graph. Take H_1 and H_2 as two copies of *G* such that v_1v_2 is an edge of $G \times K_2$ and $v_i \in V(H_i)$ for i = 1,2. Note that, if both *u* and *v* are in $V(H_i)$ for i = 1,2 then there are minimum u - v monophonic path that completely lies in H_i . Thus:

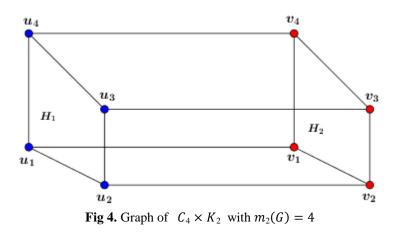
Lemma 3.1 Let G be a non-trivial connected graph and let H_1 and H_2 as two copies of G. If M is a 2-monophonic set in $G \times K_2$, then $M \cap V(H_1)$ and $M \cap V(H_2)$ are non-empty.

Theorem 3.2 If *G* is a connected graph of order $n \ge 4$, then $4 \le m_2(G \times K_2) \le n$.

Proof: First, prove $4 \le m_2(G \times K_2)$. On the contrary assume that there is a connected graph *G* of order $n \ge 4$ such that $m_2(G \times K_2) \le 3$. Then $G \times K_2$ contain a 2-monophonic set *M* of cardinality 3, say $\{a, b, c\}$. In $G \times K_2$ let H_1 and H_2 are two copies of *G* with $V(H_1) = \{u_1, u_2, u_3...u_n\}$ and $V(H_2) = \{v_1, v_2, ..., v_n\}$ so that u_iv_i is an edge in $G \times K_2$ for $1 \le i \le n$. By lemma 3.1 $M \cap V(H_1)$ and $M \cap V(H_2)$ are non-empty. Thus assume that $a, b \in V(H_1)$ and $c \in V(H_2)$, say $a = u_1, b = u_2$ and $c = v_i$ for $1 \le i \le n$. Since $n \ge 4$, the set $\{1, 2, ..., n\} - \{1, 2, i\}$ is non-empty and let *j* belongs to this set. Then $v_j \notin M$. Now v_j is 2-monophonic by u_j , v_i and u_j are not in *M* which follows that v_j does not lie on 2-monophonic path of any vertices of *M* and it is a contradiction. Thus $m_2(G \times K_2) \ge 4$.

Next, prove $m_2(G \times K_2) \leq n$. Let $diam G, d \geq 2$ and let $u_1 \in V(H_1)$ such that $e(u_1) = d$. Let $v_1 \in V(H_2)$ such that v_1 corresponds to u_1 in $G \times K_2$. For each integer $1 \leq i \leq d$, let $X_i = \{x \in V(H_1): d(u_1, x) = i\}$ and $Y_i = \{y \in V(H_2): d(v_1, y) = i\}$. Then $X_0 = \{u_1\}$ and $Y_0 = \{v_1\}$. Take the set M as the union of the sets $X_0, X_2...X_d, Y_1, Y_3...Y_{d-1}$ if d is even and union of the sets $X_0, X_2...X_{d-1}, Y_1, Y_3...Y_d$, if d is odd. Then M is a 2-monophonic set of $G \times K_2$. Let $v \in V(G \times K_2) - M$. If d is even, then either $v \in X_i$ for odd i or $v \in V_j$ for even j. Suppose the first. Let v' be the vertex of H_2 that corresponds to v in $G \times K_2$ and so $v' \in V_i \subseteq M$. Let u be a vertex that is either in X_{i-1} or in X_{i+1} such that u is adjacent to v. Then $u \in M$ by the definition of M and v is 2-monophonic by v' and u. Thus M is a 2-monophonic set of $G \times K_2$ if d is even. Similarly M is 2-monophonic when d is odd. Thus, $m_2(G \times K_2) \leq n$. Hence the theorem.

