Quest Journals Journal of Research in Applied Mathematics Volume 3 ~ Issue 7 (2017) pp: 52-64 ISSN(Online) : 2394-0743 ISSN (Print):2394-0735 www.questjournals.org



#### **Research Paper**

## Mathematical Model And The Economic Analysis of Solid Waste Disposal In Aba Metropolis

<sup>1</sup>Kalu, Ezekiel Okore;<sup>\*2</sup>Inyama, Simeon Chioma; <sup>3</sup>Nwobi, F. N

<sup>1</sup>Department of Mathematics and Statistics, Abia State Polytechnics, Aba, Abia State, Nigeria <sup>\*2</sup>Department of Mathematics, Federal University of Technology, Owerri, Imo State, Nigeria <sup>3</sup>Department of Statistics, Imo State University, Owerri, Imo State, Nigeria Corresponding Author: kalu Ezekiel Okore

# **R**eceived 13 November, 2017; Accepted 28 November, 2017 © The Author(s) 2017. Published With Open Access At **Www.Questjournals.Org**

**ABSTRACT:** In Kalu et al. (2017) we looked at Mathematical Model of Municipal solid waste management system in Aba metropolis of Abia State of Nigeria. In this particular paper we carried out the economic analyzed the solid waste disposal in Aba. We analyzed the data collected in Kalu, et al. (2017). When the effect of the capacity of the collection center was carried out, it was observed that minimum cost falls with rise in capacity of the collection centre. It is seen that the number and permutation of collection centres to be opened for minimum cost of the transportation network is independent of the scavenged fraction, but the quantities moved  $x_{ij}$  and  $y_{jk}$  at optimal and the minimum transportation cost is affected by scavenged fraction. These results confirm the expectation that rise in scavenged fraction will cause a fall in minimum transportation cost and the quantities moved to the landfills. The analysis further reveals that when the collection centers are designed to have the maximum capacities of C=350 with other factors being equal, the minimum cost becomes  $\Re 3,948,700.00$  and 7 out of the 15 collection centers are open and thus in use. It is also seen that the best way to minimize the burden of payment on the customers while guaranteeing reasonable daily profit to the investor and tax return to the government is to increase the capacity of the collection centers and optimal place to locate them.

**Keywords:** Solid waste, Solid Waste Disposal, Municipal waste management, Economic Analysis, Scavenged Fraction

## I. INTRODUCTION

Solid waste management is a global issue that is a growing source of concern in developed and developing countries due to increase urbanization; changes in consumer pattern and industrialization which all directly influence solid waste generally. Kadafa et al (2013). Adedibu (1993) is of the view that the nature and composition of solid waste is a product of climatic and business activities in urban centers. He argue further that most of the agricultural produce such as maize, cassava, vegetable, millet are brought unprocessed during the rainy and harvesting seasons from the nearby farms. The composition of refuse generated in an area determines the type of disposal method suitable for a particular form of waste and the effectiveness of a collection system depends on the cooperation of households and individuals in various sectors of the city in providing containers for storing refuse in accordance with the regulation and regularly placing the materials for collection, Afon (2003). Abumere (1983) links socio-cultural factors to land use pattern such as housing density and eating habits. He further states that solid waste accumulation is a product of chaotic land use pattern, the number of household living and that the eating habit in a house greatly determines the composition of refuse generated. Abila and Kantola (2013) are of the view that municipal waste management problems in Nigeria cut across concern for human health, air and water and land pollution among others. Adewole (2009) argue that continuous indiscriminate disposal of municipal solid waste is accelerating and is linked to poverty, poor governance, urbanization, population growth, poor standard of living and low level of environmental awareness.

Daskalopoulos et al (1998) have presented a mixed integer linear programming model for the management of MSW streams. This is similar to our model. The cost in the objective function of their model caters for the environmental considerations related to the emission of greenhouse gases. This is also similar to our model. Unlike our model, Daskalopoulos, et al (1998) does not cover collection and transportation costs. Regulatory and technical constraints are not considered either.

Badran and El-Haggar (2005) studied optimization of solid waste management systems using operation research methodologies. A mixed integer linear programming model is a problem whose objective covers collection costs from the districts to collection stations, transportation costs from collection stations to their composting plants or to landfills. This is similar to our model. Unlike our model, their model did not cater for environmental considerations related to the emission of greenhouse gases.

The model of Chang and Chang (1998) minimizes overall cost through the solution of a nonlinear programming problem. Unlike our model, their model does not cater for regulatory and environmental constraints. We present linear model and go at length in estimation of environmental hazard cost and scavenged fraction. Costi, et al (2004) have presented a comprehensive mixed integer nonlinear programming problem, whose planning horizon is a year. They give a detailed description of environmental constraints that cover Refuse Derived Fuel (RDF) constraints, incineration constraints and Stabilized Organic Material (SOM) constraints. The nonlinearity of their model consists in the nature of the decision variables used. These decision variables are percentages (fractions) of waste that has to be sent to various plants and landfills in their model. The interaction between these percentages generates their products that appear in the objective function, in the regulatory (normative) constraints, in the technical and environmental constrains. One of the differences between Costi et al (2004) model and our model is that while the planning horizon of Costi et al (2004) is one year, the planning horizon of our model is a day; decisions are to be taken on a day to day basis. This means a continuous monitoring and collection data in order to make the required adjustments. This flexibility may be lost in a long period horizon model. In contrast to Costi et al (2004) model which is non linear, our model is linear. Again, another differences between Costi et al (2004) and our model is that while our model accounts for the collection cost from waste sources to collection points. This is not part of their model.

Halidi (2011) has presented a mixed integer programming of municipal solid waste management in Ilala municipality. He uses the concept of having collection centers. The proposed model results in a least transportation cost  $T_{sh}$  10, 969,252 per day compared with the one given by Ilala municipality of  $T_{sh}$  14,000,000per day. Furthermore, the study shows that any additional increase of the collection centre capacity up to 500 tons will result in a decrease of the objective function value. One of the limitations of Halidi (2011) is that he did not incorporate environmental hazard cost and scavenged fraction into the model. The cost in the objective function of our model caters for the environmental consideration related to the emission of greenhouse gases (GHGS) that cause global warming. We also estimated the scavenged fraction.

The total cost of the solid waste management system include the transportation cost of the waste to different facilities such as transfer stations, landfills, incinerators and also the operational and fixed costs of these facilities Badaran and El-Haggar (2006). The management of solid waste has been a primary function of the municipal/local government in each state; however, attaining efficiency in the sector has been a major challenge especially in the prominent cities within the country such as Aba, Enugu, Owerri, Port-Harcourt, Kaduna, Lagos and Ibadan where piles of Municipal Solid Waste (MSW) are often observed. Idowu et al (2011), their sources being households, markets and places of commercial activity, Momodu (2011).

Hasit and Warner (1981) compared these two techniques when applied to the waste resource allocation programme model. In their scenarios, the number of cost combinations increased rapidly as the number of facilities increased, resulting in higher data requirements and programme handling. They noted that linear programming models can get offset by those effects and cannot handle discrete sizes for facilities. Instead, they added mixed integer programming which can take all those considerations into account. In the municipality of Genova, Italy, Costi, et al (2004) have proposed a mixed integer non-linear programming decision support model to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Chang and Chang (1998) have presented a non-linear programming model for municipal solid waste management based on the minimization of an overall cost considering energy and material recovery requirements.

