Quest Journals Journal of Research in Applied Mathematics Volume 3 ~ Issue 8 (2017) pp: 29-34 ISSN(Online) : 2394-0743 ISSN (Print):2394-0735 www.questjournals.org

New Double Entire Difference Sequence Spaces Generated by Double Musielak-Orlicz Function

^{*1}Ado Balili,²Ahmadu Kiltho

*Department of Mathematics and Statistics, University of Maiduguri, Borno State, Nigeria Corresponding Author: *1Ado Balili*

Received 20 October, 2017; **A**ccepted 05 December, 2017 © The author(s) 2017. **P**ublished with open access at **www.questjournals.org**

ABSTRACT: In this paper we introduce some double entire difference sequence spaces defined by double Musielak-Orlicz function $\mathcal{M} = (M_{\nu})$ *. We also make an effort to study some topological properties and a few inclusion relations between these spaces.*

Keywords: Double sequence space, Double entire difference sequence space, Musielak-Orlicz function. Mathematical Subject Classification: 40A05, 40C05, 40D25.

I. INTRODUCTION

The initial works on double sequence is found in Bromwich [1]. Later on, it was studied by Hardy [2], Moricz [3], Moricz and Rhoades^[4], Tripathy ([6] [5]), Basarir and Sonalcan^[7] and many others. Hardy [2] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser[8] in her Ph.D thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [9] have recently studied the statistical convergence and Cauchy convergence for double sequences and given the relation between statistical convergent and strongly cesaro summable double sequences, Mursaleen [10] and Mursaleen and Edely [11] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduce M-Core for double sequences and determined those four dimensional matrices transforming every bounded sequence $x = (x_{mn})$ into one whose core is a subset of the M-Core of x. More recently, Altay and Basar [12] have defined the spaces BS, $BS(t)$, CS_p , CS_p , CS_r and BV of double sequence consisting of all double series whose sequence of partial sums are in the space \mathcal{M}_u , $\mathcal{M}_u(t)$, C_p , C_p , C_r and \mathcal{L}_u respectively and also examined some properties of those sequence spaces as well as the α -duals of these spaces BS, BV, CS_{bp} and the $\beta(v)$ – duals of the spaces CS_{bp} and CS_r of double series. Now, recently Basar and Sever [13] have introduced the Banach space \mathcal{L}_{q} of double sequences corresponding to the well known ℓ_{q} of single sequences and determined some properties of the \mathcal{L}_{q} . By the convergence of a double sequence we mean the convergence in Pringsheim sense i.e a double sequence $x = (x_{kl})$ has Pringsheim limit L (denoted by P-limit x= L) provided that given $\epsilon > 0$ there exists n ∈ N, such that $|x_{kl} - L| < \epsilon$, whenever k, l > n (see [15]). We shall write more briefly as P-convergent. The double sequence $x = (x_{kl})$ is bounded if there exists a positive number M such that $|x_{kl}| < M$ for all k, l.

Orlicz function is defined as the function M : [0, ∞) \rightarrow [0, ∞), which is continuous, non-decreasing and convex such that M (0) = 0, M (x) > 0 for $x > 0$ and M (x) $\rightarrow \infty$ as $x \rightarrow \infty$.

Lindenstrauss and Tzafriri [14] used the concept of Orlicz functions to define the space

$$
\ell_{\mathbf{M}} = \left\{ \mathbf{x} \in \omega : \sum_{k=1}^{\infty} \mathbf{M} \left(\frac{|\mathbf{x}_k|}{\rho} \right) < \infty \right\}.
$$
\n(1.1)

called Orlicz sequence space, and proved that every Orlicz sequence space contains a subspace isomorphic to $\ell_p(1 \le p < \infty)$. The sequence space ℓ_M defined in (1.1) is a Banach space with the norm

$$
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \le 1 \right\}
$$
 (1.2)

It is shown in [14] that every Orlicz sequence space l_M contains a subspace isomorphic to ℓ_p ($p \ge 1$)

An Orlicz function is said to satisfy the Δ_2 – condition for all values of u if there exists a constant k > 0 such that $M(2u) \leq kM(u)$, $u \geq 0$. The Δ_2 – condtion is equivalent to $M(nu) \leq knM(u)$, for all values of u and n > 1.

