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ABSTRACT: This paper explores a dynamical analysis of diffusive ratio-dependent predator-prey model with 

prey harvesting. We consider the predator switches to alternative food when its favorite food density is low (i.e. 

which obeys Leslie-Gower model). Firstly, we perform the permanence analysis of proposed system, which 

ensures that the species will always coexist at any time. Then, we study the local stability, global stability and 

Hopf bifurcation analysis around interior equilibrium point. Finally, we investigate the existence and 

nonexistence of non-constant positive steady state solutions. 
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I. INTRODUCTION 

Inspired by the pioneering work of Lotka and Volterra in [1], the dynamics of interactions between two 

species(predator-prey) models has been receiving much more attention in the field of both ecology and 

mathematical ecology.  The functional response term plays a vital role in deriving the exact mathematical model 

and in this regard, many authors have proposed and investigated different types of functional responses, 

including Holling I-IV, ratio-dependent, Beddington-DeAngelis and Crowley-Martin functional, for more 

details one can see [2–4]. Note that, when the predators have look for food (and as a result they have to 

share/compete for food), prey dependent functional response cannot provide better performance. Hence, the 

ratio-dependent functional response came into core [5], in which per capita growth rate of predator should be a 

function of the ratio of prey to predator abundance. A substantial works on ratio-dependent predator-prey 

models has drawn in [6-10] and references therein.  

Suppose that the predators have preferred for alternative food when of its favorite food density is low 

and to exploit this fact, Leslie and Gower in [11] have modified as: 
𝑑𝑛

𝑑𝑡
= 𝑛𝑓 𝑛 − 𝑝𝑔 𝑛, 𝑝 ,       

𝑑𝑝

𝑑𝑡
= 𝑐𝑝  1 −

𝑑𝑝

𝑛 + 𝑙
 ,                                                                                           (1) 

where 𝑛(𝑡) and 𝑝(𝑡) are the respective population densities of prey and predator at time 𝑡 > 0, 𝑓(𝑛) stands the 

per capita growth rate of 𝑛, 𝑔(𝑛. 𝑝) is the general functional response term, 𝑐 is the intrinsic growth rate of 

predator, 𝑑 and 𝑙 are positive constants. The studies on dynamics of model given in (1) has been investigated by 

many authors in the literature (see [12-15] and references cited therein). The diffusion terms into predator-prey 

models is quite common due to species moves from higher to lower  concentration areas as a result of good 

living environment, food, etc. Therefore, a modified Leslie-Gower formulation of diffusive predator-prey model 

with ratio-dependent function takes the form of  
𝑑𝑛

𝑑𝑡
= 𝑛𝑓 𝑛 −

𝑝𝑛

𝑛 + 𝑎𝑝
+ 𝑑1∇

2𝑛,       
𝑑𝑝

𝑑𝑡
= 𝑐𝑝  1 −

𝑑𝑝

𝑛 + 𝑙
 + 𝑑2∇

2𝑛,                                                          2  

where𝑎 is capturing rate, 𝑑1 and 𝑑2 are diffusion coefficients. In [16], authors have studied the Turing and non-

Turing patterns of model (2) with l = 0. 

The point view of economic profit and harvesting of species are commonly happened by human in 

fishery, forestry, and wildlife management. This is inspired by introduce the harvesting of populations in the 

modelling prey-predator system and some interesting results on prey-predator model with harvesting term has 
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been studied [17–19]. There are different types of harvesting strategy, such as constant-yield harvesting, 

constant-effort harvesting, age-selective harvesting, etc. and among them nonlinear harvesting is more realistic 

from economical as well as biological point of views rather than strategies. It takes the following form 

𝐻 𝑛 =
𝑞𝐸𝑛

𝑚1𝐸 + 𝑚2𝑛
 

whereq stands the catchability coefficient, Erepresents the external effort applied to harvesting and 𝑚1,𝑚2 are 

positive constants. As far as our knowledge, it is evident that prey harvesting has not yet been implemented in 

system (2) with diffusion term. This fact has motivated our present study. 

 Hence, we consider the modified Leslie-Gower predator-prey model with Beddington-DeAngelis 

functional response and nonlinear prey harvesting as follows: 
𝜕𝑁

𝜕𝑇
= 𝑅𝑁  1 −

𝑁

𝐾
 −

𝑚𝑃𝑁

𝑁 + 𝐴𝑃
− 𝐻 𝑁 + 𝐷1∇

2𝑁, 𝑥 ∈ Ω, 𝑡 > 0,                                                         (3𝑎) 

𝜕𝑃

𝜕𝑇
= 𝐶𝑃  1 −

𝐷𝑃

𝑁 + 𝐿
 + 𝐷2∇

2𝑃, 𝑥 ∈ Ω, 𝑡 > 0.                                                                                        (3𝑏) 

Now, we make the following non-dimensional scheme 𝑁 → 𝐾𝑛,𝑃 →
𝑅𝐾

𝑚
,𝑇 →

1

𝑅
𝑡, and let𝛼 =

𝐴𝑅

𝑚
,𝑑1 =

𝐷1

𝑅
, 𝑔 =

𝑞𝐸

𝑚2𝐾𝑅
,  =

𝑚1𝐸

𝑚2𝐾
, 𝛽 =

𝐶

𝑅
, 𝛾 =

𝐷𝑅

𝑚
, 𝛿 =

𝐿

𝐾
, 𝑑2 =

𝐷2

𝑅
. Then the system (3) becomes 

𝜕𝑛

𝜕𝑡
= 𝑛  1 − 𝑛 −

𝑛𝑝

𝑛 + 𝛼𝑝
−

𝑔

 + 𝑛
 + 𝑑1∇

2𝑛, 𝑥 ∈ Ω, 𝑡 > 0,                                                                  (4𝑎) 

𝜕𝑝

𝜕𝑡
= 𝛽𝑝  1 −

𝛾𝑝

𝑛 + 𝛿
 + 𝑑2∇

2𝑝,   𝑥 ∈ Ω, 𝑡 > 0,                                                                                                 (4𝑏) 

𝑛 𝑥, 0 = 𝑛0 ≥ 0, 𝑝 𝑥, 0 = 𝑝0 ≥ 0, 𝑥 ∈ Ω, 𝑡 > 0,                                                                   (4𝑐) 