In the paper Kalu, et al (2017) we developed the Mathematical Model of Municipal Solid Waste Management System in Aba Metropolis. We developed the model and analyzed the model. In this particular work, we analyzed the economic implication of the solid waste disposal in Aba metropolis of Abia State, Nigeria. We recall that the model developed in Kalu, et al (2017) is as presented in (1.1) below.

$$\begin{aligned} \operatorname{Min} Z(Q, X, Y) &= \sum_{j=1}^{15} (F_j + hC_j)Q_j + \sum_{i=1}^{90} \sum_{j=1}^{15} T_{ij}x_{ij} + \sum_{j=1}^{15} \sum_{k=1}^{3} T_{jk}y_{jk} \\ \text{Subject to:} \\ &\sum_{j=1}^{15} x_{ij} = W_i, i = 1, 2, 3, \dots, 90 \\ (1 - f) \sum_{i=1}^{90} \sum_{j=1}^{15} x_{ij} = \sum_{j=1}^{15} \sum_{k=1}^{3} y_{jk}, i = 1, 2, 3, \dots, 90 \\ (1 - f) \sum_{i=1}^{90} x_{ij} \leq C_j \ (j = 1, 2, 3, \dots, 15) \\ &\sum_{j=1}^{15} y_{jk} \leq L_k, k = 1, 2, 3 \\ &\sum_{j=1}^{15} Q_j \leq N \\ &\sum_{j=1}^{15} Q_j C_j \geq \sum_{i=1}^{90} W_i \\ &x_{ij} \geq 0, y_{jk} \geq 0, i = 1, 2, 3, \dots, 90; j = 1, 2, 3, \dots, 15; k = 1, 2, 3 \end{aligned} \end{aligned}$$

## II. DATA PRESENTATION

Data were collected for the study as follows:

|--|

|      | Tuble 2.1. Thilodit of Solid Wast |              | Waste         |              |                         |          |                    |
|------|-----------------------------------|--------------|---------------|--------------|-------------------------|----------|--------------------|
|      | SOURCES                           | Notati<br>on | (Ton/D<br>ay) | Nota<br>tion | SOURCES                 | Notation | Waste<br>(Ton/Day) |
| 0.01 |                                   |              |               |              |                         |          |                    |
| S01  | EZIAMA HIGH SCHOOL                | AN01         | 36            | S46          | EHI ROAD PRIMARY SCH.   | AS21     | 36                 |
| S02  | EZIAMA CENTRAL HIGH SCH.          | AN02         | 40            | S47          | ETCHE RD PRIMARY SCH    | AS22     | 36                 |
| S03  | NGWA CULTURAL HALL                | AN03         | 32            | S48          | DANFODIO RD PRIMARY SCH | AS23     | 24                 |
| S04  | OLD POST OFFICE                   | AN04         | 37            | S49          | ABA TOWN HALL           | AS24     | 21                 |
| S05  | OSUSU PRIMARY SCHOOL              | AN05         | 26            | S50          | HOSPITAL RD PRIMARY SCH | AS25     | 23                 |
| S06  | OKIGWE PRIMARY SCHOOL             | AN06         | 26            | S51          | ABAYI COM.PRIMARY SCH   | OB01     | 22                 |
| S07  | OSUSU SECONDARY SCHOOL            | AN07         | 21            | S52          | EHERE COMM.PRIMARY SCH  | OB02     | 32                 |
| S08  | HOLY GHOST COMM.SCH.              | AN08         | 17            | S53          | UMUAFOR CIVIC HALL      | OB03     | 19                 |
| S09  | ST EUGEN'S PRIMARY SCHOOL         | AN09         | 20            | S54          | UMUOPARA VILLA SQUARE   | OB04     | 15                 |
| S10  | URATTA COUNCIL HALL               | AN10         | 21            | S55          | UMUAGBA CIVIL HALL      | OB05     | 11                 |
| S11  | STELLA MARIS SEC SCH.             | AN11         | 18            | S56          | ITUNGWA CPS             | OB06     | 10                 |
| S12  | GULF COURSE PRIMARY SCH           | AN12         | 20            | S57          | UMUHU ALAOJI HALL       | OB07     | 23                 |
| S13  | WATER TANK PREMISES               | AN13         | 23            | S58          | UMUOKEREKE-UHIE COURT   | OB08     | 16                 |
| S14  | UMUOLA OKPULOR HALL               | AN14         | 27            | S59          | IHEOJI / UMUOJIMA       | OB09     | 33                 |
| S15  | UMUOLA EGBELU HALL                | AN15         | 18            | S60          | MBOKO -OKPULOR HALL     | OB10     | 14                 |
| S16  | BTC SCHOOL PREMISES               | AN16         | 40            | S61          | UMUOBIKWA               | OB11     | 14                 |
| S17  | OLD INTERNAL REVENUE PREMISES     | AN17         | 42            | S62          | OHANZE CPS              | OB12     | 18                 |
| S18  | EZIOBI PRIMARY SCHOOL             | AN18         | 37            | S63          | OVOM GIRLS SEC SCH      | OB13     | 40                 |
| S19  | SACRED HEART COLLEGE              | AN19         | 32            | S64          | UMUOMASI                | OB14     | 21                 |
| S20  | WILCOX MEMORIAL SCHOOL            | AN20         | 37            | S65          | UMUOMAI VILLAGE HALL    | OB15     | 17                 |
| S21  | NEW UMUAHIA ROAD PRIMARY SCH      | AN21         | 22            | S66          | UMUOGELE CPS NTIGHAUZO  | OB16     | 24                 |
| S22  | OGBOR HILL PRIMARY SCHOOL         | AN22         | 16            | S67          | OHANZE AGWO-MKT         | OB17     | 38                 |
| S23  | FEDERAL HOUSING ESTATE            | AN23         | 21            | S68          | ABIAK VILLAGE HALL      | OB18     | 20                 |
| S24  | UMUOGOR / UMUASOKE HALL           | AN24         | 24            | S69          | UMUOKIRIKA VILLA SQUARE | OS01     | 19                 |
| S25  | ASA OKPULOR COUNCIL HALL          | AN25         | 19            | S70          | ABAYI ARIARIA PRY SCH.  | OS02     | 41                 |
| S26  | EZIUKWU OKIGWE RD PRY SCH.        | AS01         | 26            | S71          | UMUOJIMA OGBU PRY SCH   | OS03     | 20                 |

## Mathematical Model And The Economic Analysis of Solid Waste Disposal In Aba Metropolis

| 1           |                               | 1    | 1  | I           | 1                         |      | 1  |
|-------------|-------------------------------|------|----|-------------|---------------------------|------|----|
| S27         | EZIUKWU EBENATOR (OMUMA)      | AS02 | 26 | S72         | UMUNGASI POST OFFICE      | OS04 | 36 |
| S28         | EZIUKWU ASA OKPUAGA HALL      | AS03 | 23 | S73         | NGWA HIGH SCHOOL          | OS05 | 32 |
| S29         | ASA-OSUMENYI HALL             | AS04 | 31 | S74         | OKPUALA-ARO VILLA HALL    | OS06 | 8  |
| <b>S</b> 30 | ABA TOWNSHIP PRIMARY SCH.     | AS05 | 20 | S75         | UMUIHUOMA VILLAGE HALL    | OS07 | 17 |
| S31         | ENYIMBA- ISIEKENESI HALL      | AS06 | 41 | S76         | OKPUALA-UKWU COMM. SCH.   | OS08 | 12 |
| S32         | ENYIMBA- ABAUKWU VILLAGE HALL | AS07 | 28 | S77         | IBIBI URATTA COUNCIL HALL | OS09 | 15 |
| S33         | NGWA-NDOKI ROAD PRIMARY SCH.  | AS08 | 37 | S78         | UMUAGBAI COMM.SCH         | OS10 | 11 |
| S34         | NGWA-IHIOMA HALL              | AS09 | 17 | S79         | UMUMBA-UMURU COMM SCH     | OS11 | 17 |
| S35         | NGWA UMUAGBAI EAST PRY SCH    | AS10 | 20 | <b>S</b> 80 | UMUABA VILLAGE HALL       | OS12 | 10 |
| S36         | OHAZU /AKOLI HALL             | AS11 | 16 | S81         | ANIGWE PRIMARY SCHOOL     | UG01 | 26 |
| <b>S</b> 37 | OHAZU / AWKUZU HALL (NGWA RD) | AS12 | 15 | S82         | UGWUNAGBO CUSTOM COURT    | UG02 | 18 |
| S38         | OHAZU / IHIEORJI SEC SCH.     | AS13 | 15 | S83         | AMAPU IDEOBIA PRY SCH.    | UG03 | 22 |
| S39         | IGWEBUIKE- OHABIAM SEC SCH.   | AS14 | 20 | S84         | OWERE ABA PRIMARY SCH.    | UG04 | 14 |
| S40         | IGWEBUIKW-NNENTU VILLA HALL   | AS15 | 17 | S85         | AKAMU NGWA HIGH SCH.      | UG05 | 12 |
| S41         | ASA ROAD PRIMARY SCH.         | AS16 | 48 | S86         | ASA UMUKWA PRIMARY SCH.   | UG06 | 10 |
| S42         | ST.JOSEPH'S SCH. COLLEGE      | AS17 | 40 | <b>S</b> 87 | ASA NNETU MOTOR PARK MKT  | UG07 | 31 |
| S43         | MARKET ROAD PRIMARY SCH.      | AS18 | 28 | S88         | ALAOJI VILLAGE HALL       | UG08 | 17 |
| S44         | OLD COURT PRIMARY SCH.        | AS19 | 18 | S89         | IHIEOBEAKU PRIMARY SCH    | UG09 | 8  |
| S45         | SCHOOL OF HEALTH              | AS20 | 27 | S90         | NGWAIYIEKWE BUS STOP      | UG10 | 20 |

