Ouest Journals Journal of Research in Applied Mathematics Volume 4 ~ Issue 1 (2017) pp: 10-16 ISSN(Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Powermean Labelings of Some Union And Product Graphs

P. Mercy #^{,1}S. Somasundaram #,²

#Department Of Mathematics, Manomaniam Sundaranar University Tirunelveli, Tamilnadu-627012, India Corresponding Author: P. Mercy #

ABSTRACT: A graph G = (V, E) is called a Power mean graph with p vertices and q edges, if it is possible to label the vertices $x \in V$ with distinct elements f(x) from $1, 2, 3, \ldots, q+1$ in such way that when each edge e = uv is labeled with

> ٦ а.

ar

$$f(e = uv) = \left[(f(u)^{f(v)} f(v)^{f(u)})^{\frac{1}{f(u) + f(v)}} \right]$$
$$f(e = uv) = \left[(f(u)^{f(v)} f(v)^{f(u)})^{\frac{1}{f(u) + f(v)}} \right]$$

then the edge labels are distinct. Here f is called a Power mean labeling of G. We investigate Power mean labeling of some standard graphs.

Keywords: Power mean graph, nK_3 ; $n \ge 1$, $nK_3 \cup P_m$; $m, n \ge 1$, $n \ge 1$ and $m \ge 3$ and planar grids $P_m \times P_3$ and $P_m \times P_n$.

I. INTRODUCTION

Herein we consider finite and undirected graphs. Let G = (V, E) be a graph with p vertices and q edges. One may refer to Gallian^[2] and Acharya et al.^[1] for a detailed survey of graph labeling. For all other standard terminology and notations, we follow Harary [3]. Somasundaram and Ponraj [6] introduced and studied [9]mean labeling for some standard graphs. Sandhya and Somasundaram[5] introduced Harmonic mean labeling of graphs and Sandhya et al. [4] studied the technique in detail. Somasundaram et al. [7] introduced the concept of Geometric mean labeling of graphs and studied their labeling in [8]. In this contribution, we define Power mean labeling and study some standard graphs like nK3; n 1, nK3 [Pm;m, n 1, n 1 and m 3 and planar grids $Pm \times P3$ and $Pm \times Pn$ for power mean labeling. We provide illustrative examples to support our study.

II. DEFINITION AND RESULTS

Now we introduce the main concept of this paper

Definition 2.1. A graph G = (V, E) with p vertices and q edges is said to be a Power Mean Graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, 3, ..., q+1 is such a way that when each edge e = uv is labeled with

$$f(e = uv) = \left\lceil \left(f(u)^{f(v)} f(v)^{f(u)} \right)^{\frac{1}{f(u) + f(v)}} \right\rceil$$

or

$$f(e = uv) = \left[\left(f(u)^{f(v)} f(v)^{f(u)} \right)^{\overline{f(u)} + f(v)} \right]$$

then the resulting edge labels are distinct. In this case, f is called Power mean labeling of G.

Remark 2.1. If G is a Power mean labeling graph, then 1 must be a label of one of the vertices of G, since an edge should get label 1.

Remark 2.2. If p > q + 1, then the graph G = (p, q) is not a Power mean graph, since it doesn't have sufficient labels from $\{1, 2, 3, ..., q + 1\}$ for the vertices of G.

The following Proposition will be used in the edge labelings of some standard graphs to get Power mean labeling.

