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ABSTRACT: In this paper, we proposed a new identification algorithmelbasn Kolmogorov—Zurbenko
Periodogram (KZP) to separate motions in spatial motion in@aga. The concept of directional periodogram
is utilized to sample the wave field and collect infororatdf motion scales and directions. KZ Periodogram
enables us detecting precise dominate frequency infamati spatial waves covered by highly background
noises. The computation of directional periodogram filters out nmfoiteonoise effects, and the procedure is
robust for missing and fraud spikes caused by noise andunesasnt errors. This design is critical for the
closure-based clustering method to find cluster structuresot#ngial parameter solutions in the parameter
space. An example based on simulation data is given to démaenthe four steps in the procedure of this
method. Related functions are implemented in our recentsheiliR package {kzfs}.

Keywords. KZ Periodogram, directional periodogram, parameter identifioafi spatial wave separations,
closure-based clustering, parameter clusters, inverse problem.

l. INTRODUCTION

Motion image identification in different types of data is vanportant subject in many applications.
Those images may depend on time and contain differentssddte simplest example is waves in the ocean
coming from two different directions. One wave can bersjriong scale, and another is shorter scale wave
propagating in different direction. When both are covered longtnoise, data realization could be very noisy
3D structure. Similar examples can be found in engineegitystics, astronomy, design of audio halls, climate
control, oceans waves alarm systems, Tsunami-waveg{oedand many other fields.

This paper aims to the separation of motion scales im@flon images on different directions. To this
end, we utilize Kolmogorov—Zurbenko Periodogram (KZP) [1-3jhestool to detect precise spectral signals
from noise-covered spatial/temporary data. The concegit@dtional periodogram is introduced based on KZP
and used for recording the direction and frequency infoomaof spatial waves. In the third section, we will
discuss a novel motion scale parameter identification algotigsed on directional periodogram, the closure-
based clustering method. A simulation example is exhibitethdw the procedure of this method. The summary
section discusses the advantage and limit of this approach.

1. KOLMOGOROV-ZURBENKO PERIODOGRAM
Kolmogorov—Zurbenko Periodogram (KZP) is designed to depeciodic signals or seasonality
covered by heavy noise. It has a sharp frequency resoligiocapturing frequency of interest, and provides
practically no spectral leakage from side lobes. In #4€P had the nearest to the optimal mean squareierror
the estimation of power spectrum [1, 2]. It can stable theamce of the periodogram, and permits the
separation of two signals on the edge of a theoreticalllsst distance.

Definition 1: For a sample of serieX({t)}, t=0,1, ... , N - 1, the KZ Periodogram is:

Sp,
KZRt, m, K, Vo) = L D IKZF Ty [X(z +1)] |
0 7=-S0,
whereKZF T, ([ X(1)] is given by
k(m-1)/2 )
KZFTuX®1 = Y, X(t+8)xal™* x g™ @™
s-k(m-1)/2
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KZP can be viewed as the iteration of average for the aegriodogram in time oves periodsp,
based on (%, + 1) observations around moment (or positibniHere S is roughly half of the pre-selected
window size in periods for KZP; therefore the averagingdew includes more points in the low frequency
region. Please note thEZP (t, m, k, v,) is for power periodogram value on a specific frequency¥he power
distribution for an frequency range, ilZP (t, m, k), is the aggregation of a seriesk&P (t, m, k, v) for v; in
the frequency series/, ..., vy} covered this range.

KZP is based on small window Fourier analyses. Theoretjdhktir major advantage is its suitability
for scenarios of non-stationary process, or data with lerigss However, recent applications [4-6] found that it
can also be applied with relative short series under higbilse and missing values. For short data series, the
accuracy of periodogram is limited by the length of thelabie data. One “work-around” method is to sample
n times in the spectral analysis, but it may lead to lasicihs in the regular periodogram. KZP suppresses the
oscillation and stabilize the periodogram in a large extent