Table 2.2: Transportation Cost Matrix (N) of Solid Waste from Sources to the Collection Centres.

|     | 1 abit 2.2.  | 1    |      |      |      | 11)01 |      |      |      |      |      | neetion |      |      |      |      |
|-----|--------------|------|------|------|------|-------|------|------|------|------|------|---------|------|------|------|------|
|     | J            | C01  | C02  | C03  | C04  | C05   | C06  | C07  | C08  | C09  | C10  | C11     | C12  | C13  | C14  | C15  |
| Ι   | SOURCES      | AN05 | AN10 | AN16 | AN25 | AS03  | AS07 | AS15 | AS21 | OB01 | OB05 | OB13    | OS02 | OS03 | OS12 | UG05 |
| S01 | AN01         | 1280 | 1680 | 800  | 2240 | 1200  | 1600 | 1760 | 1040 | 1280 | 1440 | 1360    | 1440 | 1760 | 1840 | 2400 |
| S02 | AN02         | 1120 | 1520 | 880  | 2160 | 1360  | 1520 | 1600 | 1120 | 1200 | 1360 | 1440    | 1600 | 1920 | 1680 | 2480 |
| S03 | AN03         | 1440 | 1040 | 800  | 1680 | 880   | 1120 | 1360 | 720  | 1520 | 1600 | 1760    | 1760 | 2000 | 1840 | 3040 |
| S04 | AN04         | 960  | 560  | 720  | 1760 | 800   | 400  | 1200 | 320  | 1200 | 1360 | 1440    | 1520 | 1680 | 1600 | 2640 |
| S05 | AN05         | 0    | 1200 | 480  | 1440 | 1520  | 1600 | 1760 | 800  | 960  | 1760 | 2240    | 1360 | 2320 | 1600 | 2560 |
| S06 | AN06         | 880  | 1120 | 400  | 1600 | 1280  | 1040 | 1360 | 1200 | 800  | 960  | 1040    | 1440 | 1680 | 1920 | 2000 |
| S07 | AN07         | 400  | 800  | 720  | 1200 | 1360  | 1920 | 1200 | 1520 | 880  | 1680 | 2480    | 1520 | 2160 | 1440 | 2320 |
| S08 | AN08         | 560  | 880  | 560  | 1360 | 1120  | 960  | 1360 | 1040 | 960  | 1520 | 1360    | 1200 | 1520 | 1360 | 2000 |
| S09 | AN09         | 720  | 800  | 320  | 960  | 1040  | 1040 | 1440 | 1120 | 880  | 1360 | 1200    | 1360 | 1440 | 1520 | 1920 |
| S10 | AN10         | 1200 | 0    | 2000 | 2320 | 1920  | 1920 | 2080 | 960  | 2000 | 1920 | 2320    | 2400 | 2800 | 2560 | 2160 |
| S11 | AN11         | 1360 | 240  | 1920 | 2240 | 1360  | 1040 | 1520 | 800  | 1840 | 1760 | 2080    | 2240 | 2000 | 2080 | 1920 |
| S12 | AN12         | 800  | 1200 | 640  | 1520 | 960   | 800  | 1200 | 560  | 1040 | 1280 | 1440    | 1760 | 2160 | 2000 | 2000 |
| S13 | AN13         | 880  | 1120 | 720  | 1440 | 880   | 400  | 1040 | 560  | 1280 | 1360 | 1520    | 1920 | 2080 | 1840 | 2320 |
| S14 | AN14         | 1680 | 1440 | 1280 | 1840 | 1200  | 1360 | 1120 | 1280 | 1520 | 1760 | 1680    | 2080 | 2240 | 2000 | 2400 |
| S15 | AN15         | 1440 | 1360 | 1200 | 1600 | 720   | 960  | 880  | 0    | 1600 | 1680 | 1840    | 2000 | 1760 | 1680 | 2480 |
| S16 | AN16         | 480  | 2000 | 0    | 1760 | 1280  | 1520 | 1600 | 720  | 800  | 1600 | 2560    | 1200 | 2080 | 1440 | 2400 |
| S17 | AN17         | 1120 | 720  | 400  | 880  | 1520  | 1200 | 1440 | 1600 | 720  | 1120 | 1360    | 1440 | 1280 | 1600 | 2560 |
| S18 | AN18         | 960  | 880  | 800  | 1200 | 1680  | 1360 | 1760 | 1280 | 1360 | 1200 | 1520    | 1600 | 1760 | 1920 | 2720 |
| S19 | AN19         | 1120 | 1200 | 560  | 1440 | 1440  | 1520 | 1360 | 1680 | 1280 | 1520 | 1360    | 1200 | 1440 | 1600 | 2320 |
| S20 | AN20         | 1600 | 1280 | 1360 | 1520 | 1600  | 720  | 1520 | 1280 | 1600 | 1440 | 1520    | 1760 | 1680 | 2000 | 2480 |
| S21 | AN21         | 1520 | 1440 | 1200 | 1600 | 1440  | 1200 | 1600 | 1840 | 1840 | 1840 | 2000    | 1920 | 2000 | 1840 | 2400 |
| S22 | AN22         | 1680 | 1360 | 1600 | 1520 | 1680  | 1120 | 1520 | 1440 | 2000 | 2160 | 1920    | 2000 | 2160 | 2320 | 2640 |
| S23 | AN23         | 2240 | 2400 | 1840 | 2320 | 1920  | 1520 | 1600 | 1760 | 2160 | 1920 | 1760    | 2400 | 2240 | 2320 | 2320 |
| S24 | AN24         | 2000 | 1680 | 1760 | 1840 | 1760  | 1840 | 1520 | 1680 | 1680 | 1840 | 1520    | 2160 | 2000 | 2240 | 2400 |
| S25 | AN25         | 1440 | 1680 | 1760 | 0    | 1760  | 1760 | 1840 | 1120 | 1360 | 1680 | 2080    | 1760 | 2160 | 2000 | 2160 |
| S26 | AS01         | 1280 | 1600 | 1360 | 1920 | 2080  | 880  | 1280 | 1520 | 1440 | 1600 | 1840    | 1520 | 1760 | 2000 | 2560 |
| S27 | AS02         | 1120 | 1440 | 800  | 1440 | 560   | 960  | 1200 | 1360 | 1280 | 1520 | 1680    | 1200 | 1360 | 1600 | 2480 |
| S28 | AS03         | 1520 | 1920 | 1280 | 1760 | 0     | 1040 | 1600 | 1200 | 1600 | 1440 | 1840    | 2240 | 2080 | 1760 | 2320 |
| S29 | AS04         | 1840 | 1680 | 1200 | 1520 | 720   | 800  | 1200 | 1360 | 1680 | 1840 | 1760    | 2080 | 1920 | 2160 | 2160 |
| S30 | AS05         | 960  | 1280 | 720  | 1120 | 640   | 960  | 1360 | 1280 | 1280 | 1440 | 1520    | 1520 | 1440 | 1600 | 2400 |
| S31 | AS06         | 880  | 1520 | 800  | 1200 | 960   | 320  | 1040 | 1200 | 1520 | 1760 | 1920    | 2160 | 2000 | 2240 | 2560 |
| S32 | AS07         | 1600 | 1920 | 1520 | 1760 | 1040  | 0    | 1520 | 1440 | 1760 | 1600 | 1200    | 2640 | 2000 | 2000 | 2400 |
| S33 | AS08         | 1440 | 2000 | 1440 | 1520 | 1200  | 1520 | 1360 | 1280 | 1920 | 1680 | 2160    | 2400 | 2240 | 2480 | 2480 |
| S34 | AS09         | 1280 | 1680 | 1120 | 1440 | 1120  | 1360 | 1200 | 1360 | 1840 | 1840 | 2000    | 2320 | 2400 | 2240 | 2640 |
| S35 | AS10         | 1600 | 2000 | 1280 | 1840 | 1600  | 1440 | 1280 | 1200 | 2000 | 1920 | 2080    | 2160 | 2320 | 2080 | 2480 |
| S36 | AS11         | 1360 | 1680 | 1200 | 1600 | 1520  | 1600 | 1440 | 1600 | 2160 | 2000 | 2240    | 2080 | 2240 | 2480 | 2720 |
| S37 | AS12         | 2000 | 960  | 1600 | 1760 | 1680  | 1520 | 1760 | 960  | 2080 | 2240 | 2160    | 2240 | 2160 | 2400 | 2880 |
| S38 | AS13         | 2640 | 1440 | 2400 | 1680 | 2080  | 1680 | 1520 | 1360 | 2160 | 2240 | 1920    | 2320 | 2080 | 2240 | 2800 |
| S39 | AS14         | 2800 | 1600 | 2560 | 2400 | 2240  | 2160 | 2000 | 1520 | 2320 | 2160 | 2240    | 2400 | 2480 | 2320 | 2960 |
| S40 | AS15         | 1760 | 2080 | 1600 | 1840 | 1600  | 1520 | 0    | 1600 | 1680 | 1360 | 1520    | 2080 | 2160 | 1760 | 2640 |
| S41 | AS16         | 1520 | 560  | 960  | 1520 | 1360  | 1200 | 880  | 400  | 1760 | 1440 | 1520    | 2160 | 2000 | 2160 | 2960 |
| S42 | AS17         | 1120 | 720  | 800  | 1040 | 800   | 960  | 720  | 640  | 1600 | 1360 | 1440    | 1920 | 1840 | 2000 | 2720 |
| S43 | AS18         | 1040 | 640  | 800  | 1440 | 1120  | 1360 | 1200 | 320  | 1440 | 1600 | 1680    | 1840 | 1680 | 1920 | 2560 |
| S44 | AS19         | 960  | 800  | 720  | 1280 | 1040  | 880  | 960  | 560  | 1280 | 1360 | 1440    | 1520 | 1360 | 1440 | 2720 |
| S45 | 1 0 0 0      | 000  | 800  | 640  | 1360 | 1000  | 1520 | 1360 | 480  | 1360 | 1520 | 1600    | 1440 | 1600 | 1520 | 2880 |
| S46 | AS20<br>AS21 | 880  | 800  | 640  | 1360 | 1280  | 1520 | 1500 | 400  | 1300 | 1520 | 1000    | 2480 | 2400 | 1520 | 2560 |