Proposition 2.1. Let a, b and i be positive integers with a < b. Then

- (i) $a < (a^b b^a)^{\frac{1}{a+b}} < b$,
- $(ii) \quad i < (i^{1+2}(i+2)^i)^{\frac{1}{2i+2}} < (i+1),$
- (iii) $i < (i^{i+3}(i+3)^i)^{\frac{1}{2i+3}} < (i+2),$
- (iv) $i < (i^{i+4}(i+4)^i)^{\frac{1}{2i+4}} < (i+2)$, and
- (v) $(1^{i}i^{1})^{\frac{1}{t+1}} = i^{\frac{1}{t+1}} < 2.$

Proof. (i) Since $a^{a+b} = a^a a^b < b^a a^b < b^a b^b = b^{a+b}$, we get the inequality in Proposition 2.1.(*i*). That is, the Power mean of two numbers lies between the numbers *a* and *b*. This leads to infer that if vertices *u*, *v* have labels *i*, *i* + 1 respectively, then the edge *uv* may be labeled *i* or *i* + 1 for Power mean labeling.

(ii) As a proof of this inequality, we see

$$\begin{array}{rcl} i^{i+2}(i+2)^i &<& i^2[i(i+2)]^i,\\ &<& i^2(i+1)^{2i},\\ && {\rm since} \ i(i+2) < (i+1)^2,\\ &<& (i+1)^2(i+1)^{2i},\\ &=& (i+1)^{2i+2}. \end{array}$$

This leads to $[(i^{i+2}(i+2)^i)^{\frac{1}{2i+2}}] < i + 1.$

Therefore, if u, v have labels i, i + 2 respectively, then the edge uv may be labeled i or i + 1. (iii) Next we have

$$i^{i+3}(i+3)^i = i^3[i(i+3)]^i,$$

 $< i^3(i+2)^{2i}$, since $i(i+3) < (i+2)^2$,
 $< (i+2)^3(i+2)^{2i},$
 $= (i+2)^{2i+3}.$

This leads to $[i^{i+3}(i+3)^i]^{\frac{1}{2i+3}} < (i+2)$. Hence, if u, v have labels i, i+3 respectively, then the edge uv may be labeled i+1 without ambiguity.

(iv) Now

$$\begin{array}{rcl} i^{i+4}(i+4)^i &=& i^4[i(i+4)]^i,\\ &<& i^4(i+2)^{2i}, \mbox{ since } i(i+4) < (i+2)^2\\ &<& (i+2)^4(i+2)^{2i},\\ &=& (i+2)^{2i+4}. \end{array}$$

Therefore

 $[i^{i+4}(i+4)^i]^{\frac{1}{2i+4}} < i+2.$

Hence if u, v have labels i, i + 4 respectively, then the edge uv may be labeled i + 1.

(v) Now

Therefore $(1^{i}i^{1})^{\frac{1}{i+1}} = i^{\frac{1}{i+1}} < 2$. Thus we observe that if u, v are labeled 1, i respectively, then the edge uv may be labeled 1 or 2.

Definition 2.2. Two graphs G_1 and G_2 have disjoint vertex sets V_1, V_2 and edge sets E_1, E_2 respectively. Their **union** $G = G_1 \cup G_2$ has , as expected, $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$. The union of m copies of G is denoted by mG.

Definition 2.3. The **Cartesian product** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph G(V, E) with $V = V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent in $G_1 \times G_2$ whenever ($u_1 = v_1$ and u_2 is adjacent to v_2) or ($u_2 = v_2$ and u_1 is adjacent to v_1). It is denoted by $G_1 \times G_2$.

2.1 Power mean labeling for nK_3 , $n \ge 1$

Theorem 2.1. For $n \ge 1$, nK_3 is a Power mean graph where n is a number of copies of K_3 .

Proof. Let the vertex set of nK_3 be $V = \{V_1 \cup V_2 \cup V_3 \cup ... \cup V_n\}$ where $V_i = \{v_i^1, v_i^2, v_i^3\}$; $1 \le i \le n$ and the edge set be $E = \{E_1 \cup E_2 \cup E_3 \cup ... \cup E_n\}$ where $E_i = \{e_i^1, e_i^2, e_i^3\}$; $1 \le i \le n$. Define a function:

$$f: V(nK_3) \longrightarrow \{1, 2, 3, \dots, q+1 = 3n+1\}$$

by

 $f(v_i^j) = 3(i-1) + j \; ; \; 1 \le i \le n \; ; \; 1 \le j \le 3.$

By Proposition 2.1.(*i*),(*ii*) and (v), we get the set of distinct labels for the edges of nK_3 as $\{1, 2, 3, ..., 3n\}$. Thus nK_3 is a Power mean graph for $n \ge 1$.