𝜕∗𝑛 = 𝜕∗𝑝 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,                                                      (4𝑑) 

where the positive constants 𝑑1 and 𝑑2 are the diffusion coefficients of prey and predator, respectively, ∇2 is 

usual two dimensional Laplacian operator in variable 𝑋 =  𝑥, 𝑦 ∈ Ω ⊂ ℝ and Ω is bounded domain in ℝ2 with 

smooth boundary 𝜕Ω. 𝜕∗Indicates the outward unit normal vector of the boundary 𝜕Ω. Thus the prey and 

predator density at location 𝑋 and time 𝑡 is denoted by 𝑛(𝑋, 𝑡) and 𝑝(𝑋, 𝑡) respectively. The initial 

data𝑛 𝑥, 0 ≥  0 and𝑣 𝑥, 0 ≥  0 are continuous functions. The zero flux boundary conditions assure that there 

is no fluxes of populations through the boundary, i.e., no external input is imposed from outside. 

 

II. PERMANENCE 

In this section, we concern the permanence analysis of the system (4).  Before going to prove permanence 

we introduce the following definition and lemma: 

Definition 1.System (4) is said to be permanent if there exist positive constants 𝑐 and 𝑐 such that 

 𝑛 𝑥, 𝑡 , 𝑝 𝑥, 𝑡   of (4) with 𝑢0 ≥ 0 and 𝑣0 ≥ 0 satisfies 

0 < 𝑐 ≤ lim
t→∞

inf min
x∈Ω

𝑛 𝑥, 𝑡 ≤ lim
t→∞

sup max
x∈Ω

𝑛 𝑥, 𝑡 ≤ 𝑐, 

0 < 𝑐 ≤ lim
t→∞

inf min
x∈Ω

𝑝 𝑥, 𝑡 ≤ lim
t→∞

sup max
x∈Ω

𝑝 𝑥, 𝑡 ≤ 𝑐. 

Lemma 1.Suppose that 𝑢 𝑥, 𝑡  satisfies 
𝜕𝑢

𝜕𝑡
− 𝑑Δ𝑢 = 𝑢 1 − 𝑢 , 𝑥 ∈ Ω, 𝑡 > 0, 

𝑢 𝑥, 0 = 𝑢0 𝑥 ≥ 0, 𝑥 ∈ Ω, 
𝜕∗𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0. 
       Then lim𝑡→∞ 𝑢 𝑥, 𝑡 = 1 for any 𝑥 ∈ Ω.  

Theorem 1.Let  𝑛 𝑥, 𝑡 , 𝑝 𝑥, 𝑡   be the solution of (4) with 𝑛0 ≥ 0 and 𝑝0 ≥ 0.It holds 

1. 𝑛 𝑥, 𝑡 ≥ 0, 𝑝 𝑥, 𝑡 ≥ 0,∀𝑡 > 0, 𝑥 ∈ Ω. 

2. lim
t→∞

sup max
x∈Ω

𝑛 𝑥, 𝑡 ≤ 1 and lim
t→∞

sup max
x∈Ω

𝑝 𝑥, 𝑡 ≤
1+𝛿

𝛾
. 

Proof. It follows from (4a), 𝑢 satifies 
𝜕𝑛

𝜕𝑡
− 𝑑1Δ𝑛 ≤ 𝑛 1 − 𝑛 , 𝑥 ∈ Ω, 𝑡 > 0. 

Then, by Lemma 1, for any 𝜖 > 0 there exist 𝑡1 > 0 such that 

𝑛 𝑥, 𝑡 ≤ 1 + 𝜖, 𝑥 ∈ Ω, 𝑡 ≥ 𝑡1,                                                                                                                                  (5) 

whichimplies 

lim
t→∞

sup max
x∈Ω

𝑛 𝑥, 𝑡 ≤ 1. 

Similarly, from (4b) 
𝜕𝑝

𝜕𝑡
− 𝑑2𝛥𝑝 = 𝛽𝑝  1 −

𝛾𝑝

𝑢 + 𝛿
 , 𝑥 ∈ 𝛺, 𝑡 > 0. 
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Hence, there exist a constant 𝑡2 > 𝑡1 such that 

𝑝 𝑥, 𝑡 ≤
 1 + 𝜖 + 𝛿 

𝛾
+ 𝜖, 𝑡 ≥ 𝑡2. 

Therefore, arbitrariness of 𝜖, we complete proof. 

Theorem 2.Let  𝑛 𝑥, 𝑡 , 𝑝 𝑥, 𝑡   be the solution of (4) with 𝑛0 ≥ 0 and 𝑝0 ≥ 0  if 𝛼 > 𝛼𝑔 + , we have 

lim
𝑡→∞

inf min
x∈Ω

𝑛 𝑥, 𝑡 ≥
𝛼  − 𝑔 − 

𝛼
 

lim
t→∞

inf min
x∈Ω

𝑝 𝑥, 𝑡 ≥
𝛼  − 𝑔 −  + 𝛿𝛼

𝛾𝛼
.                                                                                                         (6) 

Proof. According to equation (3a) and Theorem 1, we have 
𝜕𝑛

𝜕𝑡
− 𝑑1𝛥𝑛 ≥ 𝑛  1—𝑛 −

1

𝛼
−
𝑔


 , 𝑡 > 𝑡2. 

Since 𝛼 > 𝛼𝑔 +  holds, then there exists a constant 𝑡3 > 𝑡2 such that 

𝑛 ≥ 𝑛 −
𝛼  − 𝑔 − 

𝛼
− 𝜖 > 0, 𝑡 ≥ 𝑡3.                                                                                                                (7) 

It follows from (4b) and (7) that 

𝜕𝑝

𝜕𝑡
− 𝑑2𝛥𝑝 ≥ 𝛽𝑝  1 −

𝛾𝑝

𝑢 + 𝛿
 , 𝑡 > 𝑡3. 

So there exist a constant 𝑡4 ≥ 𝑡3 such that 

𝑝 ≥ 𝑝 =
𝑢 + 𝛿

𝛾
− 𝜖 > 0, 𝑡 > 𝑡4.                                                                                                                              (8) 

for𝜖 > 0 small enough. From (7) and (8), we obtain (6). 