A sequence space $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak –Orlicz function. (see [19], [20]) A sequence $\aleph = (N_k)$ is defined by

$$
N_k(v) = \sup\{|v| \cdot u - M_k(u): u \ge 0\} = 1, 2, ...
$$

Is called the complimentary function of a Musielak-Orlicz function M. for a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space t_M and its subspace h_M are defined as follow

$$
t_{\mathcal{M}} = \{x \in \omega: I_M(cx) < \infty, \infty \text{ for all } c > 0\}
$$
\n
$$
h_{\mathcal{M}} = \{x \in \omega: I_M(cx) < \infty, \text{ for all } c > 0\}
$$

Where I_M is a convex modular defined by

$$
I_M = \sum_{k=1}^{\infty} M_k(x_k) \text{ and } x = (x_k) \in t_M
$$

Consider t_M equipped with Luxemburg norm

$$
\|x\|=\inf\Big\{k>0\colon I_M\left(\frac{x}{k}\right)\leq 1\Big\}
$$

Or equipped with the Orlicz norm

$$
||x|| = \inf \left\{ \frac{1}{k} \left(1 + I_M(kx) \right) : k > 0 \right\}.
$$

The notion of difference sequence spaces was introduced by Kizmaz [16], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. This notion was further generalized by Et and Colak [17] defined the sequence spaces $l_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$. Let m, n a non negative integers we have the following spaces: $Z(\Delta_n^m) = \{x = (x_k) \in \omega: (\Delta_n^m x_k) \in Z\}$

For $Z = c$, c_0 , and l_{∞} where

$$
\Delta_n^m x = (\Delta_n^m x_k) = (\Delta_n^{m-1} x_k - \Delta_n^{m-1} x_{k+1}), \text{ and } \Delta_n^0 x_k = x_k
$$

For all $k \in \mathbb{N}$, which is equivalent to binomial representation

$$
\Delta_n^m x_k = \sum_{k=1}^m (-1)^i \binom{m}{i} x_{+ni}
$$

It was proved that the generalized sequence space $Z(\Delta_n^m)$, where $Z = \ell_\infty$, c or c_0 , is a Banach space with norm defined by

$$
\|x\|_{\Delta^m_n}=\Sigma_{i=1}^m |x_i|+sup|\Delta^m_n x_k|.
$$

The following inequality will be used throughout the paper. Let $p = (p_{kl})$ be a double sequence of positive real numbers with $0 < p_{kl} \leq \sup_{kl} p_{kl} = H$ and $D = max[1, 2^{H-1}]$. Then the factorable sequences $\{a_{kl}\}$ and $\{b_{kl}\}$ in the complex plane, we have $|a_{kl} + b_{kl}|^{p_{kl}} \leq K(|a_{kl}|^{p_{kl}} + |b_{kl}|)$ P_{kl} (1.3)

II. BASIC DEFINITIONS

Definition 2.1 A double sequence space E is said to be normal (solid) if

 $(y_{kl}) \in E$ whenever $|y_{kl}| \le |x_{kl}|$ for all $k, l \in \mathbb{N}$, and $(x_{kl}) \in E$.

Definition 2.2 A double sequence space is said to be symmetric if $u = (u_{kl}) \in E$ and $||u|| = ||x||$ whenever $x =$ $(x_{kl}) \in E$ and $u \in S(x)$.

Definition 2.3 A BK-Space is a Banach sequence space E in which the coordinate maps are continuous.

Definition 2.4 A sequence $x = (x_{kl})$ is said to be double analytic if $\sup_{kl} |x_{kl}|^{\frac{1}{k}} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 .