Example 2.1. An illustrative example for Power mean labeling of 3K₃ is in Figure 2.1.

Figure 2.1: 3K3

2.2 Power mean graph for $nK_3 \cup P_m$, $m, n \ge 1$

Theorem 2.2. The graph $nK_3 \cup P_m$ is a Power mean graph for $m \ge 1$, $n \ge 1$ where n is a number of copies of K_3 .

Proof. Let the vertex set of nK_3 be $U = U_1 \cup U_2 \cup U_3 \cup \ldots \cup U_n$ where $U_i = \{u_i^1, u_i^2, u_i^3\}; 1 \le i \le n$ and the edge set be $E = E_1 \cup E_2 \cup E_3 \cup \ldots \cup E_n$ where $E_i = \{e_i^1, e_i^2, e_i^3; 1 \le i \le n\}$. Let P_m be the path with vertices is $\{v_1, v_2, v_3, \ldots, v_m\}$. The number of vertices of $nK_3 \cup P_m$ is 3n + m. The number of edges of $nK_3 \cup P_m$ is 3n + m - 1.

Define a function

$$f: V(nK_3 \cup P_m) \longrightarrow \{1, 2, 3, ..., q+1 = 3n+m\}$$

for vertex labeling as

- (i) $f(u_i^j) = 3(i-1) + j$; $1 \le i \le n$; $1 \le i \le 3$ and
- (ii) $f(v_i) = 3n + i ; 1 \le i \le m ; 1 \le i \le m$.

By Proposition 2.1.(i), (ii) and (v), we get the set of labels for the edges as

- (i) $E(u_i^1 u_i^2) = f(u_i^1)$; $1 \le i \le n$,
- (ii) $E(u_i^2 u_i^3) = f(u_i^3)$; $1 \le i \le n$, and

(iii)
$$E(u_i^1u_i^3) = \frac{f(u_i^3) + f(u_i^1)}{2}$$
; $1 \le i \le n$.

Therefore, the set of labels of edges of nK_3 is $\{1, 2, 3, ..., 3n\}$ and the set of labels of edges of P_m is $\{3n + 1, 3n + 2, ..., 3n + m - 1\}$. As the edge labels are distinct, $nK_3 \cup P_m$ is a Power mean graph for $m \ge 1, n \ge 1$.

Example 2.2. Power mean labeling for the graph $3K_3 \cup P_5$ with 14 vertices and 13 edges is given below Figure 2.2. The set of all vertex labels $3K_3 \cup P_5$ is $\{1, 2, 3, ..., 14\}$. The set of all edge labels $3K_3 \cup P_5$ is $\{1, 2, 3, ..., 14\}$.

Figure 2.2: 3K3 P5

2.3 Power mean labeling for $nK_3 \cup C_m$, $n \ge 1, m \ge 3$

Theorem 2.3. The graph $nK_3 \cup C_m$ is a Power mean graph for $n \ge 1, m \ge 3$

Proof. Let the vertex set of nK_3 be $U = \{U_1 \cup U_2 \cup U_3 \ldots \cup U_n\}$ where $U_i = \{u_i^1, u_i^2, u_i^3\}$ $1 \le i \le n$ and the edge set be $E = \{E_1 \cup E_2 \cup E_3 \cdots \cup E_n\}$ where $E_i = \{e_i^1, e_i^2, e_i^3\}$. The vertex set of C_m be the cycle is $v_1, v_2, v_3, \ldots, v_m, v_1$. The number of vertices of $nK_3 \cup C_m$ is 3n + m. The number of edges of $nK_3 \cup C_m$ is 3n + m.