| S47 | AS22 | 960  | 1040 | 720  | 1440 | 800  | 1120 | 960  | 320  | 1760 | 1520 | 1440 | 2080 | 2160 | 2000 | 2400 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| S48 | AS23 | 1120 | 1360 | 960  | 1280 | 1200 | 1040 | 560  | 400  | 1840 | 1600 | 1760 | 1760 | 1840 | 2080 | 2320 |
| S49 | AS24 | 960  | 1280 | 560  | 1040 | 720  | 640  | 800  | 480  | 1360 | 1280 | 1520 | 1360 | 1440 | 1280 | 1920 |
| S50 | AS25 | 1040 | 1200 | 800  | 1280 | 1200 | 960  | 800  | 240  | 1600 | 1760 | 2000 | 1600 | 1760 | 2000 | 2160 |
| S51 | OB01 | 960  | 2000 | 800  | 1360 | 1600 | 1760 | 1680 | 1920 | 0    | 960  | 1360 | 720  | 1600 | 1680 | 2240 |
| S52 | OB02 | 1600 | 1680 | 1440 | 1760 | 1280 | 800  | 1200 | 1280 | 2000 | 1840 | 2160 | 1760 | 1680 | 1920 | 2320 |
| S53 | OB03 | 1520 | 1600 | 1360 | 1520 | 1120 | 1520 | 1360 | 1600 | 1600 | 1760 | 1920 | 1680 | 1600 | 1760 | 2560 |
| S54 | OB04 | 1920 | 1840 | 1680 | 1760 | 1360 | 1680 | 1600 | 1760 | 1680 | 1840 | 1760 | 1600 | 1760 | 1680 | 2480 |
| S55 | OB05 | 1760 | 1920 | 1600 | 1680 | 1440 | 1600 | 1360 | 1680 | 960  | 0    | 1280 | 1680 | 1840 | 1760 | 2400 |
| S56 | OB06 | 2160 | 640  | 1920 | 2320 | 1520 | 1760 | 1600 | 1840 | 1680 | 1520 | 1840 | 1920 | 2000 | 2160 | 2240 |
| S57 | OB07 | 2080 | 560  | 2000 | 2080 | 2560 | 2240 | 1920 | 1600 | 2000 | 1760 | 1600 | 2240 | 2080 | 1920 | 2400 |
| S58 | OB08 | 2160 | 800  | 1920 | 1840 | 2240 | 2000 | 2160 | 2080 | 1920 | 1680 | 1920 | 2160 | 2240 | 2080 | 2560 |
| S59 | OB09 | 1760 | 960  | 1600 | 1520 | 1600 | 2160 | 2000 | 2400 | 1760 | 1920 | 2000 | 2400 | 2320 | 2480 | 2720 |
| S60 | OB10 | 2480 | 1200 | 2320 | 800  | 1760 | 2080 | 2160 | 2560 | 1360 | 1520 | 1680 | 2320 | 2480 | 2560 | 2800 |
| S61 | OB11 | 2800 | 1600 | 2560 | 1520 | 1920 | 2160 | 2320 | 2080 | 1520 | 1600 | 1440 | 2400 | 2560 | 2480 | 2960 |
| S62 | OB12 | 2640 | 1760 | 2400 | 1920 | 2160 | 2240 | 2080 | 2240 | 1600 | 1760 | 1680 | 2240 | 2400 | 2560 | 2720 |
| S63 | OB13 | 2240 | 2320 | 2560 | 2080 | 1840 | 1200 | 1520 | 1680 | 1360 | 1280 | 0    | 2160 | 2480 | 2400 | 2880 |
| S64 | OB14 | 2480 | 2240 | 2320 | 2240 | 2160 | 1840 | 2080 | 2240 | 1200 | 1600 | 1520 | 2400 | 2320 | 2480 | 2560 |
| S65 | OB15 | 2400 | 2080 | 2320 | 2000 | 2080 | 2160 | 2240 | 2080 | 1440 | 1760 | 1920 | 2240 | 2400 | 2160 | 2960 |
| S66 | OB16 | 2160 | 2560 | 2720 | 2160 | 2400 | 2160 | 2320 | 2560 | 2240 | 2000 | 2080 | 2400 | 2320 | 2480 | 2640 |
| S67 | OB17 | 2560 | 2720 | 2880 | 2240 | 2320 | 2240 | 2080 | 2000 | 2160 | 2320 | 2400 | 2560 | 2480 | 2640 | 2560 |
| S68 | OB18 | 2880 | 2480 | 2640 | 2160 | 2480 | 2160 | 2320 | 2240 | 1600 | 2240 | 2160 | 2160 | 2400 | 2320 | 2480 |
| S69 | OS01 | 2480 | 2960 | 2400 | 2320 | 1600 | 1920 | 1760 | 2160 | 1200 | 1520 | 1920 | 1120 | 1360 | 1760 | 2320 |
| S70 | OS02 | 1360 | 2400 | 1200 | 1760 | 2240 | 2640 | 2080 | 2480 | 720  | 1680 | 2160 | 0    | 720  | 560  | 2480 |
| S71 | OS03 | 1600 | 2480 | 1360 | 1600 | 2400 | 2800 | 2320 | 2720 | 800  | 1120 | 1760 | 400  | 800  | 960  | 2640 |
| S72 | OS04 | 720  | 2000 | 560  | 1280 | 960  | 1360 | 1200 | 1520 | 560  | 880  | 1600 | 960  | 1200 | 1280 | 2400 |
| S73 | OS05 | 1360 | 2560 | 1120 | 1680 | 1520 | 1920 | 1680 | 2080 | 240  | 1200 | 2160 | 800  | 1120 | 1360 | 2720 |
| S74 | OS06 | 2400 | 2720 | 2160 | 1920 | 1760 | 1920 | 2080 | 2240 | 640  | 1120 | 2080 | 1120 | 1040 | 800  | 2880 |
| S75 | OS07 | 2320 | 2800 | 2080 | 2160 | 2080 | 2000 | 2160 | 2400 | 1600 | 1840 | 2480 | 720  | 0    | 960  | 2240 |
| S76 | OS08 | 2160 | 2640 | 2000 | 2320 | 2240 | 2160 | 2320 | 2160 | 1200 | 1520 | 1680 | 960  | 1120 | 1200 | 2800 |
| S77 | OS09 | 2480 | 2560 | 2400 | 2640 | 1920 | 2080 | 1760 | 1840 | 1600 | 2080 | 2000 | 1600 | 1440 | 1760 | 2640 |
| S78 | OS10 | 2320 | 2720 | 2080 | 2400 | 2000 | 1760 | 2080 | 2160 | 1280 | 1360 | 1760 | 1680 | 1520 | 1600 | 2720 |
| S79 | OS11 | 2560 | 2880 | 2400 | 2240 | 2160 | 2080 | 1920 | 2000 | 1440 | 1680 | 1920 | 1520 | 1360 | 1280 | 2880 |
| S80 | OS12 | 1600 | 2560 | 1440 | 2000 | 1760 | 2000 | 1760 | 1920 | 1680 | 1760 | 2400 | 560  | 960  | 0    | 2400 |
| S81 | UG01 | 2880 | 1760 | 2720 | 2400 | 2560 | 2480 | 2320 | 2400 | 2080 | 1840 | 1920 | 2320 | 2400 | 2240 | 1120 |
| S82 | UG02 | 2720 | 1840 | 2480 | 1680 | 2720 | 2560 | 2480 | 2640 | 2160 | 1920 | 2160 | 2160 | 2320 | 2080 | 640  |
| S83 | UG03 | 2640 | 1920 | 2560 | 1920 | 2560 | 2640 | 2320 | 2480 | 2400 | 2480 | 2320 | 2480 | 2560 | 2240 | 1200 |
| S84 | UG04 | 2720 | 2080 | 2480 | 2400 | 2400 | 2320 | 2480 | 2400 | 2480 | 2400 | 2560 | 2400 | 2320 | 2480 | 960  |
| S85 | UG05 | 2560 | 2160 | 2400 | 2160 | 2320 | 2400 | 2560 | 2560 | 2240 | 2400 | 2880 | 2480 | 2240 | 2400 | 0    |
| S86 | UG06 | 2560 | 2240 | 2320 | 2320 | 2720 | 2480 | 2560 | 2400 | 2400 | 2560 | 2640 | 2400 | 2160 | 2320 | 720  |
| S87 | UG07 | 2720 | 2320 | 2720 | 2400 | 2320 | 2480 | 2640 | 2800 | 2320 | 2400 | 2560 | 2480 | 2160 | 2080 | 800  |
| S88 | UG08 | 2960 | 2240 | 2880 | 2080 | 2400 | 2640 | 2320 | 2560 | 2480 | 2560 | 2320 | 2320 | 2080 | 2240 | 960  |
| S89 | UG09 | 2640 | 1600 | 2800 | 2320 | 2480 | 2400 | 2560 | 2640 | 2400 | 2320 | 2560 | 2400 | 2320 | 2480 | 1120 |
| S90 | UG10 | 2800 | 2400 | 2720 | 2480 | 2560 | 2320 | 2720 | 2800 | 2480 | 2640 | 2800 | 2560 | 2240 | 2880 | 720  |

