Quest Journals Journal of Research in Applied Mathematics Volume 3 ~ Issue 8 (2017) pp: 29-34 ISSN(Online) : 2394-0743 ISSN (Print):2394-0735 www.questjournals.org





# New Double Entire Difference Sequence Spaces Generated by Double Musielak-Orlicz Function

<sup>\*1</sup>Ado Balili,<sup>2</sup>Ahmadu Kiltho

Department of Mathematics and Statistics, University of Maiduguri, Borno State, Nigeria Corresponding Author: <sup>\*1</sup>Ado Balili

**R**eceived 20 October, 2017; **A**ccepted 05 December, 2017 © The author(s) 2017. **P**ublished with open access at **www.questjournals.org** 

**ABSTRACT:** In this paper we introduce some double entire difference sequence spaces defined by double Musielak-Orlicz function  $\mathcal{M} = (M_{kl})$ . We also make an effort to study some topological properties and a few inclusion relations between these spaces.

*Keywords:* Double sequence space, Double entire difference sequence space, Musielak-Orlicz function. *Mathematical Subject Classification:* 40A05, 40C05, 40D25.

### I. INTRODUCTION

The initial works on double sequence is found in Bromwich [1]. Later on, it was studied by Hardy [2], Moricz [3], Moricz and Rhoades[4], Tripathy ([6] [5]), Basarir and Sonalcan[7] and many others. Hardy [2] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser[8] in her Ph.D thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [9] have recently studied the statistical convergence and Cauchy convergence for double sequences and given the relation between statistical convergent and strongly cesaro summable double sequences, Mursaleen [10] and Mursaleen and Edely [11] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduce M-Core for double sequences and determined those four dimensional matrices transforming every bounded sequence  $x = (x_{mn})$  into one whose core is a subset of the M-Core of x. More recently, Altay and Basar [12] have defined the spaces BS, BS(t),  $CS_p$ ,  $CS_{bp}$ ,  $CS_r$  and BV of double sequence consisting of all double series whose sequence of partial sums are in the space  $\mathcal{M}_u, \mathcal{M}_u(t), C_p, C_{bp}, C_r$  and  $\mathcal{L}_u$  respectively and also examined some properties of those sequence spaces as well as the  $\alpha$ -duals of these spaces BS, BV,  $CS_{bp}$  and the  $\beta(v)$  – duals of the spaces  $CS_{bp}$  and  $CS_r$  of double series. Now, recently Basar and Sever [13] have introduced the Banach space  $\mathcal{L}_q$  of double sequences corresponding to the well known  $\ell_q$  of single sequences and determined some properties of the  $\mathcal{L}_{q}$ . By the convergence of a double sequence we mean the convergence in Pringsheim sense i.e a double sequence  $x = (x_{kl})$  has Pringsheim limit L (denoted by P-limit x= L) provided that given  $\epsilon > 0$  there exists  $n \in \mathbb{N}$ , such that  $|x_{kl} - L| < \epsilon$ , whenever k, l > n (see [15]). We shall write more briefly as P-convergent. The double sequence  $x = (x_{kl})$  is bounded if there exists a positive number M such that  $|x_{kl}| < M$  for all k, l.

Orlicz function is defined as the function  $M : [0, \infty) \rightarrow [0, \infty)$ , which is continuous, non-decreasing and convex such that M(0) = 0, M(x) > 0 for x > 0 and  $M(x) \rightarrow \infty$  as  $x \rightarrow \infty$ .

Lindenstrauss and Tzafriri [14] used the concept of Orlicz functions to define the space

$$\ell_{\mathrm{M}} = \left\{ \mathbf{x} \in \omega : \sum_{k=1}^{\infty} \mathrm{M}\left(\frac{|\mathbf{x}_{k}|}{\rho}\right) < \infty \right\}.$$
(1.1)

called Orlicz sequence space, and proved that every Orlicz sequence space contains a subspace isomorphic to  $\ell_p (1 \le p < \infty)$ . The sequence space  $\ell_M$  defined in (1.1) is a Banach space with the norm

$$\|\mathbf{x}\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\mathbf{x}_k|}{\rho}\right) \le 1\right\}$$
(1.2)

It is shown in [14] that every Orlicz sequence space  $l_M$  contains a subspace isomorphic to  $\ell_p (p \ge 1)$ 