Theorem 3.According to Theorem 1 and 2, system (4) is permanent. 

Proof. Let 𝑐 = min  𝑛, 𝑝  and 𝑐 = max 1, 𝛾−1 1 + 𝛿  . Hence, we complete the proof. 

 

III. EQUILIBRIA AND STABILITY ANALYSIS 

3.1 Constant equilibria 

The equilibria of system (4) given by 

𝑛  1—𝑛 −
𝑝

𝑛 + 𝛼𝑝
−

𝑔

 + 𝑛
 = 0, 

𝛽𝑝  1 −
𝛾𝑝

𝑢 + 𝛿
 = 0. 

Soling the above equations, we get the following equilibrium points: 

i. The trivial equilibrium point 𝐸0 0,0 . 

ii. The predator free axial equilibrium point 𝐸1  
1−

2
+

1

2
  1 −  2 − 4(𝑔 − ), 0 . 

iii. The steady state of coexistence (interior equilibrium point) 𝐸∗(𝑛∗, 𝑝∗), where 𝑃∗ =
𝑛∗+𝛿

𝛾
 with 𝑛∗ is a root of 

the following cubic equation in 𝑧 

 

𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0,                                                                                                                                               (9) 
where 

𝑎 = − 𝛾 + 𝛼  
𝑏 = −𝛾𝛿 +  1 −   𝛾 + 𝛼 − 1 
𝑐 =  1 −  𝛼𝛿 +   − 𝑔  𝛼 + 𝛾 −   + 𝛿  
𝑑 =   − 𝑔 𝛼𝛿 − 𝛿. 
Remark 1.The equilibrium𝐸0 and 𝐸1 always exists. If 𝑔 <  then only 𝐸2 exists. It is easily to observe that 

from (9), leading coefficient 𝛼 is always negative and 𝑑 is positive if 

  − 𝑔 𝛼𝛿 > 𝛿(10) 
holds. Hence, if (10) is satisfied, according to Descartes rule of sign assures that the above equation (9) 

possesses at least one positive root. Further, equation (9) has unique positive root say 𝑢∗ if (10) holds along 

with any one the following conditions: 

H1𝛼𝛿 + 1 >  1 −   𝛾 + 𝛼  and   + 𝛿 >  1 −  𝛼𝛿 +   − 𝑔  𝛼 + 𝛾  
H2𝛼𝛿 + 1 >  1 −   𝛾 + 𝛼  and   + 𝛿 <  1 −  𝛼𝛿 +   − 𝑔  𝛼 + 𝛾  
H3𝛼𝛿 + 1 <  1 −   𝛾 + 𝛼 and   + 𝛿 >  1 −  𝛼𝛿 +   − 𝑔  𝛼 + 𝛾 . 
Hereafter, we will always assume that the system (4) satisfied one of the above conditions. 
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3.2 Local stability analysis 

In this subsection, we study the local stability analysis about positive equilibrium point 𝐸∗ 𝑛∗, 𝑝∗ .For the 

notation simplicity, we let the following notations, 

𝒛 =  𝑛, 𝑝 𝑇 ,𝐷 = 𝑑𝑖𝑎𝑔 𝑑1 ,𝑑2 ,𝐺 𝒛 =  
𝑔1

𝑔2
 =

 
 
 
 
 𝑛  1—𝑛 −

𝑝

𝑛 + 𝛼𝑝
−

𝑔

 + 𝑛
 

𝛽𝑝  1 −
𝛾𝑝

𝑢 + 𝛿
 

 
 
 
 
 

. 

Then the system (4) can be rewritten as the vectorform 
𝜕𝒛

𝜕𝑡
= 𝐷Δ𝒛 + 𝐺 𝒛 .                          (11) 

The linearization of (11) at any point 𝐸(𝑢, 𝑣) is 
𝜕𝒛

𝜕𝑡
− 𝐷Δ𝒛 = 𝐺𝒛 𝐸 𝒛.                 (12) 

where 

𝐺𝑧 𝐸 =  
𝑔11 𝑔12

𝑔21 𝑔22
 =

 

 
 

1 − 2𝑛 −
𝛼𝑝2

 𝑛 + 𝛼𝑝 2
−

𝑔

  + 𝑛 2
−

𝑛2

 𝑛 + 𝛼𝑝 2

𝛽𝛾𝑝2

 𝑛 + 𝛿 2
𝛽 −

2𝛽𝛾𝑝

(𝑛 + 𝛿) 

 
 

. 

The Jacobian matrix (12) at 𝐸∗ takes the form 

𝐺𝑧 𝐸
∗ =  

𝑔11
∗ 𝑔12

∗

𝑔21
∗ 𝑔22

∗  =

 

 
 𝛽∗ −

𝑛∗2

 𝑛∗ + 𝛼𝑝∗ 2

𝛽

𝛾
−𝛽

 

 
 

, 

where 𝛽∗ =
𝑛∗𝑝∗

 𝑛∗+𝛼𝑝∗ 2 +
𝑔𝑛∗

 +𝑛∗ 2 − 𝑛∗.  Let {𝜇𝑖 ,𝜑𝑖   } be an eigenpair of the operator –Δ on Ω with Neumann 

boundary condition, where 0 = 𝜇1 < 𝜇2 < ⋯𝐸(𝜇𝑖) is the eigenspace corresponding to  𝜇𝑖  in 𝐶1 Ω . and 

𝜑𝑖𝑗 , 𝑗 = 1,2,⋯ dim 𝐸(𝜇𝑖) is an orthonormal basis 𝐸 𝜇𝑖 . Let  

𝑊 =   𝑛, 𝑝 𝑇 ∈  𝐶2 Ω ∩ 𝐶1 Ω  2 𝜕𝑛 = 𝜕𝑝 = 0 (13) 

And𝑊𝑖𝑗 =  𝑐𝜑𝑖𝑗  𝑐 ∈ 𝑅2 .Consider the following decomposition 

𝑊 =⊕𝑖=1
∞ 𝑊𝑖(14)  

where𝑊𝑖 =⊕𝑗=1
dim 𝐸 𝜇 𝑖 𝑊𝑖𝑗  and 𝑊𝑖𝑗  is the eigenspace corresponding to 𝜇𝑖 . 