We can further improve the accuracy of detected dominantidrexies {4} (or their modes) by
searching for the local maximum KZP values. Based ord#fi@ition of KZP, the large magnitude values of
periodogram usually are around the dominant frequencigs df the input data series. The dominant
frequencies not necessarily are sharply cut singleesptkey could be energy distributed in a narrow frequency
range. But usually there is a local maximum (or mode)sfech energy clusters. In practice, we can first
compute the KZP for a series of frequenaey} {with relative large interval; then search around the idane
frequencies for higher resolution result. Generally kipeg this is a one-dimensional optimization process. The
initial values can be set as the dominate frequenciesteétbyg multiple-sampling KZP. After optimization, in
many cases, the accuracy of KZP is less relatedaitasle data length but rather the measurement errors in the
data series.

1. DIRECTIONAL PERIODOGRAM
Suppose we are interested in checking the spectravizetfor data series along a given directtbim
a wave field. In the general situation, a data sdridson a line along angl® is a sample of the wave field.
Then the periodogram of arbitrargf can be represented by a functis@zP, (t, v), wherev is the frequency,
and T = §} is a finite indexed set for the sampling space of theenfield. Usually T can be taken as a series of
points on the x- or y-axis. Respectively, for any fixgdndvy, KZP, (o, Vo) is the estimation of spectral density
on frequency, for data series passing through the pdytd) or (0,tg).

Definition 2: For spatial waven(x, y) on a wave fieldD = {(x, ¥)}, | X | < dx |y | < dy, its directional
periodogram for a given direction anglds the ensemble average K¥P, (t, Vo) on frequency, for all data
series fi}, on the parallel lines along directiorand projected on x- or y-axis, whetd T, ||T||<oo, ||[{d}]] <ce.
That is,

iztm’ KZPH(LVO) (1)
I I

Here T is the index set for parallel lines of the sampdipgce. In practice, the length of sample series on the
line indexed by, i.e. ||{d}:]||, should be larger than a minimum vaigg Usually,m, is given as a percentage
of the largest series length for a specific direction.

KZPy (Vo) = E [KZPy (t, Vo)] =

Proposition 1: For signalw(x, y) propagated along directighwith frequencyf, v4 is the dominated frequency
on directional periodogram of directienthen we have

E(vg) =f-|cos @-p)/cos(h) |, for data series projected mraxis (2a)

E () =f-|cos @-p)/ sin(@) |, for data series projected graxis (2b)

The proof is given in the Appendix. In practice, to avoid infinédues ofvg, the following protocol is adopted
as default: fo® < p/4 or6 > 3n/4, project data seriesl}, on x-axis; otherwise, projectl§; on y-axis. For wave
signals with homoscedastic Gaussian noises, since the spisetsum are uniformly distributed on the whole
frequency range, it is easy to see that Propositiontillise if the noise is less than a certain level.
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Please note tha€ZP, (v,) is applicable for continuous and discrete data (regolairregular-sampled).
In the following, we will focus on the situation in whichtaare collected (or aggregated) on a pre-defined grid
on the wave field. Don't lost generality, we denotedhid asG = {(x, y)}, wherex=0, 1, ...dx1,y=0, 1, ...,
dy-1, dx and dy are integers. We can also set {0, 1, ..., dx-1} or T {0, 1, ..., dy-1}, depending on
sampled data series}}; are projected on x- or y-axis. This actually requires dwth sample line passes
through (at least) one grid point on x- or y-axis. Herés B subset of all possible parallel lines for a given
sampling direction; it is selected to reflect the spaddeature of wave signals.

V. IDENTIFY WAVE PARAMETERS WITH DIRECTIONAL PERIODOGR AM

Suppose a group of wave{ ..., X} propagated along unknown directiofi.{ ..., S} with unknown
frequency {, ..., f,} in the wave field,i =1, ...,n. The dominated frequency on directional periodograms of
direction angled are observed as, ..., V,. Then we have a group ofequations in the form of eq. 2a or 2b.
This n equation system containg 2nknown parameters in pairs df (5). We may want to introduce more
directional periodograms and make it “overdetermined”, thed the solution with optimization. However,
since the projection of mapping spectral spikes onto diffefeactions doesn’'t keep the frequency order, we
lost the information to match the observed spikes with frequpatameters. Additional sampling will add
equations and new unknown variables. The traditional approach for inversblems is not feasible.