An Orlicz function is said to satisfy the  $\Delta_2$  – condition for all values of u if there exists a constant k > 0 such that  $M(2u) \le kM(u)$ ,  $u \ge 0$ . The  $\Delta_2$  – condition is equivalent to  $M(nu) \le knM(u)$ , for all values of u and n > 1

A sequence space  $\mathcal{M} = (M_k)$  of Orlicz functions is called a Musielak –Orlicz function. (see [19], [20]) A sequence  $\aleph = (N_k)$  is defined by

$$N_k(v) = \sup\{|v|. u - M_k(u): u \ge 0\} k = 1, 2, ...$$

Is called the complimentary function of a Musielak-Orlicz function M. for a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space  $t_M$  and its subspace  $h_M$  are defined as follow

$$\begin{aligned} &t_{\mathcal{M}} = \{ x \in \omega : I_{M}(cx) < \infty, \infty \text{ for all } c > 0 \} \\ &h_{\mathcal{M}} = \{ x \in \omega : I_{M}(cx) < \infty, \text{ for all } c > 0 \} \end{aligned}$$

Where  $I_M$  is a convex modular defined by

$$I_{M} = \sum\nolimits_{k=1}^{\infty} M_{k}(x_{k}) \text{ and } x = (x_{k}) \in t_{\mathcal{M}}$$

Consider  $t_{\mathcal{M}}$  equipped with Luxemburg norm

$$\|x\| = \inf \left\{ k > 0 : I_M\left(\frac{x}{k}\right) \le 1 \right\}$$

Or equipped with the Orlicz norm

$$\|\mathbf{x}\| = \inf \left\{ \frac{1}{k} (1 + I_M(kx)) : k > 0 \right\}.$$

The notion of difference sequence spaces was introduced by Kizmaz [16], who studied the difference sequence spaces  $l_{\infty}(\Delta)$ ,  $c(\Delta)$  and  $c_0(\Delta)$ . This notion was further generalized by Et and Colak [17] defined the sequence spaces  $l_{\infty}(\Delta^m)$ ,  $c(\Delta^m)$  and  $c_0(\Delta^m)$ . Let m, n a non negative integers we have the following spaces:  $Z(\Delta_n^m) = \{x = (x_k) \in \omega: (\Delta_n^m x_k) \in Z\}$ 

For  $Z = c, c_0$ , and  $l_{\infty}$  where

$$\Delta_n^m \mathbf{x} = (\Delta_n^m \mathbf{x}_k) = (\Delta_n^{m-1} \mathbf{x}_k - \Delta_n^{m-1} \mathbf{x}_{k+1}), \text{ and } \Delta_n^0 \mathbf{x}_k = \mathbf{x}_k$$
  
For all  $k \in \mathbb{N}$ , which is equivalent to binomial representation  
$$\Delta_n^m \mathbf{x}_k = \sum_{i=1}^m (-1)^i \binom{m}{i} \mathbf{x}_{+ni}$$

It was proved that the generalized sequence space  $Z(\Delta_n^m)$ , where  $Z = \ell_{\infty}$ , c or  $c_0$ , is a Banach space with norm defined by

$$\|\mathbf{x}\|_{\Delta_n^m} = \sum_{i=1}^m |\mathbf{x}_i| + \sup |\Delta_n^m \mathbf{x}_k|.$$

The following inequality will be used throughout the paper. Let  $p = (p_{kl})$  be a double sequence of positive real numbers with  $0 < p_{kl} \le \sup_{kl} p_{kl} = H$  and  $D = \max[1, 2^{H-1}]$ . Then the factorable sequences  $\{a_{kl}\}$  and  $\{b_{kl}\}$  in the complex plane, we have (1.3)

 $|a_{kl} + b_{kl}|^{p_{kl}} \le K(|a_{kl}|^{p_{kl}} + |b_{kl}|^{p_{kl}})$ 

#### **II. BASIC DEFINITIONS**

Definition 2.1 A double sequence space E is said to be normal (solid) if

 $(y_{kl}) \in E$  whenever  $|y_{kl}| \leq |x_{kl}|$  for all  $k, l \in \mathbb{N}$ , and  $(x_{kl}) \in E$ .

Definition 2.2 A double sequence space is said to be symmetric if  $u = (u_{kl}) \in E$  and ||u|| = ||x|| whenever x = $(x_{kl}) \in E$  and  $u \in S(x)$ .

Definition 2.3 A BK-Space is a Banach sequence space E in which the coordinate maps are continuous.