Example 3.1 Consider the product graph $C_4 \times K_2$ given in *Figure 04*. Its minimum 2-monophonic set contains four elements. That is $m_2(G \times K_2) = 4$. The sets $\{u_1, u_3, v_2, v_4\}$ or $\{u_2, u_4, v_1, v_3\}$ are minimum 2-monophonic set of $C_4 \times K_2$.



Note that $m_2(K_n \times K_2) = n$ for all $n \ge 2$. That is the upper bond in the above theorem is sharp. The next results show the lower bond is also sharp.

Theorem 3.3 Let H_1 and H_2 are two copies of $K_{m,n}$ where $2 \le m \le n$ in $K_{m,n} \times K_2$. If *M* is a 2-monoponic set of $K_{m,n} \times K_2$ then $M \cap V(H_1)$ and $M \cap V(H_2)$ contains at least two vertices.

Proof: On the contrary suppose $M \cap V(H_1)$ and $M \cap V(H_2)$ contain at most one element. By lemma 3.1 they contain exactly one element. Let $U = \{u_1, u_2, u_3...u_m\}$ and $V = \{v_1, v_2, ..., v_n\}$ be two patricians of H_1 . Thus $M \cap V(H_1) = \{u_i\}, 1 \le i \le m$ or $M \cap V(H_2) = \{v_j\}$ for $1 \le j \le n$. If $M \cap V(H_1) = \{u_i\}$, then $U - \{u_i\}$ is not a 2-monophonic set which leads to a contradiction. Similarly the second case also leads to a contradiction.

Theorem 3.4 If $G = K_{m, n}, 1 \le m \le n$, then $m_2(G \times K_2) = \begin{cases} m + n & \text{if } m = 1 \\ \min\{2m, 8\} & \text{if } m \ne 1, 4, 5 \\ m + 2 & \text{if } m = 4, 5 \end{cases}$

Proof: Let $G = K_{m,n}$ and let H_1 and H_2 are two copies of $K_{m,n}$. Let $U = \{u_1, u_2, u_3...u_m\}$ and $V = \{v_1, v_2, ..., v_n\}$ be two particians of H_1 and $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be the particians of H_2 .

Case 1: Let m = 1. Then u_1 and x_1 are respectively central vertices of H_1 and H_2 . Take M as the m_2 -set of $G \times K_2$. If $v_i \notin M$, $1 \le i \le n$, then v_i is 2-monophonic by u_1 and y_1 and so u_1, y_i lies in M. Similarly if y_i is not in M then x_1 , v_i are in M. Thus M contains at least one vertex from $\{u_1, x_1\}$ and each set $\{v_i, y_i\}$ for $1 \le i \le n$. Thus M contains at least 1 + n vertices. By theorem 3.2, $m_2(G \times K_2) = 1 + n = m + n$.

Case 2: For $m \neq 4,5$ take $M_1 = \{u_1, u_2, ..., v_1, v_2, x_1, x_2, y_1, y_2\}$ and $M_2 = U \cup X$ are 2-monophonic sets of $G \times K_2$, it follows that $m_2(G \times K_2) \le |M_1| = 8$ and $m_2(G \times K_2) = |U \cup X| = 2m$. Thus $m_2(G \times K_2) \le min\{8, 2m\}$.

Next, it is enough to prove that $m_2(G \times K_2) \ge \min\{8, 2m\}$. On the contrary suppose $m_2(G \times K_2) < \min\{8, 2m\}$. Let *M* be a 2-monophonic set of $(G \times K_2)$ with $M = \min\{8, 2m\} - 1$. Then there exists three cases.