Remark 2.The local stability can be concluded from the eigenvalues of Jacobianmatrix at equilibrium points 

that 𝐸0 and 𝐸1 are always unstable. 

Theorem 4.Assume that 

1 >
𝑝∗

 𝑛^ + 𝛼𝑝∗ 2
−

𝑔

  + 𝑛∗ 2
. (15) 

Then 𝐸∗ is locally asymptotically stable. 

Proof. For each 𝑖 ≥ 1, is invariant under the operator 𝐿 = 𝐷Δ + 𝐺𝑧 𝐸
∗ , and 𝜆 is an eigenvalue of 𝐿 on 𝑋, and 

only if it is an eigenvalue of the matrix – 𝜇𝑖𝐷 + 𝐺𝑧 𝐸
∗ . Denote 

𝐴 𝜇𝑖 ,𝐸
∗ = −𝜇𝑖𝐷 + 𝐺𝑧 𝐸

∗ .                  (16) 

The characteristic equation of 𝐴(𝜇𝑖 ,𝐸
∗) is 

𝜆2 − 𝑡𝑟 𝐴 𝜇𝑖 ,𝐸
∗  𝜆 = det 𝐴 𝜇𝑖 ,𝐸

∗ = 0 (17) 
where 

𝑡𝑟𝐴 𝜇𝑖 ,𝐸
∗ = −𝜇𝑖 𝑑1 + 𝑑2 + 𝑔11

∗ + 𝑔22
∗ = −𝜇𝑖 𝑑1 + 𝑑2 + 𝛽∗ − 𝛽 

det 𝐴 𝜇𝑖 ,𝐸
∗ = 𝑑1𝑑2𝜇𝑖

2 − (𝑑1𝑔22
∗ + 𝑑2𝑔11

∗ )𝜇𝑖 + det 𝐺𝑧 𝐸
∗  

                         = 𝑑1𝑑2𝜇𝑖
2 −  −𝑑1𝛽 + 𝑑2𝛽

∗ 𝜇𝑖 − 𝛽𝛽∗ −
𝛽𝑛∗2

𝛾 𝑛∗ + 𝛼𝑝∗ 2
. 

In the view of conditions (15), it is easy to check that det𝐴(𝜇𝑖𝐸
∗)  > 0) and 𝑡𝑟𝐴 𝜇𝑖𝐸

∗ < 0, for 𝑖 ≥ 1. So, two 

characteristic eigenvalues 𝜆1𝑖 , 𝜆2𝑖0 of 𝐴(𝜇𝑖𝐸
∗) have negative real parts for 𝑖 ≥ 1. Hence the proof is complete. 

 

3.3 Hopf bifurcation 

Here, we derive the conditions for Hopf bifurcation near 𝐸∗ 

Theorem 5.Assume that 𝛽∗ = 𝛽 and 
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𝑛∗2

𝛾(𝑛∗ + 𝛼𝑝∗)2
> 𝛽∗(18𝑎) 

and 

𝑑1 > 𝑑2.(18𝑏) 

Then the system (4) exhibits Hopf bifurcation near 𝐸∗. 

Proof.If 𝛽∗ = 𝛽, it is evident that 𝑡𝑟𝐴 𝜇1,𝐸∗ = 0, 𝑡𝑟 𝐴 𝜇𝑖 ,𝐸
∗  < 0, 𝑖 ≥ 2 and from (18a) det 𝐴 𝜇𝑖 ,𝐸

∗ > 0. 

Transitivity condition 
𝑑𝑡𝑟𝐴  𝜇1 ,𝐸∗ 

𝑏𝛽
= −1 ≠ 0. This assures the existence of a Hopf bifurcation near 𝐸∗. Hence the 

proof. 

 

3.4 Global stability analysis 

In this subsection, we derive the condition for global stability of equilibrium point 𝐸∗.In this regard we construct 

following Lyapunov function 

𝑉 𝑛, 𝑝 =   𝑛 − 𝑛∗ − 𝑛∗ log  
𝑛

𝑛∗
 +

1

𝛽𝛾
 𝑝 − 𝑝∗ − 𝑝∗ log  

𝑝

𝑝∗
   

Ω

𝑑Ω,           (19) 

where(𝑛 𝑥, 𝑡 , 𝑝(𝑥, 𝑡)) be any solution of the system (4). For simplicity, we denote 

𝑃 =
𝛼𝑣∗

𝛿 1 + 𝛼𝑢∗ + 𝛽𝑣∗ 
+

 1 + 𝛼𝑢∗ 2

4 1 + 𝛼𝑢∗ + 𝛽𝑣∗ 2
−

1 + 𝛼𝑢∗

 1 + 𝛼𝑢∗ + 𝛽𝑣∗ 𝛾2 1 + 𝛿  𝛾 + 𝛼𝛾 + 𝛽 1 + 𝛿  
. 

Theorem 6.Assume that 
𝛼𝑣∗

1 + 𝛼𝑢∗ + 𝛽𝑣∗
+

𝑔

( + 𝑢∗)
≤ 1 +

1

1 + 𝛿
(20) 

and 
1

1 + 𝛿
−

1

4𝛾2𝛿2
≥ 𝑃 +

𝑔

𝛿  + 𝑢∗ 
. (21) 

Then the 𝐸∗ is globally asymptotically stable. 

Proof. Now, taking the derivative of 𝑉 with respect to 𝑡 along the trajectory of the system (4), we have 
𝑑𝑉

𝑑𝑡
= 𝐼1 + 𝐼2  

       =   𝑑1  
𝑛 − 𝑛∗

𝑛
 Δ𝑛 +

𝑑2

𝛽𝛾
 
𝑝 − 𝑝∗

𝑝
 Δ𝑝 𝑑Ω

Ω

 

          +   𝑛 − 𝑛∗  1 − 𝑛 −
𝑝

𝑛 + 𝛼𝑝
−

𝑔

 + 𝑛
 +

(𝑝 − 𝑝∗)

𝛾
 1 −

𝛾𝑝

𝑛 + 𝛿
  𝑑Ω.