**Definition 2.4** A sequence  $x = (x_{kl})$  is said to be double analytic if  $\sup_{kl} |x_{kl}|^{1/k+l} < \infty$ . The vector space of all double analytic sequences will be denoted by  $\Lambda^2$ .

**Definition 2.5** A sequence  $x = (x_{kl})$  is said to be double entire if  $P - \lim_{kl} |x_{kl}|^{1/k+1} = 0$ , for all  $k, l \in \mathbb{N}$ . The vector space of all double entire sequences will be denoted by  $\Gamma^2$ .

**Definition 2.6** Let  $\mathcal{M} = (M_{kl})$  be a double sequence of Orlicz functions, then  $\mathcal{M}$  is called double Musielak-Orlicz function.

**Definition 2.7** Let  $\mathcal{M} = (M_{kl})$  be a double sequence of Orlicz function, X be locally convex Hausdorff topological linear space whose topology is determined by the set of continuous seminorm q. The symbol  $\Lambda^2(X)$  and  $\Gamma^2(X)$  denote the space of all analytic and entire sequences respectively defined over X. We define a new double sequence space:

$$\begin{split} \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m},p,q,s) &= \left\{ x = (x_{kl}) \\ &\in \Gamma^{2}(X) \colon \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/_{k+l}}}{\rho} \right) \right]^{p_{kl}} \to 0, \\ &\qquad m,n \to \infty, \text{uniformly in } m,n > 0, s \ge 0, \text{ for some } \rho > 0 \right\} \end{split}$$

1

This space is the extension to double sequence of the space defined and studied by Siddiqui and Balili [18].

#### **III. MAIN RESULTS**

We shall prove the following theorems in this paper.

**Theorem 3.1** Let  $\mathcal{M} = (M_{kl})$  be a double Musielak-Orlicz function and  $p = (p_{kl})$  be a double sequence of strictly positive real numbers. Then the space  $\Gamma^2_{\mathcal{M}}(\Delta^m_v, p, q, s)$  is linear space over the field  $\mathbb{C}$  of complex numbers.

**Proof.** Let  $x = (x_{kl}), y = (y_{kl}) \in \Gamma^2_{\mathcal{M}}(\Delta_v^m, p, q, s)$  and  $\alpha, \beta \in \mathbb{C}$ . Then there exist positive numbers  $\rho_1, \rho_2$  such that

$$\frac{1}{\mathrm{mn}} \sum_{k,l=1}^{\mathrm{m,n}} (kl)^{-s} \left[ \mathsf{M}_{kl} \left( \frac{q |\Delta_V^{\mathrm{m}} \mathbf{x}_{kl}|^{1/_{k+l}}}{\rho_1} \right) \right]^{p_{kl}} \to 0, \text{ as } \mathrm{m, n} \to \infty$$
And
$$(3.1)$$

$$\frac{1}{\mathrm{mn}} \sum_{k,l=1,1}^{\mathrm{m,n}} (\mathrm{kl})^{-\mathrm{s}} \left[ \mathrm{M}_{\mathrm{kl}} \left( \frac{\mathrm{q} |\Delta_{\mathrm{v}}^{\mathrm{m}} \mathbf{y}_{\mathrm{k}l}|^{1/_{\mathrm{k}+l}}}{\rho_2} \right) \right]^{p_{\mathrm{kl}}} \to 0, \mathrm{as} \mathrm{m, n} \to \infty$$
(3.2)
In order to prove the result, we need to find  $\rho_2$  such that

In order to prove the result, we need to find  $\rho_3$  such that

$$\frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q \left| \Delta_v^m \left( \alpha x_{kl} + \beta y_{kl} \right) \right|^{1/k+l}}{\rho_3} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty$$

$$(3.3)$$

Let  $\rho_3 = \max(2|\alpha|^{1/k+1}\rho_1, 2|\beta|^{1/k+1}\rho_2)$ . Since  $\mathcal{M} = (M_{kl})$  is non decreasing, convex and q is a seminorm, so by using inequality (1.3), we have 1. **\ 1**Pkl

$$\begin{split} &\frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_v^m (\alpha x_{kl} + \beta y_{kl})|^{1/k+l}}{\rho_3} \right) \right]^{r_{kl}} \\ &\leq \frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( q \left\{ |\alpha|^{1/k+l} \frac{|\Delta_v^m x_{kl}|}{\rho_3}^{1/k+l} + |\beta|^{1/k+l} \frac{|\Delta_v^m y_{kl}|^{1/k+l}}{\rho_3} \right\} \right) \right]^{p_{kl}} \\ &\leq \frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( q \left\{ \frac{|\Delta_v^m x_{kl}|}{\rho_1}^{1/k+l} + \frac{|\Delta_v^m y_{kl}|^{1/k+l}}{\rho_2} \right\} \right) \right]^{p_{kl}} \\ &\leq C \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_v^m x_{kl}|}{\rho_1}^{1/k+l} + \frac{|\Delta_v^m y_{kl}|^{1/k+l}}{\rho_2} \right) \right]^{p_{kl}} + C \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_2} \right) \right]^{p_{kl}} \\ &\to 0, \quad m, n \to \infty \end{split}$$