Sub Case 1: Let m = 2. Then min $\{8, 2m\} = 4$ implies M has three vertices. This contradicts theorem 3.2

Sub Case 2: Let m = 3. Then M contain six elements. By theorem 3.3 M contains two vertices from H_1 and H_2 . There for $U - M \cap V(H_1)$ and $V - M \cap V(H_2)$ are non-empty. If $M \cap V(H_1) \subseteq U$ then no vertices in $U - M \cap V(H_1)$ can be 2-monophonic by M. Similarly if $M \cap V(H_2) \subseteq V$, then no vertices in $V - M \cap V(H_2)$ can be 2-monophonic. Thus $M \cap U$ and $M \cap V$ are non-empty. Suppose $M \cap V(H_1) = \{u_1, v_1\}$. Each vertex u_j is 2-monophonic by x_i and a vertex in V. There for $X - \{x_i\} \subseteq M$. Similarly $Y - \{y_i\} \subseteq M$ implies that M contains more than six vertices and is a contradiction.

Sub Case 3: Let $m \ge 6$. Then, min $\{8, 2m\} = 8$. Therefore M contains seven vertices. Suppose M contains at most three vertices of H_1 . Then as in sub case 2, M contains minimum 12 vertices which leads to a contradiction. Thus M contains exactly three vertices of H_1 and let it be $\{u_1, u_2, v_1\}$ or $\{u_1, v_1, v_2\}$. In first case $X - \{x_1, x_2\}$ lies in M. Also x_1 is 2-monophonic by u_1 and a vertex in Y and x_2 is 2-monophonic by u_2 and a vertex in Y. Thus either $x_1, x_2 \in M$ or there is a vertex $y \in Y$ that also in M. Then M contains at least eight elements that also leads to a contradiction. Similar arguments lead to a contradiction in the second case. Hence $m_2(G \times K_2) = \min\{8, 2m\}$ for $m \neq 4, 5$.

Case 3: Let m = 4 or 5. First show that $m_2(G \times K_2) \le m + 2$. Take $M_1 = \{u_1, u_2, v_1, y_1\} \cup (X - \{x_1, x_2\}$. Then M_1 is a 2-monophonic set of $(G \times K_2)$ and $m_2(G \times K_2) \le 4 + (m - 2) = m + 2$. To prove the lower limits, consider two cases.

Sub Case A: Let m = 4. Then, $m_2(G \times K_2) \ge 6$. On the contrary let $m_2(G \times K_2) \le 5$. Take *M* as a 2-monophonic set with five vertices. Suppose *M* contains exactly two vertices of H_1 . Then $M \cap U$ and $M \cap V$ containes common vertices. Let $M \cap V(H_1) = \{u_1, v_1\}$. Since each u_i is 2-monophonic by x_i and v_1 , $X - \{x_i\}$ lies in *M*. Similarly $Y - \{y_i\}$ lies in *M*. Thus *M* containes more than two vertices of H_1 . This is a contradiction.

Sub Case B: Let m = 5. Clearly $m_2(G \times K_2) \ge 7$. On the contrary suppose $m_2(G \times K_2) \le 6$. Let M be a 2-monophonic set of $(G \times K_2)$ with six vertices and suppose at most three vertices are from H_1 . If M contains exactly two vertices of H_1 , as in sub case A, M contains more than eight elements and is a contradiction. Hence M contains exactly three vertices of H_1 . Since $M \cap U$ and $M \cap V$ are non - empty, assume $\{u_1, u_2, v_1\}$ or $\{u_1, v_1, v_2\}$ lies in $M \cap V(H_1)$. In first case, $M = \{u_1, u_2, v_1, x_3, x_4, x_5\}$ and x_1 and x_2 are not 2-monophonic by M. In second case, $M = \{u_1, v_1, v_2\} \cup Y - \{y_1, y_2\}$ and y_1 and y_2 are not 2-monophonic by M. This contradicts the fact that M is a 2-monophonic set. Hence $m_2(G \times K_2) = m + 2$ when m = 4 and 5.