## Table 2.3: Distances (km) from the Collection Centres (j) to the Landfills (k).

|     |                     | K        | L1           | L2        | L3                 |
|-----|---------------------|----------|--------------|-----------|--------------------|
|     |                     |          | Umuhu Alaoji | Okpuala   |                    |
| J   | Collection Centres  | Notation | (Ob07)       | Aro(Os06) | Ngwaiyiekwe (Ug10) |
| C01 | Osusu               | An05     | 13           | 20        | 22                 |
| C02 | Uratta              | An10     | 10           | 16        | 14                 |
| C03 | Btc                 | An16     | 15           | 13        | 23                 |
| C04 | Asa Okpulor         | An25     | 9            | 11        | 16                 |
| C05 | Eziukwu Asa Okpuaga | As03     | 18           | 23        | 16                 |
| C06 | Enyimba-Abaukwu     | As07     | 13           | 17        | 10                 |
| C07 | Igwebuike Nnentu    | As15     | 17           | 20        | 19                 |
| C08 | Ehi Road            | As21     | 20           | 16        | 14                 |
| C09 | Abayi               | Ob01     | 8            | 23        | 27                 |
| C10 | Umuagba             | Ob05     | 5            | 27        | 24                 |
| C11 | Ovom                | Ob13     | 14           | 20        | 16                 |
| C12 | Abayi Ariaria       | Os02     | 19           | 8         | 11                 |
| C13 | Umuojima Ogbu       | Os03     | 14           | 7         | 14                 |
| C14 | Umuaba              | 0s12     | 17           | 12        | 17                 |
| C15 | AKAMU NGWA          | UG05     | 32           | 18        | 6                  |