Thus  $\alpha x_{kl} + \beta y_{kl} \in \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$ , showing that it is linear space.

**Theorem 3.2** Let  $\mathcal{M} = (M_{kl})$  be a double Musielak-Orlicz function and  $p = (p_{kl})$  be a double sequence of strictly positive real numbers. Then the space  $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$  is a paranormed space with paranorm defined by

$$g(x) = \inf\left\{\rho_{H}^{p_{kl}} : \sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q|\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho}\right)\right]^{p_{kl}/H} \le 1\right\} uniformly in m, n > 0, \rho > 0.$$

Where  $H = max \oplus 1$ ,  $sup_{kl} p_{kl}$ 

**Proof.** It is clear  $g(x) \ge 0$ , g(x) = g(-x) and  $g(\theta) = 0$ ,  $\theta$  is the zero sequence of X. Let  $x_{kl}, y_{kl} \in$  $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$ . Let  $\rho_1, \rho_2 > 0$  be such that

$$\begin{split} \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho_{1}} \right) \right]^{p_{kl}/H} \le 1 \\ \text{And } \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho_{2}} \right) \right]^{p_{kl}/H} \le 1 \\ \text{Let } \rho = \rho_{1} + \rho_{2}, \text{ then by using minkowski inequality, we have} \\ \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} (x_{kl} + y_{kl})|^{1/k+l}}{\rho} \right) \right]^{p_{kl}/H} \\ \le \left( \frac{\rho_{1}}{\rho_{1} + \rho_{2}} \right) \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}/H} + \left( \frac{\rho_{1}}{\rho_{1} + \rho_{2}} \right) \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho_{2}} \right) \right]^{p_{kl}/H} \\ \le 1 \\ \text{Hence} \end{split}$$

$$\begin{split} g(x+y) &\leq \inf\left\{\left(\rho_{1}+\rho_{2}\right)^{p_{mn}}/_{H}: \sup_{kl \geq 1}(kl)^{-s} \left[M_{kl}\left(\frac{q|\Delta_{v}^{m}(x_{kl}+y_{kl})|^{1}/_{k+l}}{\rho_{1}+\rho_{2}}\right)\right]^{p_{kl}/_{H}} \leq 1 \rho_{1}, \rho_{2} > 0, m, n \in \mathbb{N} \\ &\leq \inf\left\{\left(\rho_{1}\right)^{p_{mn}}/_{H}: \sup_{kl \geq 1}(kl)^{-s} \left[M_{kl}\left(\frac{q|\Delta_{v}^{m}(x_{kl}+y_{kl})|^{1}/_{k+l}}{\rho_{1}}\right)\right]^{p_{kl}/_{H}} \leq 1, \rho_{1} > 0, m, n \in \mathbb{N} \right\} \\ &+ \inf\left\{\left(\rho_{2}\right)^{p_{mn}}/_{H}: \sup_{kl \geq 1}(kl)^{-s} \left[M_{kl}\left(\frac{q|\Delta_{v}^{m}(x_{kl}+y_{kl})|^{1}/_{k+l}}{\rho_{2}}\right)\right]^{p_{kl}/_{H}} \leq 1, \rho_{2} > 0, m, n \in \mathbb{N} \right\} \end{split}$$

Thus we have  $g(x + y) \le g(x) + g(y)$ . Hence g satisfies the triangle inequality. Now

$$g(\lambda x) = \inf\left\{ \left(\rho\right)^{p_{mn}} H : \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\lambda \Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \le 1, \rho > 0, m, n \in \mathbb{N} \right\}$$
$$= \inf\left\{ \left(r|\lambda|\right)^{p_{mn}} H : \sup_{kl \ge 1} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{r} \right) \right]^{p_{kl}} \le 1, r > 0, m, n \in \mathbb{N} \right\}$$

Where  $r = \frac{\rho}{|\lambda|}$ , since  $|\lambda|^{p_{mn}} \leq max[[1, |\lambda|^{sup_{kl}}]$ . Hence  $\Gamma_{\mathcal{M}}^2(\Delta_{\nu}^m, p, q, s)$  is a paranormed space.