Theorem 3.5: Let $n \ge 3$. If $G = P_n$ or C_n , then $m_2(G \times K_2) = n$

Proof: Theorem 3.2 gives the upper bond of $m_2(G \times K_2)$. That is $m_2(G \times K_2) \leq n$ for $G = P_n$ or C_n . For $G = P_n$, take $V(H_1) = \{x_1, x_2, x_3, ..., x_n\}$ and $V(H_2) = \{y_1, y_2, ..., y_n\}$, two copies of G. It is enough to show that $m_2(G \times K_2) \geq n$. Consider two cases.

Case 1: If n is even. Let n = 2p, $p \ge 2$. Take M as m_2 set of $(G \times K_2)$. Then M contains at least two elements from the set $\{u_{2i-1}, u_{2i}, v_{2i-1}, v_{2i}\}$. If not, M contains at most one vertex. Suppose $\{u_{2i-1}, u_{2i}, v_{2i-1}\}$

are not in M or $\{u_{2i-1}, u_{2i}, v_{2i}\} \notin M$. In first case u_{2i-1} does not lies in 2-monophonic set and in second case v_{2i-1} is not 2-monophonic. Thus there is a contradiction. So M contains at least two elements as desired. Hence $m_2(G \times K_2) = n$

Case 2: If *n* is odd, then n - 1 is even. Take n - 1 = 2p. If *M* is a 2-monophonic set as in case 1 it contains at least two vertices from the sets $\{u_{2i-1}, u_{2i}, v_{2i-1}, v_{2i}\}$ for each $i, 1 \le i \le p$. Clearly, u_n is 2-monophonic by u_{n-1} and v_n and v_n by u_n and v_{n-1} . There for *M* contains at least one vertex from $\{u_n, v_n\}$. Hence, $m_2(G \times K_2) = n$. The proof of $G = C_n$ is similar to this steps and leave to an exercise.

Theorem 3.6 For each pair k, n of integers with $4 \le k \le n$, there is a connected graph G of order n such that $m_2(G \times K_2) = k$.

Proof: Let the inequality were strict. That is 4 < k < n. Take the path P_{n-2} : $x_1, x_2...x_{n-2}$. *G* be the graph derived from P_{n-2} by adding x_{n-1} and x_n . Then join each x_{n-1} and x_n to the vertices x_i for all i, $k-3 \le i \le n-2$. Thus *G* contains *n* vertices. Let *H* be the other copy of *G* in $(G \times K_2)$ and let $V(H) = \{y_1, y_2...y_n\}$ such that x_i is adjacent with y_1 (see *Figure 05*). Then $m_2(G \times K_2) = k$. Take *M* is the set $\{x_1, y_2, x_3, y_4, ..., y_{k-5}, x_{k-4}, x_{n-1}, y_{n-1}, x_n, y_n\}$ if *k* is odd and the set $\{x_1, y_2, x_3, y_4, ..., x_{k-5}, y_{k-4}, x_{n-1}, y_{n-1}, x_n, y_n\}$ if *k* is even. Since *M* is 2-monophonic of $(G \times K_2), m_2(G \times K_2) \le k$.

For the converse, assume the contrary. That is $m_2(G \times K_2) < k$. Let *M* be a 2-m set of $(G \times K_2)$ having k - 1 vertices. Then for each *i*, $1 \le i \le k - 4$, the vertex x_i is 2-monophonic by itself, then by x_{i-1} and by y_i . Hence *M* contains the vertices $\{x_i, y_1\}$. If $A = \{x_{k-3}, x_{k-2} \dots x_n\}$ and $B = \{y_{k-3}, y_{k-2} \dots y_n\}$, then *M* contains four vertices from $A \cup B$. Otherwise *M* contains at most three vertices from $A \cup B$. So *M* contains one vertex from *A* and one from *B*. Then there exist the following cases.

Case 1: If *M* contains no elements of *A*, then each x_i is 2-monophonic by a pair u, v such that u and v belongs to *A* so that x_i is not 2-monophonic leads to a contradiction.