As a basic fact, we havé possible combination of/( f,), i = 1, 2, ...,n, for directional periodogram
observations from each pair of sampling directions, arehild to B possible solutions ofi(4;); moreover, it
probability needs to include some potential parametausechby aliasing. However, fir pairs of sampling
directions, the “real” wave parameters should appearlmmost all k potential solution groups. The only
exception is for the case with sampling direction gytimal to the wave’s direction of propagation, in which
dominate frequencyy = 0 and therefore couldn’t be detected. In the following,will develop this intuitive
idea into a new procedure to identify spatial wave pat@rse

On the wave parameter plane, if two poiritsg() and §, g;) are close enough, i.e., suppo§e-ffi| <t;
and |8 —f;| <t then they are called to be in the same cluster. #intlusterm (m = 1, ...,n) are viewed as
different measurements of the same paramefétsg(™, i.e., they are practically equivalent in the tolemnc
range. Assuming Gaussian measurement errors, we ingddwo random variables for each cluster.

i"=f"+e&, & ~N (0,0 (3a)
B=p" +e, e ~N(0,0°) (3b)

Corresponding tm spatial waves, there areparameter clusters, for which each have akaubints
inside. Outside of the clusters, more th&n’2 kn points are separately distributed on the frequency-ébrect
plane. Our task is to identify theselusters based on this model.

We developed a new procedure for this unusual clustering profleenidea is that, in the general
conditions, thek points in the same cluster will form a closurekafearest neighbour with a large probability.
Even if only a part of the clusters can be identified wititnearest neighbour closure, the tolerances of these
identified clusters can be used as reference for otheedudthis is actually the estimationsfandgy, and the
cluster tolerance can be settas ¢ - o; andt; = cyop, Wherec andc; are constantsOnce the estimation of
tolerance has been given, identification of clusters &gttt forward.

There are 4 steps in our procedure of wave parametéifickzion.

1. Sampling on orthogonal direction pairs
¢ Calculate directional periodogram on the discrete frequesrigss
e Record periodogram spikes for each direction on discretgiéncy series
e Search for local maximum periodogram values on aperiodidrspec
¢ Find the potential solutions for each orthogonal directipealodogram pairs

2. ldentify parameter clusters on the frequency-directionplane
¢ Estimate n and k, and find the closure of k-nearest beigh
o Estimate the tolerance level of identified clusters
¢ Check potential clusters based on estimated tolerance level

3. Estimate wave parameters
¢ Exclude unlikely points from cluster and clusters wi lsupports
o Estimate parameters, output plots and suggestion

4. Validation of results
¢ Check consistency for estimations of different tolerancel¢ev
¢ Cross-validation by excluding one or more periodogram obtiens
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The first step is collection of directional periodogrameskations based on discrete frequency series.
This step is time-consuming, especially when the wave igelarge. Here, the condition of orthogonal direction
is required for the accuracy of detected location of ietgisn point of two sampling lines. The dominate
frequencies for periodogram observations based on distezgfuency series will be recorded. You need at least
3 orthogonal direction pairs to go to further steps. Theseeech for the dominate spikes in aperiodic spectrum
by maximizing the power periodogram. We applied golderigestarch and successive parabolic interpolation
in this step [7]. It is critical for the accuracy of ttlieectional periodogram and the wave parameters.
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Figure 1. Wave shapes of two signals (partial)
Upper left: wave 1 without noise; upper right: wave 2 w/is@oBottom left: wave 1 + 2 w/o noise; bottom
right: wave 1 + 2 + noise; Signakin (2r-0.4%) along 30°; 1.5in (2r-0.05t) along -30°; noiseN (0,100)

The second step is to identify parameter clusters on the fregurection plane. The first work of
this step is to estimateandn: estimation ofn is based on the mode of numbers of frequency spikes on each
directional periodogrank is the number of orthogonal pairs of sampling direstidrhen the algorithm will list
all k-nearest neighbors for each point of possible solutions, andnstor the closure structures: the set union of
the k-nearest neighbor for a setlopoints contains nothing but themselves. Badearest neighbor closure is a
cluster; its tolerance will be utilized to search for ofp@rameter clusters.