Ω

 

It is easy to see that from Green’s first identity  

𝐼1 ≤ −  
𝑑1𝑛

∗ Δ𝑛 2

𝑛2
+
𝑑2𝑝

∗ Δ𝑝 2

𝛽𝛾𝑝2
 

Ω

𝑑Ω ≤ 0. 

Furthermore, 

𝐼2 =   𝑛 − 𝑛∗ 2  
𝑝∗

 𝑛∗ + 𝛼𝑝∗  𝑛 + 𝛼𝑝 
+

𝑔

  + 𝑛∗   + 𝑛 
− 1 𝑑Ω −

Ω

  𝑝 − 𝑝∗ 2

Ω

1

𝑛 + 𝛿
𝑑Ω 

        +  𝑛 − 𝑛∗ (𝑝 − 𝑝∗)  
−𝑛∗

 𝑛∗ + 𝛼𝑝∗ (𝑛 + 𝛼𝑝)
+

1

𝛾(𝑛 + 𝛿)
 𝑑Ω

Ω

. 

The above equation can be rewritten as follows 

𝐼2 𝑡 = −   𝑛 − 𝑛∗, 𝑝 − 𝑝∗  
𝑘(𝑛, 𝑝) 𝑙(𝑛, 𝑝)

∗ 𝑚(𝑛, 𝑝)
  

𝑛 − 𝑛∗

𝑝 − 𝑝∗  𝑑Ω
Ω

(22) 

where 

𝑘 𝑛, 𝑝 = 1 −
𝑝∗

 𝑛∗ + 𝛼𝑝∗  𝑛 + 𝛼𝑝 
−

𝑔

  + 𝑛∗   + 𝑛 
 

𝑙 𝑛, 𝑝 =
1

2

𝑛∗

 1 + 𝛼𝑢∗ + 𝛽𝑣∗  1 + 𝛼𝑢 + 𝛽𝑣 
−

1

2

1

𝛾 𝑢 + 𝛿 
 

𝑚 𝑛, 𝑝 =
1

𝑛 + 𝛿
. 

It is obvious that 
𝑑𝑉

𝑑𝑡
< 0 if and only if the matrix integrand of (22) is positive define, which is equivalent to 

𝜙1 𝑛, 𝑝 = 𝑘 + 𝑚 > 0 and 𝜙2 𝑛,𝑝 = 𝑚𝑘 − 𝑙2 > 0, where 

𝜙1 = 1 +
1

𝑛 + 𝛿
−

𝑝∗

 𝑛∗ + 𝛼𝑝∗  𝑛 + 𝛼𝑝 
−

𝑔

  + 𝑛∗   + 𝑛 
, (23) 
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𝜙2 =
1

𝑛 + 𝛿
−

𝑝∗

 𝑛 + 𝛿  𝑛∗ + 𝛼𝑝∗  𝑛 + 𝛼𝑝 
−

𝑔

 𝑛 + 𝛿   + 𝑛∗   + 𝑛 
−

𝑛∗2

4 𝑛∗ + 𝛼𝑝∗ 2 𝑛 + 𝛼𝑝 2
 

−
1

4𝛾2 𝑢 + 𝛿 2
+

1

2

𝑛∗

 𝑛∗ + 𝛼𝑝∗  𝑛 + 𝛼𝑝 𝛾 𝑛 + 𝛿 
.                                                                          (24)  

By the conditions (20) and (21), we conclude that 𝜙1 𝑛, 𝑝 > 0 and 𝜙2 𝑛, 𝑝 > 0.Hence, the equilibrium point 

𝐸∗ is globally asymptotically stable. 

 

IV. THE EXISTENCE AND NON-EXISTENCE OF NON-CONSTANT POSITIVE EQUILIBRIA 

In this section, our aim is to study the existence and nonexistence of non-constant positive solution of steady 

state problem (25). Consider the steady-state problem of (4) as follows 

−𝑑1∇
2𝑛 = 𝑛  1 − 𝑛 −

𝑝

𝑛 + 𝛼𝑝
−

𝑔

 + 𝑢
 , 𝑥 ∈ Ω                                                                                   (25a) 

−𝑑2∇
2𝑝 = 𝛽𝑝  1 −

𝛾𝑣

𝑢 + 𝛿
 , 𝑥 ∈ Ω,                                                                                                            25b  

𝜕∗𝑛 = 𝜕∗𝑝 = 0, 𝑥 ∈ 𝜕Ω(25c) 

 

4.1 A priori estimate 

Now, we introduce some lemmas which used in this section. 

Lemma 2.(Maximum Principle). Let 𝑔 𝑥,𝑤 ∈ 𝐶 𝛺 × ℝ1  and 𝑏𝑗  𝑥 ∈ 𝐶 𝜔 , 𝑗 = 1,2,⋯ ,𝑁. 

1. if 𝑤 𝑥 ∈ 𝐶2 𝛺 ∩ 𝐶1 𝛺   satisfies 𝛥𝑤 𝑥 +  𝑏𝑗  𝑥 𝑤𝑥 𝑗
+ 𝑔 𝑥,𝑤 𝑥  ≥ 0𝑁

𝑗=1  in 𝛺,
𝜕𝑤

𝜕𝑛
≤ 0,  and 

𝑤 𝑥0 = 𝑚𝑎𝑥𝛺 𝑤 then 𝑔 𝑥0 ,𝑤 𝑥0  ≥ 0. 

2. if 𝑤 𝑥 ∈ 𝐶2 𝛺 ∩ 𝐶1(𝛺 ) satisfies 𝛥𝑤 𝑥 +  𝑏𝑗  𝑥 𝑤𝑥 𝑗
+ 𝑔 𝑥,𝑤 𝑥  ≤ 0𝑁

𝑗=1  in 𝛺,
𝜕𝑤

𝜕𝑛
≥  0,  and 

𝑤 𝑥0 = 𝑚𝑖𝑛𝛺 𝑤 then 𝑔 𝑥0,𝑤 𝑥0  ≤ 0. 