Definition 2.5 A sequence $x = (x_{kl})$ is said to be double entire if $P - \lim_{kl} |x_{kl}|^{1/k + l} = 0$, for all k, l ∈ N. The vector space of all double entire sequences will be denoted by Γ^2 .

Definition 2.6 Let $\mathcal{M} = (M_{kl})$ be a double sequence of Orlicz functions, then \mathcal{M} is called double Musielak-Orlicz function.

Definition 2.7 Let $\mathcal{M} = (M_{kl})$ be a double sequence of Orlicz function, X be locally convex Hausdorff topological linear space whose topology is determined by the set of continuous seminorm q. The symbol Λ^2 (X) and Γ^2 (X) denote the space of all analytic and entire sequences respectively defined over X. We define a new double sequence space: $\sqrt{ }$

$$
\Gamma_{\mathcal{M}}^{2}(\Delta_{v}^{m}, p, q, s) = \left\{ x = (x_{kl}) \right\}
$$

\n
$$
\in \Gamma^{2}(X) : \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_{v}^{m} x_{kl}|^{1/k} + l}{\rho} \right) \right]^{pkl} \to 0,
$$

\n
$$
m, n \to \infty, \text{uniformly in } m, n > 0, s \ge 0, \text{for some } \rho > 0 \right\}
$$

This space is the extension to double sequence of the space defined and studied by Siddiqui and Balili [18].

III. MAIN RESULTS

We shall prove the following theorems in this paper.

Theorem 3.1 Let $M = (M_{kl})$ be a double Musielak-Orlicz function and $p = (p_{kl})$ be a double sequence of strictly positive real numbers. Then the space $\Gamma^2_{\mathcal{M}}(\Delta^m_v, p, q, s)$ is linear space over the field $\mathbb C$ of complex numbers.

Proof. Let $x = (x_{kl})$, $y = (y_{kl}) \in \Gamma^2_{\mathcal{M}}(\Delta^m_v, p, q, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1, ρ_2 such that

$$
\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q | \Delta_v^m x_{kl} |^{1/k} + l}{\rho_1} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty
$$
\n(3.1)

And

$$
\frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m y_{kl}|^{1/\kappa+l}}{\rho_2} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty
$$
\nIn order to prove the result, we need to find Q_2 , such that

In order to prove the result, we need to find ρ_3 such that

$$
\frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m (\alpha x_{kl} + \beta y_{kl})|^{1/k + l}}{\rho_3} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty
$$
\n(3.3)

Let $\rho_3 = \max[\mathbb{Q}|\alpha|^{1/2}k+1\rho_1, 2|\beta|^{1/2}k+1\rho_2]$. Since $\mathcal{M} = (M_{kl})$ is non decreasing, convex and q is a seminorm, so by using inequality (1.3), we have

$$
\frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m (\alpha x_{kl} + \beta y_{kl})|^{1/k} + 1}{\rho_3} \right) \right]^{p_{kl}}
$$
\n
$$
\leq \frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[M_{kl} \left(q \left\{ |\alpha|^{1/k} + \frac{|\Delta_v^m x_{kl}|^{1/k} + 1}{\rho_3} + |\beta|^{1/k} + \frac{|\Delta_v^m y_{kl}|^{1/k} + 1}{\rho_3} \right\} \right) \right]^{p_{kl}}
$$
\n
$$
\leq \frac{1}{mn} \sum_{k,l=1,1}^{m,n} (kl)^{-s} \left[M_{kl} \left(q \left\{ \frac{|\Delta_v^m x_{kl}|^{1/k} + |\Delta_v^m y_{kl}|^{1/k} + 1}{\rho_2} \right\} \right) \right]^{p_{kl}}
$$
\n
$$
\leq C \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k} + 1}{\rho_1} \right) \right]^{p_{kl}} + C \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k} + 1}{\rho_2} \right) \right]^{p_{kl}}
$$
\n
$$
\to 0, \quad m, n \to \infty
$$
\nThus $\alpha x_{kl} + \beta y_{kl} \in \Gamma_M^2(\Delta_v^m, p, q, s)$, showing that it is linear space.