The point number in a cluster is called the supporthisf cluster. These supports must come from
different orthogonal pairs. The expected support for a clssiguld bek in general, ok — 1 if there is sampling
direction that is orthogonal to the wave direction of tluster. Clusters with low supports will be excluded, too.
Whenk is small, sak < 10, the wave parameter is estimated with medianrwibe average value is used.

The last step will check on different tolerance levetsvalidation. The cross-validation procedure will
exclude one or more pairs of orthogonal directionalgagram and check changes in the results. It's designed
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for the occasionally missed spectral spikes causeddkghzund noises. If validation shows inconsistent results,
go back to step 1 and increase nuntbdihe estimation will become stable with increasing. of

V. EXAMPLE OF WAVE PARAMETER IDENTIFICATION
Suppose there are 2 waves propagate along direction 303@hdh-a 400< 400 wave field. Their
frequencies are 0.4 and 0.05; amplitudes are 1 and 1.5, fespyedthe noise i (0, 1G) (see Figure 1).

Sampling Discrete Directional Periodogram| Optimized DirentibPeriodogram
Directions (°) Frequency Periodogram Frequency Pericaogr

15 0.0375 224.6911 0.03653 325.78b2
15 0.4000 201.524] 0.40000 201.5241
-15 0.0500 297.864¢4 0.05000 336.3946
-15 0.2925 181.247§ 0.29277 193.8835
75 0.0125 234.7062 0.01347 325.73p1
75 0.2925 165.9792 0.29272 175.0699
-75 0.0375 242.9184 0.03658 321.13p0
-75 0.1075 171.4814 0.10714 186.5533
-45 0.0700 181.9683 0.06824 272.3969
-45 0.1475 148.9511 0.14632 164.1086
45 0.0175 270.0084 0.0181)8 297.9743
45 0.4550 174.7875 0.45340 195.89[76
90 0.0250 305.2744 0.02500 305.2746
90 0.2000 216.6582 0.20000 216.65B82

0 0.0425 242.7423 0.04240 338.47P9

0 0.3475 159.6071 0.3463/7 189.08P0

Table 1. Frequency spikes of 8 directional periodograms of 4ogdhal direction pairs

Mean Periodogram
1% DZ 200 points : 15°

250
1

0.0B75

200
1

150
1

‘JWL\\/‘

T T T T T
0.0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/unit interval)

100
1

Figure 2. Directional Periodogram along 15°
Signals:sin (2r- 0.4t) along 30°; 1.5in (2r- 0.05t) along -30°; noise N (0, 100);

We sampled on directions pairs of (0°, 90°), (-45°, 4616°, 75°), (-75°, 15°). Figure 2 is an example
of these directional periodograms. For all available &atiional periodogram (see table 1), the expected number
of wave parameter clusters is 2. Table 1 also li@sdbminate frequencies and their periodogram values based
on discrete series and optimized dominate frequencies. didke noise effects have been filtered out by the
periodogram. For the coarse frequency records, the algositiggrests; = 0.0504 ang; = -30.23°,f, = 0.3998
andp, = 29.96°; while based on the optimized values, the results ar8.0499 angs; = -30.08°,f, = 0.4000
andp, = 30.00°. The accuracy is improved after optimization.

The wave parameter clusters is visualized with Figurk 8hows 2 clusters with 4 supports, and 2
clusters with 2 supports. If the expected cluster numbdmnown, it may be good enough to identify the 2
clusters with 4 supports as the wave parameters. Bl i€luster number is unknown and we want to put the
identification in the frame of statistical hypothetgist, we may need more data to make the decision.