**Theorem 3.3** Let  $\mathcal{M}' = (M'_{kl})$  and  $\mathcal{M}'' = (M'_{kl})$  be two double Musielak-Orlicz functions. Then  $\Gamma_{\mathcal{M}'}^{2}(\Delta_{v}^{m}, p, q, s) \cap \Gamma_{\mathcal{M}''}^{2}(\Delta_{v}^{m}, p, q, s) \subseteq \Gamma_{\mathcal{M}'+\mathcal{M}''}^{2}(\Delta_{v}^{m}, p, q, s)$ 

Proof. Let 
$$x \in \Gamma_{\mathcal{M}'}^2(\Delta_v^m, p, q, s) \cap \Gamma_{\mathcal{M}''}^2(\Delta_v^m, p, q, s)$$
. Then there exists  $\rho_1, \rho_2$  such that  

$$\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_1} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty$$
(3.4)

And

$$\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{\nu}^m x_{kl}|^{1/k+l}}{\rho_2} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty$$

$$\text{Let } \rho = \min[n] \left[ \frac{1}{2}, \frac{1}{2} \right]. \text{ Then we have}$$

$$(3.5)$$

$$\sum_{k,l \ge 1,1}^{m,n} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[ (M'_{kl} + M''_{kl}) \left( \frac{q |\Delta_v^m x_{kl}|^{1/_{k+l}}}{\rho} \right) \right]^{p_{kl}}$$

$$\le K \frac{1}{mn} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[ M'_{kl} \left( \frac{q |\Delta_v^m x_{kl}|^{1/_{k+l}}}{\rho_1} \right) \right]^{p_{kl}} + K \frac{1}{mn} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[ M''_{kl} \left( \frac{q |\Delta_v^m x_{kl}|^{1/_{k+l}}}{\rho_2} \right) \right]^{p_{kl}}$$

$$\to 0 \text{ as } m, n \to \infty$$
By (3.4) and (3.5). Then

$$\frac{1}{mn} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[ (M'_{kl} + M''_{kl}) \left( \frac{q |\Delta_{\nu}^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \to 0 \text{ as } m, n \to \infty.$$
  
Therefore

\*Corresponding Author: \*Ado Balili

、

(3.6)

$$x \in \Gamma_{\mathcal{M}'+\mathcal{M}''}^{2}(\Delta_{v}^{m}, p, q, s)$$
  
**Theorem 3.4** Suppose  $\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \leq |x_{kl}|^{1/k+l}$  Then  
 $\Gamma^{2} \subset \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s).$ 

Proof. Let  $x \in \Gamma^2$ . Then we have  $|x_{kl}|^{1/k+l}$ , as  $k, l \to \infty$ But

$$\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/_{k+l}}}{\rho} \right) \right]^{p_{kl}} \le |x_{kl}|^{1/_{k+l}}$$

By the assumption above, it implies that

$$\frac{1}{mn}\sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q|\Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty$$

By (3.6)

Then  $x \in \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$ , and hence

$$\Gamma^2 \subset \Gamma^2_{\mathcal{M}}(\Delta^m_v,p,q,s).$$

Theorem 3.5  $\Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s)$  is solid **Proof.** Let  $|x_{kl}| \leq |y_{kl}|$  and  $(y_{kl}) \in \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s)$ since  $\mathcal{M} = (M_{kl})$  is non decreasing, it implies that  $\frac{1}{mn} \sum_{k,l\geq 1,1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \leq \frac{1}{mn} \sum_{k,l\geq 1,1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} y_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}}$ Since  $y \in \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s)$ . Then  $\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} y_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \rightarrow 0, as m, n \rightarrow \infty$ And  $\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \rightarrow 0, as m, n \rightarrow \infty$ 

Therefore

 $x \in \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$ . Hence the result.