Lemma 3. (Harnack Inequality). Let 𝑐 𝑥 ∈ 𝐶 𝛺  , and 𝑤 𝑥 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺) be positive solution to 

𝛥𝑤 𝑥 + 𝑐 𝑥 𝑤 𝑥 = 0 in 𝛺 subject to homogeneous Neumann boundary condition. There exists a positive 

constant 𝐶 = 𝐶 𝑁,𝛺,  𝑐 𝑥  ∞  such that 𝑚𝑎𝑥𝛺 𝑤 𝑥 ≤ 𝐶𝑚𝑖𝑛𝛺 𝑤  𝑥 . 
Theorem 7.(Upper bounds). For any positive solution of (25) 

max
x∈Ω

𝑛 𝑥 ≤ 1andmax
x∈Ω

𝑝 𝑥 ≤
1+𝛿

𝛾
.                                                                                                                 (26) 

Proof. By Theorem 1 and comparison argument to (25), we easily obtain (26). 

Theorem 8.(Lower bounds). Let 𝑑 be a fixed positive constant. Then for 𝑑1,𝑑2 > 𝑑, there exists a positive 

constant 𝐶 = 𝐶 𝑑  such that 

min
x∈Ω

𝑛 𝑥 ≥ 𝐶andmin
x∈Ω

𝑝 𝑥 ≥ 𝐶.                                                                                                                      (27) 

Proof.Let 

𝑛 𝑥1 = min
x∈Ω

𝑛 𝑥 ,𝑛 𝑥2 = max
x∈Ω

𝑛 𝑥 , 𝑝 𝑦1 = min
y∈Ω

𝑝 𝑦 , 𝑝 𝑦2 = max
y∈Ω

𝑝 𝑦 . 

By Lemma (2), we have  

1 ≤ 𝑛 𝑥2 +
𝑝 𝑥1 

𝑛 𝑥1 + 𝛼𝑝 𝑥1 
+

𝑔

 + 𝑛 𝑥1 
 28a  

1 ≤
𝛾𝑝 𝑦1 

𝑛 𝑦1 + 𝛿
 28b  

1 ≥
𝛾𝑝 𝑦2 

𝑛 𝑦2 + 𝛿
.                                                                                                                                                        (28c) 

From (28b) and (28c), we respectively get 
𝛿 + 𝑛 𝑥1 

𝛾
≤

𝛿 + 𝑛 𝑦1 

𝛾
≤ 𝑝 𝑦1 ,                                                                                                                          (29) 

and 
𝛿 + 𝑛 𝑥2 

𝛾
≤

𝛿 + 𝑛 𝑦2 

𝛾
≤ 𝑝 𝑦2 ,                                                                                                                         (30) 

Since 0 <
1

𝑛 𝑥1 +𝛼𝑝 (𝑥1)
< 1 and (30), it follows that  

                    1 ≤ 𝑛 𝑥1 +
𝑝 𝑥1 

𝑛 𝑥1 + 𝛼𝑝 𝑥1 
+

𝑔

 + 𝑛 𝑥1 
 

≤ 𝑛 𝑥1 + 𝑝 𝑥1 +
𝑔


 

≤ 𝑛 𝑥1 + 𝑝 𝑦2 +
𝑔
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≤ 𝑛 𝑥1 +
𝛿 + 𝑛 𝑥2 

𝛾
+
𝑔


 

≤ 𝑛 𝑥1 + 𝑀𝑛 𝑥2 , (31) 

where𝑄 is a large enough positive constant, such that 𝛾−1 𝛿 + 𝑛 𝑥2  + 𝑔−1 ≤ 𝑄𝑛 𝑥2 . Define  

𝑐 𝑥 = 𝑑1
−1  1 − 𝑛 −

𝑝

𝑛 + 𝛼𝑝
−

𝑔

 + 𝑛
  , 

then by Lemma 3, it is known that 

𝑛 𝑥2 ≤ 𝐶1𝑛 𝑥1 (32) 

where𝐶1 depends on  𝑐 𝑥  . From (31), we obtain 

min
𝑥∈Ω

𝑛 𝑥 = 𝑛 𝑥1 ≥  𝑀𝐶1 + 1 −1 ≔ 𝐶2 .                                                                 (33) 

From (29)  

min
𝑥∈Ω

𝑝 𝑥 = 𝑝 𝑦1 ≥ 𝛾−1𝛿 + 𝛾−1 𝑀𝐶1 + 1 −1 ≔ 𝐶3 .                                          (34) 

Finally, let 𝐶 = 𝑚𝑖𝑛{𝐶2,𝐶3}which completes the proof. 

 

4.2 Nonexistence of nonconstant positive equilibrium 

Theorem 9.There exist two constants 𝑑1
∗,𝑑2

∗ and if 𝑑1 > 𝑑1
∗and 𝑑2 > 𝑑2

∗  then the system (25) has no constant 

solutions. 

Proof.Suppose that  𝑛, 𝑝  is a positive solution of (25), and let 𝑛 =
1

Ω
 𝑛(𝑥)

Ω
𝑑𝑥and  

𝑝 =
1

Ω
 𝑛(𝑥)

Ω
𝑑𝑥. By multiplying 𝑛 − 𝑛to  (25a), then integrating on Ωand noting no-flux boundary condition, 

we arrive that  

𝑑1   Δ 𝑛 − 𝑛  2

Ω

𝑑𝑥 =  𝑔1 𝑛, 𝑝  𝑛 − 𝑛 
Ω

𝑑𝑥 =   𝑛 − 𝑛  𝑔1 𝑛, 𝑝 − 𝑔1 𝑛, 𝑝  
Ω

𝑑𝑥 

=   𝑛 − 𝑛  𝑛 − 𝑛2 −
𝑛𝑝

𝑛 + 𝛼𝑝
−

𝑔𝑛

 + 𝑛
− 𝑛 − 𝑛

2
−

𝑛𝑝

𝑛 + 𝛼𝑝
−

𝑔𝑛

 + 𝑛
 

Ω

𝑑𝑥 

=    1 − 𝑛 − 𝑛 −
𝛼𝑝𝑝

 𝑛 + 𝛼𝑝  𝑛 + 𝛼𝑝 
−

𝑔

  + 𝑢   + 𝑢 
  𝑢 − 𝑢

2
 −

𝑛𝑛 𝑛 − 𝑛  𝑝 − 𝑝 

 𝑛 + 𝛼𝑝  𝑛 + 𝛼𝑝 
 

Ω

𝑑𝑥. 