Case 2: M contains one element of *A*. For $x = x_n$ or $x = x_{n-1}$, then x_{n-1} is not 2-monophonic which is not true. Hence, take $x = x_i$ for some *i* with $k - 3 \le i \le n - 2$. When $n - k \ge 4$, either x_{i-2} lies in *A* or x_{i+2} lies in *A*, say x_{i-2} . Then also, x_{i-2} not 2-monophonic by *M* and is false. For $1 \le n - k \le 3$, each vertex x_i is 2-monophonic by x_i and y_i so that $B - \{y_i\}$ lies in *M*. Since $B - \{v_i\}$ contain at least three vertices, *M* contains at least three vertices of *B* so that *M* contains at least four vertices of *AUB*. This is also a contradiction. There for *M* contains four vertices of *AUB*. Thus we have $m_2(G \times K_2) \ge k - 4 + 4 = k$ vertices. Combining these two we get $m_2(G \times K_2) = k$. When k = 4, take the bipartite graph $K_{2, n-2}$. Then, by theorem 3.5 $m_2(G \times K_2) = k$. To prove the upper limit, take $G = K_n$. Then we get $m_2(G \times K_2) = n$. Hence the theorem is proved.

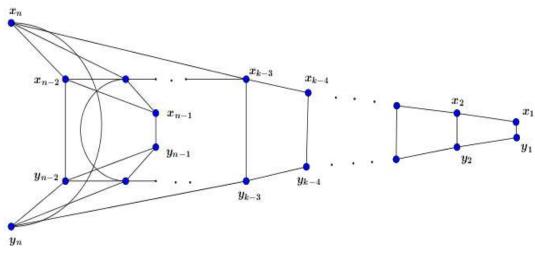


Fig. 5 Graph *G* with $m_2(G \times K_2) = k$

IV CONCLUSION

The concept of k- monophonic set and k-monophonic number of graphs can extend to find k-edge monophonic number of a graph, k-monophonic domination number of a graph and k-edge monophonic domination number of graphs.

REFERENCES

- P. Arul Paul Sudhahar, M Mohammed Abdul Khayyoom and A Sadiquali. Edge Monophonic Domination Number of Graphs. J. Adv. in Mathematics. Vol. 11. 10 pp 5781-5785 (Jan 2016)
- [2]. P. Arul Paul Sudhahar, M Mohammed Abdul Khayyoom and A Sadiquali. The Connected Edge Monophonic Domination Number of Graphs. Int.J Comp. Applications, Vol. 145. No 12, July 2016, pp 18-21
- [3]. P. Arul Paul Sudhahar, A. Sadiquali and M Mohammed Abdul Khayyoom. The Monophonic Geodetic Domination Number of Graphs. J. Comp. Math. Sci. Vol 7(1). Pp 27-38 (Jan 2016)
- [4]. Gary Chartrand and P.Zhang. Introduction to Graph Theory. MacGraw Hill (2005)
- [5]. F.Harary, E.Loukkas and C Tsouros. The Geodetic Number of a Graph. Math. comp Mod. Vol.17 No.11.(1993)pp89-95
- [6]. A.A Kinsley and K Karthika. Algorithmic Aspects of k-Geodetic Sets in Graphs. Int. J Math and Appl. Vol. (3),1B(2016) pp141-144
- [7]. J. John and P.Arul Paul Sudhahar. On The Edge Monophonic Number of a Graph. Filomat. Vol.26.6 pp 1081-1089(2012).
- [8]. J. John and P.Arul Paul Sudhahar. The Monophonic Domination Number of a Graph. Proceedings of the International Conference on Mathematics and Business Management. (2012) pp 142-145.
- [9]. Ralucca Gera and Ping Zhang. On k-geodomination in Cartesian Products Congressus Numerantium 158(2002) pp.163-178
- [10]. A.P Santhakumaran, P. Titus and R. Ganesamoorthy. On The Monophonic Number of a Graph Applied Math and Informatics. Vol 32,pp 255-266 (2014).