Define a function

$$f: V(nK_3 \cup C_m) \longrightarrow \{1, 2, 3, \dots, q+1 = 3n+m+1\}$$

ьу

(i)
$$f(u_i^j) = 3(i-1) + j$$
; $1 \le i \le n$, $1 \le j \le 3$ and

(*ii*) $f(v_i) = 3n + i$; $1 \le i \le m$

By Proposition 2.1.(i),(ii) and (v), we get the set of labels for the edges as

- (i) $E(u_i^1 u_i^2) = f(u_i^1)$, $1 \le i \le n$,
- (*ii*) $E(u_i^2 u_i^3) = f(u_i^3)$, $1 \le i \le n$, and
- (iii) $E(u_i^1 u_i^3) = \frac{f(u_i^1) + f(u_i^3)}{2}$, $1 \le i \le n$.

The set of labels of the edges of nK_3 is $\{1, 2, 3, ..., 3n\}$, the set of labels of the edge of C_m is $\{3n + 1, 3n + 2, 3n + 3, ..., 3n + m\}$ and the set of labels of the edge $nK_3 \cup C_m$ is $\{1, 2, 3, ..., q + 1\}$. Since all the edge labels are different, $nK_3 \cup C_m$ is Power mean labeling graph.

Example 2.3. An example of Power mean labeling for $nK_3 \cup C_m$ is in Figure 2.3.

III. PRODUCT GRAPHS

In this section, the Power mean labeling of planar grid is investigated. Power mean labelings of planar grids are obtained for n = 3, 4.

3.1 Power mean labeling for planar grid $P_m \times P_3$

Theorem 3.1. The planar grid $P_m \times P_3$ is a Power mean graph for $m \ge 2$

Proof. Let the vertex set of $P_m \times P_3$ be $V(P_m \times P_3) = \{a_{ij}, 1 \le i \le m, 1 \le j \le 3\}$ and edge set be $E(P_m \times P_3) = \{a_{i(j-1)}a_{ij}, 1 \le i \le m, 2 \le j \le 3\} \cup \{a_{(i-1)j}a_{ij}, 2 \le i \le m, 1 \le j \le 3\}$. The graph $P_m \times P_n$ has 3m vertices and 5m - 3 edges. Define a function

 $f: V(P_m \times P_3) \longrightarrow \{1, 2, 3, \dots, q+1\}$

```
as
```

- (i) $f(a_{11}) = 1$,
- (ii) $f(a_{12}) = 3$,
- (iii) $f(a_{13}) = 5$,
- (iv) $f(a_{ij}) = f(a_{(i-1)2}) + 2 + j$, i = 2, $1 \le j \le 3$ and

```
(v) f(a_{ij}) = f(a_{(i-1)3}) + 2 + j, 3 \le i \le n, 1 \le j \le 3.
```

By Proposition 2.1.(i),(ii),(iii),(iv) and (v), the labelings of the edges are

- (i) $E(a_{11}a_{12}) = 1$,
- (ii) $E(a_{12}a_{13}) = 3$,
- (iii) $E(a_{ij}a_{i(j+1)}) = 5(i-1) + j$, $3 \le i \le m$, $1 \le i \le 2$,
- $(iv) \quad E(a_{11}a_{21}) = 2 \text{ and}$
- $(v) \quad E(a_{ij}a_{(i+1)j}) = 5(i-1) + 2 + j \ , 1 \le i \le m-1 \ , 2 \le j \le 3.$

As the edge labels are distinct, the planar grid $P_m \times P_3$ is a Power mean graph for $m \ge 2$.

Example 3.1. Figure 3.1 is an example for Power mean labeling of P4 ×P3 which has 12 vertices and 17 edges.