## Table 2.4: Transportation Cost Matrix from Collection Centres (j) to Landfills (k)

|     |                     | К        | L1           | L2          | L3                 |
|-----|---------------------|----------|--------------|-------------|--------------------|
|     |                     |          | Umuhu Alaoji | Okpuala Aro |                    |
| J   | Collection Centres  | Notation | (Ob07)       | (Os06)      | Ngwaiyiekwe (Ug10) |
| C01 | Osusu               | An05     | 1040         | 1600        | 1760               |
| C02 | Uratta              | An10     | 800          | 1280        | 1120               |
| C03 | Btc                 | An16     | 1200         | 1040        | 1840               |
| C04 | Asa Okpulor         | An25     | 720          | 880         | 1280               |
| C05 | Eziukwu Asa Okpuaga | As03     | 1440         | 1840        | 1280               |

| C06 | Enyimba-Abaukwu  | As07 | 1040 | 1360 | 800  |
|-----|------------------|------|------|------|------|
| C07 | Igwebuike Nnentu | As15 | 1360 | 1600 | 1520 |
| C08 | Ehi Road         | As21 | 1600 | 1280 | 1120 |
| C09 | Abayi            | Ob01 | 640  | 1840 | 2160 |
| C10 | Umuagba          | Ob05 | 400  | 2160 | 1920 |
| C11 | Ovom             | Ob13 | 1120 | 1600 | 1280 |
| C12 | Abayi Ariaria    | Os02 | 1520 | 640  | 880  |
| C13 | Umuojima Ogbu    | Os03 | 1120 | 560  | 1120 |
| C14 | Umuaba           | 0s12 | 1360 | 960  | 1360 |
| C15 | Akamu Ngwa       | Ug05 | 2560 | 1440 | 480  |

#### III. RESULTS AND ANALYSIS

The developed model was solved using MATLAB 2015a version. MATLAB (matrix laboratory) is a fourth-generation high-level programming language and interactive environment for numerical computation, visualization and programming. MATLAB is developed by MATHWORKS. It allows matrix manipulations; plotting of functions and data; implementation of algorithms; creation of user interfaces with programs written in other languages, including C, C++, Java and FORTRAN; analyze data; develop algorithms; and create models and applications. It has numerous built-in commands and math functions that help you in mathematical calculations, generating plots, and performing numerical methods. In this section, the results and analysis of the developed model will be presented and discussed based on the following subheadings: Results, Sensitivity Analysis, Effect of Scavenged Fraction and Interpretation of Economic Concept

#### **3.1 Economic Implications**

The system of transporting waste from sources via collection centres to landfills must be beneficial to the investors, the waste generators (assumed as households in this study) and the government. This benefit is best guaranteed at the minimum cost of transportation network. The minima of transportation cost have been established in the foregoing through the procedure of integer programming. The clients are the generators and the revenue from the clients must cover the transportation cost, reasonable returns to the investors and reasonable tax returns to the government, for the investment to be considered viable. The importance of calculating the minimum cost is that the investment can be viable at the minimum cost with least charges on the generators.

Suppose a percentage  $p_1$  of the minimum cost is supposed to be included as gross profit to the investor. The gross profit becomes

$$I_g = \frac{p_1}{100} C_{min} \tag{3.1}$$

where  $C_{min}$  is the minimum cost from integer programming. Thus the cost to be charged by the investors becomes

$$C_{ch} = I_g + C_{min} = \left(\frac{p_1}{100} + 1\right) C_{min}$$
(3.2)

Suppose a percentage  $p_2$  of the gross gain is to be paid as tax to the government, thus the total cost reads  $C_{total} = \frac{p_1}{100} \frac{p_2}{100} C_{min} + \left(\frac{p_1}{100} + 1\right) C_{min} = \left(\frac{p_1 p_2}{10000} + \frac{p_1}{100} + 1\right) C_{min}$ (3.3)
The profit to the investor becomes

$$G_i = C_{total} - C_{min} = \left(\frac{p_1 p_2}{10000} + \frac{p_1}{100}\right) C_{min}$$

The charge on each of the N households generating the waste becomes

$$P = \left(\frac{p_1 p_2}{10000} + \frac{p_1}{100} + 1\right) \frac{c_{min}}{N}$$
(3.4)

The developed model was solved using MATLAB 2015a version. MATLAB (matrix laboratory) is a fourthgeneration high-level programming language and interactive environment for numerical computation, visualization and programming. MATLAB is developed by MathWorks. It allows matrix manipulations; plotting of functions and data; implementation of algorithms; creation of user interfaces with programs written in other languages, including C, C++, Java and FORTRAN; analyze data; develop algorithms; and create models and applications. It has numerous built-in commands and math functions that help you in mathematical calculations, generating plots, and performing numerical methods

#### 3.2 Sensitivity Analysis

#### **3.2.1Effect of Capacity of Collection Centre**

It was seen earlier that cost reduced monotonically with rise in capacity of the collection centre below C=322. The behavior at higher capacities is presented in Figure 3.1. It is seen that beyond C=322 there is a

pattern of rise and fall in zigzag form, though on average, it can be concluded that minimal cost falls with rise in capacity of the collection centre.

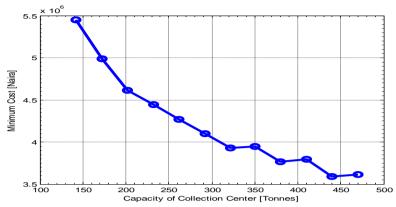



Figure 3.1: A Line Graph Plot of Minimal Costs against Capacities beyond Largest Practical Capacity of 350 tons

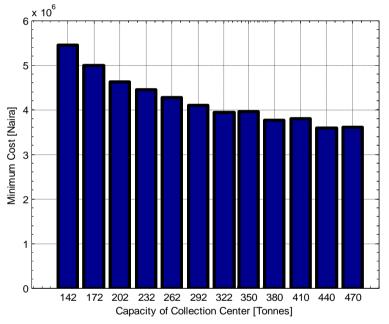



Figure 3.2: A bar Chat Plot of Minimal Costs against Capacities beyond Largest Practical Capacity of 350 tons

#### 3.2.2 Effect of Hazard Cost

The other question to be addressed is the effect and sensitivity of minimal cost to change in cost of hazard. The parameters of the transportation network are same as in section 3.2.1, except that hazard cost of 1 ton of waste at collection is changed to \$336.4875. The system is re-analyzed as follows; When C=142, the minimum cost is \$5,594,700 and all the collection centres are open. When C=172, the minimum cost is \$5,138,000 and the two closed collection centres for minimum cost are the Eziukwu Asa Okpuaga (AS03) and Ovom (OB13). When the collection centres are designed to have capacities of C=202, the minimum cost becomes \$4,766,100 and the four closed collection centres are the Osusu (AN05), Eziukwu Asa Okpuaga (AS03), Igwebuike-Nnentu (AS15) and Ovom (OB13). When the collection centres are the osusu (AN05), Eziukwu Asa Okpuaga (AS03), Igwebuike-Nnentu (AS15) and Ovom (OB13). When the collection centres for minimum cost are the Osusu (AN05), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21) and Ovom (OB13). When the collection centres are designed to have capacities of C=262, the minimum cost becomes \$4,430,300 and the six closed collection centres for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21) and Ovom (OB13). When the collection centres for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21) and Ovom (OB13). When the collection centres for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21) and Ovom (OB13). When the collection centres for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21) and Ovom (OB13). When the collection centres for minimum cost becomes \$4,259,300 and the seven closed collection centres for minimum cost are the Osusu (AN05), BTC (AN16), Exiukwu Asa Okpuaga (AS05), Uratta (AN10), BTC (AN16),

Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21), Ovom (OB13) and Umuaba (OS12). When the collection centres are designed to have capacities of C=322, the minimum cost becomes  $\aleph4,082,800$  and the eight closed collection centres for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21), Ovom (OB13), Umuaba (OS12) and Igwebuike-Nnentu (AS15). When the collection centres are designed to have the maximum capacities of C=350, the minimum cost becomes  $\aleph4,114,900$  and the eight closed collection centres for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21), Ovom (OB13), Umuaba (OS12) and Igwebuike-Nnentu (AS15).

It is seen that the number and permutation of collection centres to be opened for minimal cost transportation network is independent of the hazard cost. Also the quantities of  $x_{ij}$  and  $y_{jk}$  at minimal cost is not affected by hazard cost. Only the minimal transportation cost is affected by cost of hazard and the results confirm the expectation that rise in hazard cost will cause a rise in minimal transportation cost. To further buttress this point, h=N540 is also considered and the results are presented in Table 3.1 and plotted as minimal costs against capacities in Figure 3.3. It is seen that cost reduced monotonically with rise in capacity of the collection centre even at higher hazard costs. The downward zigzag behavior beyond C=322 is also not affected by rise in h.