Theorem 3.2 Let $\mathcal{M} = (M_{kl})$ be a double Musielak-Orlicz function and $p = (p_{kl})$ be a double sequence of strictly positive real numbers. Then the space $\Gamma^2_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is a paranormed space with paranorm defined by

$$
g(x) = \inf \left\{ \rho_H^{p_{kl}} \colon \sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k + l}}{\rho} \right) \right]^{p_{kl}} \le 1 \right\} \text{ uniformly in } m, n > 0, \rho > 0.
$$

Where $H = max[1, sup_{kl} p_{kl}]$

Proof. It is clear $g(x) \ge 0$, $g(x) = g(-x)$ and $g(\theta) = 0$, θ is the zero sequence of X. Let x_{kl} , $y_{kl} \in$ $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$. Let $\rho_1, \rho_2 > 0$ be such that

$$
\sup_{k|z|} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_1} \right) \right]^{p_{kl}/H} \le 1
$$
\nAnd $\sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_2} \right) \right]^{p_{kl}/H} \le 1$
\nLet $\rho = \rho_1 + \rho_2$, then by using minkowski inequality, we have\n
$$
\sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m (x_{kl} + y_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}/H}
$$
\n
$$
\le \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_1} \right) \right]^{p_{kl}/H} + \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_2} \right) \right]^{p_{kl}/H}
$$
\n
$$
\le 1
$$
\nHence

$$
g(x + y) \le \inf \left\{ (\rho_1 + \rho_2)^{p_{mn}} / H : \right\} \sup_{k l \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m(x_{kl} + y_{kl})|^{1} / k + l}{\rho_1 + \rho_2} \right) \right]^{p_{kl} / H} \le 1 \rho_1, \rho_2 > 0, m, n \in \mathbb{N}
$$

$$
\le \inf \left\{ (\rho_1)^{p_{mn}} / H : \sup_{k l \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m(x_{kl} + y_{kl})|^{1} / k + l}{\rho_1} \right) \right]^{p_{kl} / H} \le 1, \rho_1 > 0, m, n \in \mathbb{N} \right\}
$$

$$
+ \inf \left\{ (\rho_2)^{p_{mn}} / H : \sup_{k l \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m(x_{kl} + y_{kl})|^{1} / k + l}{\rho_2} \right) \right]^{p_{kl} / H} \le 1, \rho_2 > 0, m, n \in \mathbb{N} \right\}
$$

Thus we have $g(x + y) \le g(x) + g(y)$. Hence g satisfies the triangle inequality. Now

$$
g(\lambda x) = \inf \left\{ (\rho)^{p_{mn}} /_{H} : \sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\lambda \Delta_v^m x_{kl}|^{1/k + l}}{\rho} \right) \right]^{p_{kl}} \le 1, \rho > 0, m, n \in \mathbb{N} \right\}
$$

=
$$
\inf \left\{ (r|\lambda|)^{p_{mn}} /_{H} : \sup_{kl \ge 1} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k + l}}{r} \right) \right]^{p_{kl}} \le 1, r > 0, m, n \in \mathbb{N} \right\}
$$

Where $\vec{r} = \frac{\rho}{4}$ $\frac{\rho}{|\lambda|}$, since $|\lambda|^{p_{mn}} \le \max[1, |\lambda|^{sup_{kl}})$. Hence $\Gamma^2_{\mathcal{M}}(\Delta_v^m, p, q, s)$ is a paranormed space.