According to Theorem 7 and 8, it follows that 

𝑑1   Δ 𝑛 − 𝑛  2

Ω

𝑑𝑥 ≤   1 −
𝛼𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2 −

𝑔

  + 1 2
  𝑛 − 𝑛

2
 

Ω

𝑑𝑥 

−  
𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2  𝑛 − 𝑛  𝑝 − 𝑝 

Ω

𝑑𝑥 .                                       (35) 

By the same way, we can get the following  

𝑑2   Δ 𝑝 − 𝑝  2

Ω

𝑑𝑥 =  𝑔2 𝑛, 𝑝  𝑝 − 𝑝 
Ω

𝑑𝑥 =   𝑝 − 𝑝  𝑔2 𝑛, 𝑝 − 𝑔2 𝑛, 𝑝  
Ω

𝑑𝑥 

= 𝛽  𝑝 − 𝑝  𝑝 −
𝛾𝑝2

𝑛 + 𝛿
− 𝑝 −

𝛾𝑝
2

𝑛 + 𝛿
 

Ω

𝑑𝑥 

=    1 −
𝛾 𝑝 + 𝑝 

𝑛 + 𝛿
  𝑝 − 𝑝 2𝑑𝑥 +

𝛾𝑝
2
 𝑛 − 𝑛  𝑝 − 𝑝 

 𝑛 + 𝛿  𝑛 + 𝛿 
 

Ω

𝑑𝑥 

=   𝛽 −
2𝛽𝛾𝐶

1 + 𝛿
  𝑝 − 𝑝 2𝑑𝑥 +  

𝛽 1 + 𝛿 2

𝛾 𝐶 + 𝛿 
2

ΩΩ

 𝑛 − 𝑛  𝑝 − 𝑝 𝑑𝑥. 

Thus, by Young’s inequality, we obtain 

𝑑1   Δ 𝑛 − 𝑛  2

Ω

𝑑𝑥 +  𝑑2   Δ 𝑝 − 𝑝  2

Ω

𝑑𝑥 

≤   1 −
𝛼𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2 −

𝑔

  + 1 2
  𝑢 − 𝑢2 

Ω

𝑑𝑥 +  𝛽  1 −
2𝛾𝐶

1 + 𝛿
  𝑝 − 𝑝 2𝑑𝑥

Ω

+   
𝛽 1 + 𝛿 2

𝛾 𝐶 + 𝛿 
2 −

𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2  𝑛 − 𝑛  𝑝 − 𝑝 

Ω

𝑑𝑥 ,  

≤   1 −
𝛼𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2 −

𝑔

  + 1 2
+

1

4𝜖
 
𝛽 1 + 𝛿 2

𝛾 𝐶 + 𝛿 
2 −

𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2   𝑛 − 𝑛

2
 

Ω

𝑑𝑥 
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+  𝛽 −
2𝛽𝛾𝐶

1 + 𝛿
+ 𝜖  

𝛽 1 + 𝛿 2

𝛾 𝐶 + 𝛿 
2 −

𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2   𝑝 − 𝑝 2𝑑𝑥

Ω

 

where𝜖 is an enough small positive value. Using the Poincare inequality, we obtain 

 (𝑑1𝜇2  𝑛 − 𝑛  2

Ω

𝑑𝑥 +  𝑑2𝜇  𝑝 − 𝑝  2

Ω

)𝑑𝑥 ≤  (𝑑1 Δ 𝑛 − 𝑛  2

Ω

𝑑𝑥 +  𝑑2 Δ 𝑝 − 𝑝  2)
Ω

𝑑𝑥. 

Let  

𝑑1
∗ =

1

𝜇2

 1 −
𝛼𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2 −

𝑔

  + 1 2
+

1

4𝜖
 
𝛽 1 + 𝛿 2

𝛾 𝐶 + 𝛿 
2 −

𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2   

𝑑2
∗ =

1

𝜇2

 𝛽 −
2𝛽𝛾𝐶

1 + 𝛿
+ 𝜖  

𝛽 1 + 𝛿 2

𝛾 𝐶 + 𝛿 
2 −

𝛾2𝐶2

 𝛾 + 𝛼 1 + 𝛿  
2  . 

If 𝑑1 > 𝑑1
∗and 𝑑2 > 𝑑2

∗  then we can obtain 𝑛 = 𝑛and 𝑝 = 𝑝. Hence, the proof is complete. 

 

4.3 Existence of non-constant positive equilibria 

Now, we will study the existence of non-constant solutions of (25). From now on, the diffusion 

coefficients 𝑑1,𝑑2 vary, while other parameters are kept fixed. Based on Theorem 4, the necessary conditions of 

no non-constant solution of (25) are 1 <
𝑝∗

 𝑛∗+𝛼𝑝∗ 2 +
𝑔

 +𝑛∗ 2and   − 𝑔 𝛼𝛿 < 𝛿, so we assume these conditions 

throughout this section. By Theorem 6 and 7, there exists a constant 𝐶 and define 

𝐵 𝐶 ≔   𝑛, 𝑝 ∈ 𝑋|𝐶−1 < 𝑛, 𝑝 < 𝐶 .                                                                                                                (37) 

Equation (25) can be rewritten as follows 

−Δ𝒛 = 𝐷−1𝐺 𝒛                                                                                                                                                         (38) 
𝜕𝒛

𝜕𝑛
= 0.                                                                                                                                                                         (39) 

Thus 𝒛 is positive solution to (25) if and only if 

𝐹 𝑑1,𝑑2 , 𝒛 ≔ 𝒛 −  𝐼 − Δ −1 𝐷−1𝐺 𝒛 + 𝒛 = 0, on 𝑋,                                                                        (40) 

where𝐼 is an identity operator and  𝐼 − Δ −1 is the inverse of  𝐼 − Δ . Since 𝐹 is compact perturbation of the 

identity operator, the Leray-Schauder degree deg(𝐹, 0,𝐵(𝐶)) is well-defined if 𝐺 ≠ 0 on 𝜕𝐵. Furthermore, we 

note that 

𝐷𝒛 𝑑1 ,𝑑2,𝐸∗ ≔ 𝐼 −  𝐼 − Δ −1 𝐷^(−1) 𝐺_𝒛 (𝐸^ ∗ ) + 𝐼 ,                                                                           (41) 

we remember that if 𝐷𝒛𝐹(𝑑1 ,𝑑2,𝐸∗) is invertible, the index 𝐺 𝑑1,𝑑2 , 𝒛  at the isolated fixed point 𝐸∗ is defined 

as index 𝐹 𝑑1 ,𝑑2,𝐸∗ =  −1 𝑟 , where 𝑟 is the no. of eigenvalues of 𝐷𝒛𝐹(𝑑1 ,𝑑2𝐸
∗) with –ve real parts. If 