 Table3.1: Effect of Collection Centre Capacity, C and Hazard Cost, h on Minimal Transportation Cost

| С                        | 142        | 172       | 202       | 232       | 262       | 292       | 322       | 350       |
|--------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Cost when h =<br>№268.65 | 5,450, 200 | 4,986,400 | 4,615,300 | 4,442,300 | 4,270,300 | 4,100,800 | 3,929,900 | 3,948,700 |
| Cost when $h = 336.49$   | 5,594,700  | 5,138,000 | 4,766,100 | 4,599,700 | 4,430,300 | 4,259,300 | 4,082,800 | 4,114,900 |
| Cost when h = 540        | 6,028,200  | 5,593,100 | 5,218,300 | 5,071,900 | 4,910,100 | 4,734,700 | 4,541,600 | 4,613,500 |




Figure 3.3: A Line Graph Plot of Minimal Costs against Collection Centre Capacities for Different Values of Hazard Cost to Show that Rise in Hazard Cost *h* Causes Rise in Cost

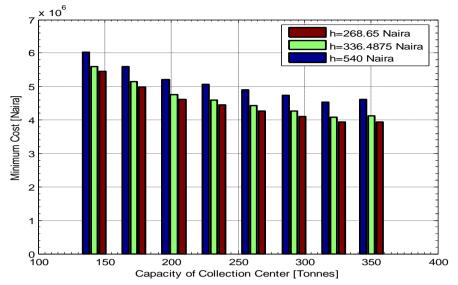



Figure 3.4: A Bar Chart Plot of Minimal Costs against Capacities for Different Values of Hazard Cost to Show that Rise in *h* Causes Rise in Cost.

## 3.2.3 Effect of Scavenged Fraction

The parameters of the transportation network are; number of collection centres 15, number of sources 90, number of landfills centers 3, fixed cost of collection centre \$112,500.00 hazard cost of 1ton of waste at collection centre \$268.65, scavenged fraction is varied from 0.119 to 0.6, total waste generated 2124 tons and number of collection centres to be stationed is 15. It is seen that the number and permutation of collection centres to be opened for minimal cost transportation network is independent of the scavenged fraction. Albeit, the quantities moved ( $x_{ij}$  and  $y_{jk}$ ) at optimal and the minimal transportation cost is affected by scavenged fraction. These results confirm the expectation that rise in scavenged fraction will cause a fall in minimal transportation cost and the quantities moved to the landfills. The results are presented in Table 3.2 and plotted as minimal costs against scavenged fraction in Figure 3.5. It is seen that cost reduced monotonically with rise in scavenged fraction.

In order to illustrate how the quantities moved ( $x_{ij}$  and  $y_{jk}$ ) at optimal is affected by scavenged fraction, the quantities moved from the Quantities moved from collection centreAsa Okpulor (AN25) to Umuhu Alaoji (landfill 1) are plotted as a function of scavenged fraction in Figure 3.6. Complete data on movement of quantities from collection centers to landfills is summarized in Table 3.2.

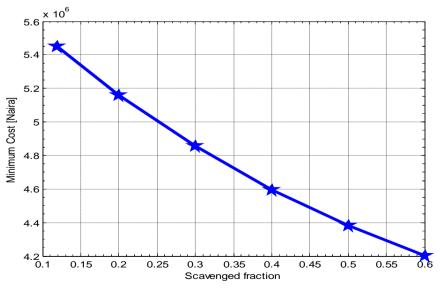
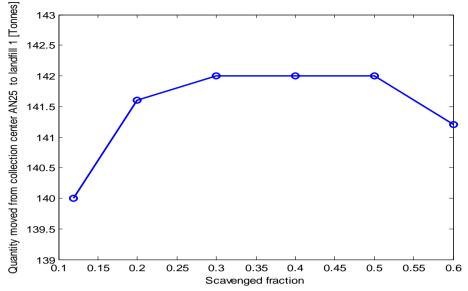
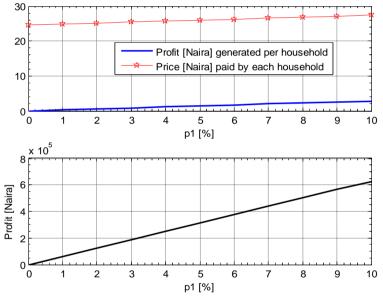
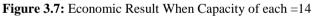
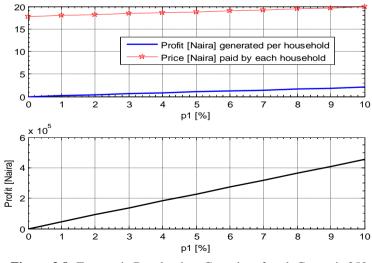


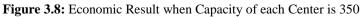

Figure 3.5: Minimum Transportation Cost versus Scavenged Fraction





Figure 3.6: Quantity Moved From Collection Centre Asa Okpulor (AN25) to Umuhu Alaoji (Landfill 1)


| ic 5.2. itc.          | suits for Different | values of Sca | vengeu Flactic | on when $C=142$ a | 110 II - 200.03 |             |
|-----------------------|---------------------|---------------|----------------|-------------------|-----------------|-------------|
| F                     | 0.119               | 0.2           | 0.3            | 0.4               | 0.5             | 0.6         |
| Cost                  | 5, 450, 200         | 5, 158, 500   | 4, 855, 100    | 4, 594, 700       | 4, 382, 800     | 4, 202, 800 |
| Q1                    | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| $Q_2$                 | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q3                    | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q4                    | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q5                    | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q <sub>6</sub>        | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| <b>Q</b> <sub>7</sub> | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| $Q_8$                 | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q9                    | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q <sub>10</sub>       | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q11                   | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q <sub>12</sub>       | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q <sub>13</sub>       | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q <sub>14</sub>       | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| Q <sub>15</sub>       | 1.0000              | 1.0000        | 1.0000         | 1.0000            | 1.0000          | 1.0000      |
| C1-L1                 | 142.0000            | 140.0000      | 140.0000       | 0                 | 0               | 0           |
| C1-L2                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C1-L3                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C2-L1                 | 142.0000            | 142.0000      | 142.0000       | 142.00000         | 142.0000        | 0           |
| C2-L2                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C2-L3                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C3-L1                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C3-L2                 | 142.0000            | 142.0000      | 71.0000        | 0                 | 0               | 0           |
| C3-L3                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C4-L1                 | 140.0000            | 141.6000      | 142.0000       | 142.0000          | 142.0000        | 141.2000    |
| C4-L2                 | 2.0000              | 0.4000        | 0              | 0                 | 0               | 0           |
| C4-L3                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C5-L1                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C5-L2                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C5-L3                 | 28.7680             | 0             | 0              | 0                 | 0               | 0           |
| C6-L1                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C6-L2                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C6-L3                 | 142.0000            | 142.0000      | 142.00000      | 142.0000          | 70.0000         | 0           |
| C7-L1                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C7-L2                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C7-L3                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C8-L1                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C8-L2                 | 0                   | 0             | 0              | 0                 | 0               | 0           |
| C8-L3                 | 142.0000            | 142.0000      | 0              | 0                 | 0               | 0           |
| C9-L1                 | 142.0000            | 142.0000      | 142.0000       | 142.0000          | 142.0000        | 142.0000    |