Theorem 3.3 Let $\mathcal{M}' = (M'_{kl})$ and $\mathcal{M}'' = (M''_{kl})$ be two double Musielak-Orlicz functions. Then $\Gamma_{\mathcal{M}}^2$ (Δ_v^m , p, q, s) $\bigcap \Gamma_{\mathcal{M}}^2$ (Δ_v^m , p, q, s) $\subseteq \Gamma_{\mathcal{M}'+\mathcal{M}}^2$ (Δ_v^m , p, q, s)

Proof. Let
$$
x \in \Gamma^2_{\mathcal{M}}(\Delta_v^m, p, q, s) \cap \Gamma^2_{\mathcal{M}}(\Delta_v^m, p, q, s)
$$
. Then there exists ρ_1, ρ_2 such that\n
$$
\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_1} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty
$$
\n(3.4)

And

$$
\frac{1}{mn}\sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/2} |k+l}{\rho_2} \right) \right]^{p_{kl}} \to 0, \text{ as } m, n \to \infty
$$
\n
$$
\text{Let } \rho = \min[\frac{1}{n}, \frac{1}{n}]. \text{ Then we have}
$$
\n(3.5)

Let
$$
\beta = \frac{\ln n}{mn} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[(M'_{kl} + M''_{kl}) \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}}
$$

\n≤ $K \frac{1}{mn} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[M'_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho_1} \right) \right]^{p_{kl}}$
\n→ 0 as $m, n \to \infty$
\nBy (3.4) and (3.5). Then

$$
\frac{1}{mn} \sum_{k,l \ge 1,1}^{m,n} (kl)^{-s} \left[(M'_{kl} + M''_{kl}) \left(\frac{q |\Delta_v^m x_{kl}|^{1/k + l}}{\rho} \right) \right]^{p_{kl}} \to 0 \text{ as } m, n \to \infty.
$$

Therefore

*Corresponding Author: *Ado Balili 32 | Page

$$
x \in \Gamma_{\mathcal{M}^{'} + \mathcal{M}^{''}}^{2} (\Delta_{v}^{m}, p, q, s)
$$

\n**Theorem 3.4** Suppose $\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_{v}^{m} x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \leq |x_{kl}|^{1/k+l}$ Then
\n $\Gamma^{2} \subset \Gamma_{\mathcal{M}}^{2} (\Delta_{v}^{m}, p, q, s).$

Proof. Let $x \in \Gamma^2$. Then we have $|x_{kl}|^{1/k + l}$, as $k, l \to \infty$ (3.6) But

$$
\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/_{k+l}}}{\rho} \right) \right]^{p_{kl}} \le |x_{kl}|^{1/_{k+l}}
$$

By the assumption above, it implies that

$$
\frac{1}{mn}\sum_{k,l=1}^{\hat{m},n}(kl)^{-s}\left[M_{kl}\left(\frac{q\left|\Delta_{\nu}^{m}x_{kl}\right|^{1/k+l}}{\rho}\right)\right]^{p_{kl}}\to 0, as\ m,n\to\infty
$$

By (3.6)