Figure 3.1: P4 × P3

3.2 Power mean labeling for planar grid $P_m \times P_4$

Theorem 3.2. The Planar grid $P_m \times P_4$ is a Power mean graph for $m \ge 2$.

Proof. Let the vertex set of $P_m \times P_n$ be $V(P_m \times P_n) = \{a_{ij}, 1 \le i \le m, 1 \le j \le 3\}$ and edge set be $E(P_m \times P_n) = \{a_{ij}a_{i(j+1)}, 1 \le i \le m, 1 \le j \le 3\} \cup \{a_{ij}a_{(i+1)j}, 1 \le i \le m-1, 1 \le j \le 4\}$. The graph $P_m \times P_n$ has 4m vertices and 7m - 4 edges. Define a function

$$f: V(P_m \times P_n) \longrightarrow \{1, 2, 3, \ldots, q+1 = 7m-3\}$$

as

- (i) $f(a_{11}) = 1$,
- (ii) $f(a_{ij}) = 2j 1$, i = 1, j = 2 and 3,
- (iii) $f(a_{ij}) = j + 2$, i = 1, j = 4, and
- (iii) $f(a_{ij}) = f(a_{(i-1)4}) + 3 + j$, $2 \le i \le m$, $1 \le j \le 4$.

By Proposition 2.1.(i),(ii),(iii),(iv) and (v), we get the set of labels for the edges as

- (ii) $E(a_{ij}a_{i(j+1)}) = 7(i-1) + j$, $2 \le i \le m$, $1 \le j \le 3$,
- (iii) $E(a_{ij}a_{(i+1)j}) = 2j$, i = 1, $1 \le j \le 3$, and
- (iv) $E(a_{ij}a_{(i+1)j}) = 7(i-1) + 3 + j$, $2 \le i \le m-1$, $1 \le j \le 4$.

As the edge labels are distinct, $P_m \times P_4$ is a Power mean graph for $m \ge 2$.

III. CONCLUSION

In this paper we have proved that nK_3 ; $n \ge 1$, $nK_3 \cup P_m$; $m, n \ge 1$, $n \ge 1$ and $m \ge 3$ and planar grids $P_m \times P_3$ and $P_m \times P_4$ graphs are amenable for Power Mean labeling and illustrated examples are provided to support our investigation.

REFERENCES

- B.D. Acharya, S. Arumugam and A. Rosa, Labeling of Discrete Structures and Applications, Narosa Publishing House, New Delhi, 2008, 1–14.
- [2]. J.A. Gallian. A dynamic Survey of graph labeling. The electronic Journal of Combinatories, 17 DS6, (2012). F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
- [3]. S.S. Sandhya, S. Somasundaram and R.Ponraj, Some More Results on Harmonic Mean Graphs, Journal of Mathematics Research 4(1) (2012), 21–29.
- [4]. S. S. Sandhya and S. Somasundaram, Harmonic Mean Labeling for Some Special Graphs, International Journal of Mathematics Research, 5(1) (2013), 55–64.
- [5]. S. Somasundaram and R. Ponraj, Mean Labelings of Graphs, National Academy Science Letters, 26 (2003), 210–213.
- [6]. S. Somasundaram, P. Vidhyarani and R. Ponraj, GeometricMean Labeling of Graphs, Bullettin of Pure and Applied Sciences, 30E(2) (2011), 153–160.
- [7]. S. Somasundaram, P. Vidhyarani and R. Ponraj, Some Results on Geometric Mean Graphs, International Journal of Mathematical Forum, 7(28) (2012), 1381–1391.
- [8]. S. Somasundaram and R. Ponraj, Some Results on Mean Graphs, Pure and Applied Mathematika Sciences, 53 (2003), 29–35.

P. Mercy #. "Powermean Labelings of Some Union And Product Graphs." Quest Journals Journal of Research in Applied Mathematics , vol. 04, no. 01, 2018, pp. 10–16.

*Corresponding Author: P. Mercy #,