 Table 3.2: Results for Different Values of Scavenged Fraction when C=142 and h=268.65


| Mathematical Model | And The   | Fconomic | Analysis  | of Solid | Waste | Disposal | In Aha | Metropolis |
|--------------------|-----------|----------|-----------|----------|-------|----------|--------|------------|
| mainematical model | лпи тпе і | Leonomie | лпигуыз с | ij sona  | wasie | Disposai | т пли  | menopous   |

| G0 1 0 | â        | 0        | 0        | <u>^</u> | 0        | 0        |
|--------|----------|----------|----------|----------|----------|----------|
| C9-L2  | 0        | 0        | 0        | 0        | 0        | 0        |
| C9-L3  | 0        | 0        | 0        | 0        | 0        | 0        |
| C10-L1 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 |
| C10-L2 | 0        | 0        | 0        | 0        | 0        | 0        |
| C10-L3 | 0        | 0        | 0        | 0        | 0        | 0        |
| C11-L1 | 0        | 0        | 0        | 0        | 0        | 0        |
| C11-L2 | 0        | 0        | 0        | 0        | 0        | 0        |
| C11-L3 | 142.0000 | 0        | 0        | 0        | 0        | 0        |
| C12-L1 | 0        | 0        | 0        | 0        | 0        | 0        |
| C12-L2 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 |
| C12-L3 | 0        | 0        | 0        | 0        | 0        | 0        |
| C13-L1 | 0        | 0        | 0        | 0        | 0        | 0        |
| C13-L2 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 |
| C13-L3 | 0        | 0        | 0        | 0        | 0        | 0        |
| C14-L1 | 0        | 0        | 0        | 0        | 0        | 0        |
| C14-L2 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 0        | 0        |
| C14-L3 | 0        | 0        | 0        | 0        | 0        | 0        |
| C15-L1 | 0        | 0        | 0        | 0        | 0        | 0        |
| C15-L2 | 0        | 0        | 0        | 0        | 0        | 0        |
| C15-L3 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 | 142.0000 |









## IV. SUMMARY, CONCLUSION AND RECOMMENDATION

In this work, we have been able to perform the economic analysis of the Municipal Solid Waste disposal in Aba metropolis of Abia State of Nigeria. The data collected were analyzed using Linear Programming toolbox of MATLAB 2015a software for Windows. But the solid waste management was modeled in Kalu, et al (2017) and there was need to conduct the economic analysis, hence, this work.

#### 4.2 Conclusion

If  $P_1$  is a percentage of the gross profit and  $P_2$  is gain paid as tax to the Government, it is seen that even if  $P_1$  can be as high as 10% that the daily cost on the households will still be less than  $\aleph$ 20. The daily profit generated will be enormous at \$450000. When p<sub>1</sub> is as low as 3.2%, the daily profit will still be lucrative at ₦150000 and each household would need to make daily pay that is slightly less than ₦18.5 per day. It is seen that the best way to minimized the burden of payment on the customer while guaranteeing reasonable daily profit to the investor and tax return to the government is to increase the capacity of the collection centres and optimal place to locate them. When the effect of the capacity of the collection center was carried out it was observed that minimal cost falls with rise in capacity of the collection centre. It is seen that the number and permutation of collection centres to be opened for minimal cost transportation network is independent of the scavenged fraction, but the quantities moved  $x_{ii}$  and  $y_{ik}$  at optimal and the minimal transportation cost is affected by scavenged fraction. These results confirm the expectation that rise in scavenged fraction will cause a fall in minimal transportation cost and the quantities moved to the landfills, see Figure 3.6. The analysis further reveals that when the collection centers are designed to have the maximum capacities of C=350 with other things being equal, the minimum cost becomes \$3,948,700.00 and 7 out of the 15 collection centres are open and thus in use. The eight closed collection centers for minimum cost are the Osusu (AN05), Uratta (AN10), BTC (AN16), Eziukwu Asa Okpuaga (AS03), Ehi Road (AS21), Ovom (OB13), Umuaba (OS12) and Igwebuike-Nnentu (AS15). The economic results becomes as shown in Figure 3.8.

Effect of hazard cost was analyzed and it was found that only the minimum transportation cost is affected by cost of hazard and the results confirm the expectation that rise in hazard cost will cause a rise in minimal transportation cost.

#### 4.3Recommendations

In order to ensure the adoption and practice of the MSWMS model in Aba, there is the need to recognize the contribution of the private informal sectors such as scavengers and itinerant waste buyers in urban solid waste management. The private informal sector needs to be organized into associations and groups so that programs can be designed to build their capacities and also assist them with protective equipment to efficiently participate in the solid waste management process. Through the formation of co-operative societies or micro-enterprises, it is often possible to considerably increase the job stability and earnings of such informal sector workers and to enhance the effectiveness of their contribution to waste management. In order to improve solid waste management in Aba, the municipal authority and private companies need to formulate strategies and implement technological innovations necessary for effecting improved separation at source, resource recovery, recycling and disposal of solid waste in Aba. Some of the known technologies observed in Indian cities such as incineration, conversion to bio-gas, refuse derived fuel and composting can as well be adopted and practiced in Aba.

#### REFERENCES

- Abila, B. and kantola, J. (2013). Municipal Solid Waste Management Problems in Nigeria: Evolving Knowledge Management Solutions; World Academy of Science, Engineering and Technology, 78:313-318.
- [2]. Abumere, S. (1983) City Surface Waste in Nigeria Cities; Environmental International; 9(1): 391-396.
- [3]. Adedibu, A.A. (1993). Development Control and Environment Protection: a case of Ilorin. A paper presented at the 20<sup>th</sup> Annual conference of the NITP Kano, Nigeria.
- [4]. Afon, A.O. (2003). Issues in Urban Residential Area Solid Waste Management Sustainability: Challenges of Environmental Sustainability in a Democratic Government; Proceedings of 11<sup>th</sup> National Conference of the Environment and Behaviour Association of Nigeria held in Akure, Nigeria.
- [5]. Badran, M.F. and El-Haggar S.M. (2005), "Optimization of Municipal Solid Waste Management System in Port Said-Egypt"; Water Development, 26:534-545.
- [6]. Chang, Y.H. and Chang, N.B. (1998) Optimization Analysis for the Development of short term Solid Waste Management Strategies using preserting process prior to Incinerators; Resources, Conservation and Recycling 24, 7-32
- [7]. Costi, P., Minciardi, R., Robba, M., Rovatti, M. and Sacile, R. (2004) An Environmentally Sustainable Decision Model for Urban Solid Waste Management; Waste management 24, 277-295
- [8]. Daskalopoulos, E., Badr, O. and Probert, S.D (1998) An Integrated Approach to Solid Waste Management; Resources; Conservation and Recycling 24; 33-50.
- [9]. Halidi, A.L. (2011) Optimization of Municipal Solid Waste Management System, An M.Sc. Dissertation, University of Dar es Salaam.

- [10]. Hasit, Y. and Warner, B.D. (1981) Regional Solid Waste Planning with WRAP, Journal of Environmental Engineering Division, ASCE, Vol. 107, No EE3, 511- 525.
- [11]. Idowu, O., Omirin, M. and Osagie, J. (2011) Outsourcing for Sustainable Waste Disposal in Lagos Metropolis: A Case Study of Agege Local Government, Lagos; Journal of Sustainable Development, 4(6) 116 – 131.
- [12]. Kadafa, A.Y., Latifa, A., Abdullahi, H. S and W.A. Suleiman (2003) Comparative Assessment of the Municipal Solid Waste Services, Nature and Science, 11(6) 154-164
- [13]. Kalu, E. O.; Inyama, S. C and Nwobi, F. N (2017) Mathematical Model of Municipal Solid Waste Management System in Aba Metropolis of Abia State Nigeria; Journal of Research in Applied Mathematics (Quest Journals), Vol. 3, Issue 7, pp. 38-51, ISSN (Online): 2394-0743ISSN (Print):2394-0735

Kalu, Ezekiel Okore. "Mathematical Model And The Economic Analysis of Solid Waste Disposal In Aba Metropolis." Quest Journals Journal of Research in Applied Mathematics , vol. 03, no. 07, 2017, pp. 52–64.

\_\_\_\_\_

\_\_\_\_\_