Then $x \in \Gamma^2_{\mathcal{M}}(\Delta^m_\nu, p, q, s)$, and hence

$$
\varGamma^2 \subset \varGamma^2_{\mathcal{M}}(\Delta^m_v,p,q,s).
$$

Theorem 3.5 $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$ is solid **Proof.** Let $|x_{kl}| \le |y_{kl}|$ and $(y_{kl}) \in \Gamma^2_{\mathcal{M}}(\Delta_v^m, p, q, s)$ since $\mathcal{M} = (M_{kl})$ is non decreasing, it implies that 1 $\frac{1}{mn}\sum_{k,l\geq 1,1}^{m,n}(kl)^{-s}\Bigg[M_{kl}\Bigg(\frac{q|\Delta_{\boldsymbol{\nu}}^m\boldsymbol{x}_{kl}|^{1/_{k+l}}}{\rho}\Bigg)$ $\frac{k l^{1-\alpha+1}}{\rho}$ p_{kl} $\leq \frac{1}{\cdots}$ $\frac{1}{mn}\sum_{k,l\geq 1,1}^{m,n}(kl)^{-s}\Bigg[M_{kl}\Bigg(\frac{q|\Delta_{\boldsymbol{v}}^{m}\boldsymbol{y}_{kl}|^{1/_{k+l}}}{\rho}\Bigg)$ $\frac{k l^{1-\alpha+1}}{\rho}$ $\sup_{k,l\geq 1,1}(kl)^{-s}\left[M_{kl}\left(\frac{q|\Delta_v^m x_{kl}|^{1/_{k+l}}}{q}\right)\right]^{p_{kl}}\leq \frac{1}{mn}\sum_{k,l\geq 1,1}^{m,n}(kl)^{-s}\left[M_{kl}\left(\frac{q|\Delta_v^m y_{kl}|^{1/_{k+l}}}{q}\right)\right]^{p_{kl}}$ Since $y \in \Gamma^2_{\mathcal{M}}(\Delta^m_\nu, p, q, s)$. Then 1 $\frac{1}{mn}\sum_{k,l=1}^{m,n}(kl)^{-s}\left[M_{kl}\left(\frac{q\left|\Delta_{\mathcal{V}}^{m}y_{kl}\right|^{1/k+l}}{\rho}\right)\right]$ $\frac{k l^{1+\cdots k}}{\rho}$ p_{kl} $\binom{m,n}{k,l=1}(kl)^{-s}\left|M_{kl}\left(\frac{q\left|\Delta_{\nu}^{m}y_{kl}\right|^{r}k+l}{q}\right)\right| \longrightarrow 0, \text{ as } m,n \rightarrow \infty.$

And

$$
\frac{1}{mn}\sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \to 0, \text{as } m, n \to \infty
$$

Therefore

 $x \in \Gamma^2_{\mathcal{M}}(\Delta^m_{\nu}, p, q, s)$. Hence the result.

Theorem 3.6 (i) Let
$$
0 < \inf p_{kl} \le 1
$$
. Then $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s) \subset \Gamma_{\mathcal{M}}^2(\Delta_v^m, q, s)$.
\n(ii) Let $1 \le p_{kl} \le \sup_{kl} p_{kl} < \infty$. Then $\Gamma_{\mathcal{M}}^2(\Delta_v^m, q, s) \subset \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$.
\n**Proof.** (i) Let $x \in \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$. Then
\n
$$
\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k + l}}{\rho} \right) \right]^{p_{kl}} \to 0, as \ m, n \to \infty
$$
\nSince $0 < \inf p_{kl} \le 1$.
\n
$$
\frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k + l}}{\rho} \right) \right] \le \frac{1}{mn} \sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k + l}}{\rho} \right) \right]^{p_{kl}}
$$
\n(3.8)
\nFrom (3.7) and (3.8), it follows that $x \in \Gamma_{\mathcal{M}}^2(\Delta_v^m, q, s)$.

Thus $\Gamma^2_{\mathcal{M}}(\Delta^m_\nu, p, q, s) \subset \Gamma^2_{\mathcal{M}}(\Delta^m_\nu, q, s).$ (ii) Let $p_{kl} \ge 1$ for each k, l and su p_{kl} p_{kl} and let $x \in \Gamma^2_{\mathcal{M}}(\Delta_v^m, q, s)$. Then 1 $\frac{1}{mn}\sum_{k,l=1}^{m,n}(kl)^{-s}\left[M_{kl}\left(\frac{q\left|\Delta_{v}^{m}x_{kl}\right|^{1/k+l}}{\rho}\right)\right]$ $\frac{k l^{1+\kappa+1}}{\rho}$ $\bar{p_k}$ $\binom{m,n}{k,l=1}(kl)^{-s}\left|M_{kl}\left(\frac{q\left|\Delta_{\nu}^{n}x_{kl}\right|^{r}k+l}{q}\right)\right| \longrightarrow 0, as m, n \to \infty$ (3.9) Since $1 \leq p_{kl} \leq \sup_{kl} p_{kl} < \infty$, we have