Figure 4 is for another run of the parameter identificaforocedure on the same two wave signals.
This time we include 13 sampling pairs. As we can Hee,gap between the support numbers of identified
clusters and the other potential clusters are enlargd@ te 6 = 6. Therefore, we have more confidence to
decide if the detected clusters are from the real waenpsers. The estimations are consistent with previous
result: before optimization, we git= 0.0499,5, = -30.22°,f, = 0.4004,5, = 30.04°; after optimization, the
result isf; = 0.0499; = -30.06° f, = 0.40005, = 30.00°.
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Figure 3. Supports for identified wave parameter clusters basetiathogonal sampling pairs
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Figure 4. Supports for wave parameter clusters based on 13 orthaggmpling pairs

VI. SUMMARY

This paper introduced directional periodogram based on theitdef of KZP. Briefly, directional
periodograms are averaging of KZP for all parallel sarggiimes along a given direction. Averaging helps to
stable the variance of periodogram and filter out a large gfanoise effects. It has been showed that the
dominate spikes on directional periodogram are the funcfidhe sampling direction, the wave frequency and
direction. This is the base for KZ spatial wave sejpama

For the task of wave parameter identification, we psegothe algorithm of closure-based clustering
plus tolerance-based clustering method. The algorithm sgymied to resist incorrectly identified or missed
periodogram signals caused by noises, and it gives consistéanatems when the number of sampling
directions increases. It works well for spatial wavégh sinusoidal signals or single-mode spectrum, and
usually requires that the wave signals are “stationarfie wave field.

This algorithm has been realized in our R package {kzfs}. jpackage is designed for the separation
and reconstruction of motion scales in 2D motion images derélift directions based on KZP and KZFT. For
the wave parameter identification, {kzfs} provides functiomsteck directional periodograms for spatial waves
in the wave field. It helps to automatically identify antark prominent spectrum spikes of periodograms.
Functions are provided to support all four steps of the ffitgation process, and can be used combing with the
support of KZ adaptive filters {kza} [9]. For signataonstruction, {kzfs} utilizes KZFT to provide accurate
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recovered signals under several times of noises wittelation coefficients > 80% for mixed multiple signals,
and > 90% for separation of dominated wave patterns.
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Appendix: Proof of Proposition 1

Proof: Don't lose any generality, suppose wawyg, y) propagates along direction angleas showed in Figure
A. The wave front starts from the dash line passed tihrpogt O to the dash line passed through point A, B,
and C; the coordinate of O is (0, 0). The segment bettiwetwo dash lines is OB& and the angle of OBC is
90°. Assume the directional periodogram is checked alaegtiin of angl&. The length of line segment OA
isd/cos(@ - f). Denote the coordinate of point A &g,(ya), then we have:

Xa =d-cos(f) / cos(@ - p) (A.l1a)

ya =d-sin(0) /cos(@ - p) (A.1b)

w(xy)

~—P x-axis

Figure A. Wave signak(x, y) between two dash lines

From the perspective afaxis, there arex, | unit intervals along the line segment of OA. In otherds, |x |

is the segment length when project OA ontoxfais. Since wave signal(x, y) has the same phase at point A,
B, and C, line segment OA correspondlfowave periods, as it is on the line segment of OB. Thisymtwat

the wave frequency is

fax=df/ |xa | =f-|cos(@-p)/cos() .
Similarly, from perspective of-axis, there arey}, | unit intervals corresponding & periods of wave, and the
frequency is

fay=df/|ya|=T-[cos@-p)/sin(@)|.
It is easy to see that this relationship holds for amtinuous wave signal(x, y) along directiorf. For any

sampling series on a parallel line along directipits KZP is the consistent estimatorve(, y) spectrum along
this direction when the sampling frequency is larger tharNyquist frequency [1]. Then,

E (vax) = f+| cos @-p)/cos(d) |, for data series projected wimxis
E (vay) = f-| cos @-p)/sin(6) |, for data series projected piaxis
wheretIT, T is the index set for the parallel lines along diceco in the sampling space. This equation is also

true for the ensemble average of KZP of data serdexed by a finite set T, which is defined as the directional
periodogram on directiof for signalw(x, y). Then we finish the proof of Proposition 1.
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