$$\begin{aligned} & \text{Theorem 3.6 (i) Let } 0 < infp_{kl} \le 1. \text{ Then } \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s) \subset \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, q, s). \\ & \text{(ii) Let } 1 \le p_{kl} \le sup_{kl} \, p_{kl} < \infty. \text{ Then } \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, q, s) \subset \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s). \\ & \text{Proof. (i) Let } x \in \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s). \text{ Then} \\ & \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \to 0, as \, m, n \to \infty \end{aligned}$$

$$(3.7)$$
Since  $0 < infp_{kl} \le 1.$ 

$$& \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{\cdot} \le \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[ M_{kl} \left( \frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{e_{kl}} \end{aligned}$$

$$(3.8)$$

From (3.7) and (3.8), it follows that 
$$x \in \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, q, s)$$
.  
Thus  $\Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s) \subset \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{w}, q, s)$ .  
(ii) Let  $p_{kl} \geq 1$  for each k, l and  $\sup_{kl} p_{kl}$  and let  $x \in \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, q, s)$ . Then  
 $\frac{1}{mn}\sum_{k,l=1}^{m,n}(kl)^{-s} \left[ M_{kl} \left( \frac{q|\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \rightarrow 0, as m, n \rightarrow \infty$  (3.9)  
Since  $1 \leq p_{kl} \leq \sup_{kl} p_{kl} < \infty$ , we have  
 $\frac{1}{mn}\sum_{k,l=1}^{m,n}(kl)^{-s} \left[ M_{kl} \left( \frac{q|\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \leq \frac{1}{mn}\sum_{k,l=1}^{m,n}(kl)^{-s} \left[ M_{kl} \left( \frac{q|\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \rightarrow 0, as m, n \rightarrow \infty$   
This implies that  $x \in \Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s)$ . Therefore

$$\Gamma^2_{\mathcal{M}}(\Delta^m_v,q,s)\subset \Gamma^2_{\mathcal{M}}(\Delta^m_v,p,q,s).$$

## **IV. CONCLUSION**

There are several extensions of some concept of single sequence spaces to double sequence spaces by some authors. We also extended the generalized entire difference sequence space

 $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$  to double sequence space  $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$ , which is solid and the intersection of the spaces defined by two double Musielak-Orlicz functions is identical with the space defined by the addition of the two given functions.

#### AKNOWLEDGEMENT

The authors thank the anonymous referees for their valuable suggestions which led to the improvement of the paper.

### REFERENCES

- [1]. T. J. Bromwich, An introduction to the theory of infinite series, Macmillan and Co. Ltd., New York (1965)
- [2]. G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- [3]. F. Moricz, Extension of the space c, and  $c_0$  from single to double sequences, Acta Math. Hungarica. 57 (1991), 129-136.
- [4]. F. Moricz and B.E Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
- [5]. B. C. Tripathy, Statistical convergence of double sequences, Tamkang J. Math., 34 (2003), 231-237.
- [6]. B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in locally convex spaces, Soochow, J. Math., 30 (2004), 431-446.
- [7]. M. Başarir and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21 (1999), 193-200.
  [8]. M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods, Diss. Math. Univ. Tartu, 25, Tartu
- [8]. M. Zenser, investigation of double sequence spaces by soft and nard analytical methods, Diss. Math. Univ. Fartu, 25, Fat Univ. Press, Univ. of Tartu, Faculty of Math. And Comp. Science. Tartu (2001).
- [9]. M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences J. Math. Anal. Appl., 288 (1) (2003),223-231.
- [10]. M. Mursaleen, Almost strongly regular matrices and core theorem for double sequences, J. Math. Anal. Appl., 293 (2), (2004), 523-531.
- [11]. M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2), (2004), 532-540.
- [12]. B. Altay and F. Başar, Some new spaces of double sequences, J. Math., Anal. Appl., 309 (2005), 70-90.
- [13]. F. Başar and Y. Sever, The  $\mathcal{L}_q$  of double sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
- [14]. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Isael J. Math., 10 (1971), 345-355.
- [15]. A. Pringsheim, Zur theory der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
- [16]. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.
- [17]. M. Et and R. Çolak, On generalized difference sequence space, Soochow, J. Math., 21 (4) (1995), 377-386.
- [18]. Z. U. Siddiqui and A. Balili, Generalized difference entire sequence spaces defined by Musielak-Orlicz function, Quest Journal, Journal of Research in Applied Mathematics, 2 (10) (2016), 10-15.
- [19]. L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of science, 1989.
- [20]. J. Musielak, Orlicz spaces and Modular spaces, Lecture notes in Mathematics, 1034 (1983).

\*1Ado Bali. "New Double Entire Difference Sequence Spaces Generated by Double Musielak-Orlicz Function." Quest Journals Journal of Research in Applied Mathematics, vol. 03, no. 08, 2017, pp. 29–34.