$$
\frac{1}{mn}\sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \leq \frac{1}{mn}\sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]
$$
\n
$$
\Rightarrow \frac{1}{mn}\sum_{k,l=1}^{m,n} (kl)^{-s} \left[M_{kl} \left(\frac{q |\Delta_v^m x_{kl}|^{1/k+l}}{\rho} \right) \right]^{p_{kl}} \to 0, as \ m, n \to \infty
$$
\nThis implies that $x \in \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$. Therefore\n
$$
\Gamma_{\mathcal{M}}^2(\Delta_v^m, q, s) \subset \Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s).
$$

*Corresponding Author: *Ado Balili 33 | Page

IV. CONCLUSION

There are several extensions of some concept of single sequence spaces to double sequence spaces by some authors. We also extended the generalized entire difference sequence space

 $\Gamma_{\mathcal{M}}(\Delta_v^m, p, q, s)$ to double sequence space $\Gamma_{\mathcal{M}}^2(\Delta_v^m, p, q, s)$, which is solid and the intersection of the spaces defined by two double Musielak-Orlicz functions is identical with the space defined by the addition of the two given functions.

AKNOWLEDGEMENT

The authors thank the anonymous referees for their valuable suggestions which led to the improvement of the paper.

REFERENCES

- [1]. T. J. Bromwich, An introduction to the theory of infinite series, Macmillan and Co. Ltd., New York (1965)
- [2]. G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- [3]. F. Moricz, Extension of the space c, and c_0 from single to double sequences, Acta Math. Hungarica. 57 (1991), 129-136.
- [4]. F. Moricz and B.E Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
- [5]. B. C. Tripathy, Statistical convergence of double sequences, Tamkang J. Math., 34 (2003), 231-237.
- [6]. B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in locally convex spaces, Soochow, J. Math., 30 (2004), 431-446.
- [7]. M. Bașarir and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21 (1999), 193-200. [8]. M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods, Diss. Math. Univ. Tartu, 25, Tartu
- Univ. Press, Univ. of Tartu, Faculty of Math. And Comp. Science. Tartu (2001).
- [9]. M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences J. Math. Anal. Appl., 288 (1) (2003),223-231. [10]. M. Mursaleen, Almost strongly regular matrices and core theorem for double sequences, J. Math. Anal. Appl., 293 (2), (2004), 523-531.
- [11]. M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2), (2004), 532-540.
- [12]. B. Altay and F. Bașar, Some new spaces of double sequences, J. Math., Anal. Appl., 309 (2005), 70-90.
- [13]. F. Bașar and Y. Sever, The L_q of double sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
[14]. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Isael J. Math., 10 (1971), 345-355.
- [14]. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Isael J. Math., 10 (1971), 345-355.
- [15]. A. Pringsheim, Zur theory der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
- [16]. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176. [17]. M. Et and R. Çolak, On generalized difference sequence space, Soochow, J. Mat
- M. Et and R. Çolak, On generalized difference sequence space, Soochow, J. Math., 21 (4) (1995), 377-386.
- [18]. Z. U. Siddiqui and A. Balili, Generalized difference entire sequence spaces defined by Musielak-Orlicz function, Quest Journal, Journal of Research in Applied Mathematics, 2 (10) (2016), 10-15.
- [19]. L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of science, 1989.
[20]. J. Musielak, Orlicz spaces and Modular spaces, Lecture notes in Mathematics, 1034 (1983).
- [20]. J. Musielak, Orlicz spaces and Modular spaces, Lecture notes in Mathematics, 1034 (1983).

*1Ado Bali. "New Double Entire Difference Sequence Spaces Generated by Double Musielak-Orlicz Function." Quest Journals Journal of Research in Applied Mathematics , vol. 03, no. 08, 2017, pp. 29–34.