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ABSTRACT: We consider the construction of block hybrid method for the solution of general second order 

ODEs. Derivation of the method was based on the use of hermite polynomial as basis function. The main method 

and its additional equations are obtained from the same continuous formulation via interpolation and collocation 

procedures. The method is then applied in block form as simultaneous numerical integrator, this approach 

eliminates requirement for starting values, and it also reduces computational effort. The stability properties of the 

method is discussed and the stability region shown. Two numerical experiments were given to illustrate the 

accuracy and efficiency of the new method.  

Keywords: Continuous formulation, Block hybrid method, Basis function, Ordinary Differential Equations, 

Hermite Polynomial. 

 

I. INTRODUCTION 
In this paper, efforts are directed towards constructing a uniform order 3 block hybrid method for solution 

of general second order ordinary differential equation of the form. 

),,( yyxfy  , )0(y ,  )0(y                                                                                                                

(1) 

 

In the past, efforts have been made by eminent scholars to solve higher order initial value problems 

especially the second order ordinary differential equation. In practice, this class of problem (1) is usually reduced to 

system of first order differential equation and numerical methods for first order ODEs then employ to solve them, 

these scholars [4], [11] and [3] showed that reduction of higher order equations to its first order has a serious 

implication in the results; hence it is necessary to modify existing algorithms to handle directly this class of 

problem (1). [13] demonstrated a successful application of LMM methods to solve directly a general second order 

odes of  the form (1) though with non-uniform order member block method, this idea is used and now extended to 

our own uniform order block schemes to solve the type (1) directly. The following scholars also contributed 

immensely to the development of block hybrid method for the solution of second order ODEs:   [2], [10], [1] just to 

mention a few. 

 

We approximate the exact solution )(xy by seeking the continuous method )(xy of the form  

 








 
1

0

1

0

2 )()()(
s

j

r

j

jnjjnj fxhyxxy                                                                                                              (2) 

Where ],[ bax  and the following notations are introduced. The positive integer 2k denotes the step number of 

the method (2), which is applied directly to provide the solution to (1). 

 

II. DERIVATION OF THE METHOD 
We propose an approximate solution to (1) in the form: 
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where s is the number of interpolation points, r  is the number of collocation points and )(xH j is the 

Hermite polynomial generated by the formula: 
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Now, interpolating (3) at nx and

2

3
n

x , while collocating (5) at nx , 

2

3
n

x and at 2nx leads to a system of equations 

which can be put in matrix form. 
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Where the coefficients 4)1(0, ja j
 are obtained as 
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Putting (7) in (3) and evaluating at some points yield the following discrete schemes: 
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III. ANALYSIS OF THE METHOD 
3.1 Order and error constant 

Following [5, 6, 7] and [11, 12], we define the local truncation error associated with the conventional 

form of (2) to be the linear difference operator. 
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The Taylor’s series expansion about the point x  gives 
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According to [8], we say that the method (2) has order p if the difference operator L is of order p and if 

,0... 1210  pp ccccc  and 02 pc where 02 pc  is called the error constant. We 

report that the method (7) have uniform order 3p  and error constants 
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   3.2 Convergence 

 The block methods shown in (7) can be represented by a matrix finite difference equation in the form:  
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It is worth noting that zero-stability is concerned with the stability of the difference system in the limit as h 

tends to zero. Thus, as h → 0, the method (11) tends to the difference system. 
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011   ww yY                                                                                                                                                (12) 

Whose first characteristic polynomial )(  is given by  

0)det()(   I  

)1()( 5                                                                                                                                                (13) 

Following [7], the block method (7) is zero-stable, since from (13), 0)(   satisfy  φj ≤ 1, j = 1, … , k and 

for those roots with  φj = 1, the multiplicity does not exceed 2. The block method (11) is consistent as it has 

order P > 1. Accordingly, from [8], we assert the convergence of the block hybrid method (7). 

 

 
Figure 1: Absolute Stability Region of the Block hybrid method 

 

IV. NUMERICAL EXAMPLE 
In this section, we report two numerical examples taken from relevant literature to compare the performance of our 

method. The absolute errors obtained from computed results at selected mesh points are also reported in the tables 

shown.  

Problem 1:  

yy  ,   ,00 y   10 y , 1.0h  

Analytical solution:    xxy exp1  

Source: Yahaya and Badmus (2009) 

 

Table 1: Comparism of absolute errors of  the new method with other authors for problem 1 
x Analytical Solution              BHyMS            Errors in [13]     Errors in BHyMS 

0.1 -0.10517091807565 -0.10517041901188 8.79316 X 10-05 4.99063768 X 10-7 

0.2 -0.22140275816017 -0.22140087554722 3.26718 X 10-04 1.88261295 X 10-6 

0.3 -0.34985880757600 -0.34985480195761 2.21556 X 10-03 4.00561839 X 10-6 

0.4 -0.49182469764127 -0.49181732954579 4.85709 X 10-03 7.36809500 X 10-6 

0.5 -0.64872127070013 -0.64870946105267 9.09773 X 10-03 1.18096475 X 10-5 

0.6 -0.82211880039051 -0.82210084090240 1.43914 X 10-02 1.79594881 X 10-5 

0.7 -1.01375270747048 -1.01372706531323 2.14379 X 10-02 2.56421573 X 10-5 

0.8 -1.22554092849247 -1.22550527972633 2.98987 X 10-02 3.56487661 X 10-5 

0.9 -1.45960311115695 -1.45955532117372 4.03007 X 10-02 4.77899832 X 10-5 

1.0 -1.71828182845905 -1.71821876879647 5.25521 X 10-02 6.30596627 X 10-5 

 

Problem 2: 

010001001  yyy ,   10 y ,   10 y , 05.0h  

Analytical solution:    xxy  exp  

Source: Jator (2007)  
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Table 2: Comparism of absolute errors of  the new method with other authors for problem 2 
x Analytical Solution BHyMS              Errors in [9]     Errors in BHyMS 

0.1 0.90483741803596 0.90483742302973 6.98677 X 10-12 1.62 X 10-12 

0.2 0.81873075307798 0.81873076660624 1.00275 X 10-12 2.94 X 10-12 

0.3 0.74081822068172 0.74081824239740 7.85878 X 10-12 4.00 X 10-12 

0.4 0.67032004603564 0.67032007464740 1.04778 X 10-11 4.86 X 10-12 

0.5 0.60653065971263 0.60653069382600 6.32212 X 10-11 5.50 X 10-12 

0.6 0.54881163609403 0.54881167443656 1.00508 X 10-11 5.95 X 10-12 

0.7 0.49658530379141 0.49658534525922 9.36336 X 10-12 6.31 X 10-12 

0.8 0.44932896411722 0.44932900777118 2.64766 X 10-12 6.51 X 10-12 

0.9 0.40656965974060 0.40656970478997 1.06793 X 10-11 6.62 X 10-12 

1.0 0.36787944117144 0.36787948695556 2.32731 X 10-11 6.66 X 10-12 

 

V. CONCLUSION 
We developed a third order block hybrid block methods for the solution of general second order 

Ordinary differential equations ( BhyMS). The method (7) was derived using hermite polynomial as basis 

function. Graph of its absolute stability region suggest that it is stableA )( (figure 1). The method proved 

to be very efficient when tested on two numerical problems and when compared with results obtained from 

relevant authors (tables 1 and table 2). 
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