𝐺 ≠ 0on 𝜕𝐵(𝐶), then the degree deg(𝐹 𝑑1,𝑑2 , 𝒛 , 0,𝐵(𝐶)) is equal to the sum of the indexes over all isolated 

solutions to 𝐹 𝑑1 ,𝑑2, 𝒛 ≔ 0 in 𝐵 𝐶 . 
By using decomposition (14), we will discuss the eigenvalues of 𝐷𝒛𝐹(𝑑1,𝑑2 ,𝐸∗). First, we known 𝑊𝑖𝑗  is 

invariant under 𝐷𝒛𝐹(𝑑1,𝑑2𝐸
∗) for each integer 𝑖 ≥ 1 and each 1 ≤ 𝑗 ≤ dim 𝐸(𝜇𝑖).Thus𝜆 is an eigenvalue of 

𝐷𝒛𝐹(𝑑1 ,𝑑2𝐸
∗) on 𝑊, if and only if it is an eigenvalue of the matrix 

1 −
1

1 + 𝜇𝑖
 𝐷−1𝐺𝒛 𝐸

∗ + 𝐼 =
1

1 + 𝜇𝑖
 𝜇𝑖𝐼 − 𝐷−1𝐺𝒛 𝐸

∗  .                                                                            (42) 

Thus, 𝐷𝒛𝐹(𝑑1 ,𝑑2 ,𝐸∗) is invertible if and only if 

1 −
1

1 + 𝜇𝑖
 𝐷−1𝐺𝒛 𝐸

∗ + 𝐼                                                                                                                                    (43) 

is non-singular. Thus 𝜆 is an eigenvalue of 𝐷𝒛𝐹(𝑑1 ,𝑑2,𝐸∗) on 𝑊𝑖  if and only if 𝜆(1 + 𝜇𝑖) is an eigenvalue of 𝑀𝑖  

𝑀𝑖 ≔ 𝜇𝑖𝐼 − 𝐷−1𝐺𝒛 𝐸
∗ =  

𝜇𝑖 − 𝑑1
−1𝑔11 𝐸

∗ −𝑑2
−1𝑔12 𝐸

∗ 

−𝑑2
−1𝑔21 𝐸

∗ 𝜇𝑖 − 𝑑2
−1𝑔22 𝐸

∗ 
 .                                                            (44) 

Obviously, 

det 𝑀𝑖 = 𝑑1
−1𝑑2

−1{𝑑1𝑑2𝜇𝑖
2 −  𝑑2

−1𝑔11 𝐸
∗ + 𝑑1

−1𝑔22 𝐸
∗  𝜇𝑖 + det 𝐺𝒛(𝐸∗)}                                             (45) 

The trace of 𝑀𝑖  is 

𝑡𝑟 𝑀𝑖 = 2𝜇𝑖 − 𝑑1
−1𝑔11 𝐸

∗ − 𝑑2
−1𝑔22 𝐸

∗                                                                                                          (46) 

Let 𝐻 𝑑1,𝑑2 , 𝜇 = 𝑑1𝑑2𝜇 −  𝑑2
−1𝑔11 𝐸

∗ + 𝑑1
−1𝑔22 𝐸

∗  𝜇 + det 𝐺𝒛(𝐸∗), then 𝐻 𝑑1 ,𝑑2, 𝜇𝑖 = 𝑑1𝑑2 det 𝑀𝑖 , If 
 𝑑2

−1𝑓11 𝐸
∗ + 𝑑1

−1𝑓22 𝐸
∗  2 > 4𝑑1𝑑2 det 𝐺𝒛 𝐸

∗ .                                                                                           (47) 

Then 𝐻 𝑑1,𝑑2 , 𝜇 = 0 has no real parts: 

𝜇+ 𝑑1 ,𝑑2, 𝜇 =
𝑑1𝑔22 𝐸

∗ + 𝑑2𝑔11 𝐸
∗ +   𝑑2

−1𝑓11 𝐸
∗ + 𝑑1

−1𝑓22 𝐸
∗  2 − 4𝑑1𝑑2 det 𝐺𝒛 𝐸

∗ 

2𝑑1𝑑2

,       (48) 
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𝜇− 𝑑1 ,𝑑2, 𝜇 =
𝑑1𝑔22 𝐸

∗ + 𝑑2𝑔11 𝐸
∗ −   𝑑2

−1𝑓11 𝐸
∗ + 𝑑1

−1𝑓22 𝐸
∗  2 − 4𝑑1𝑑2 det 𝐺𝒛 𝐸

∗ 

2𝑑1𝑑2

.        (49) 

Let 𝐴 𝑑1 ,𝑑2 =  𝜇 𝜇 ≥ 0, 𝜇+ 𝑑1 ,𝑑2 < 𝜇 < 𝜇− 𝑑1 ,𝑑2  , 𝑆𝑝 = {𝜇1, 𝜇2,⋯ } and 𝑚(𝜇𝑖) be the multiplicity of the 

eigenvalue 𝜇𝑖 . 
Lemma 4.Suppose 𝐻 𝑑1,𝑑2 , 𝜇 ≠ 0, for all 𝜇𝑖 ∈ 𝑆𝑝 , then 

𝑖𝑛𝑑𝑒𝑥  𝐺 𝑑,𝑑2 ,⋅ , 𝑧∗ =  −1 𝜎 ,                                                                                                                                    (50) 

where 

𝜎 =  
 𝑚 𝜇𝑖 , 𝐴 ∩ 𝑆𝑝 ≠ Φ,

𝜇 𝑖∈𝐴∩𝑆𝑝

0,                                𝐴 ∩ 𝑆𝑝 = Φ.

                                                                                                                  (51) 

In particular, if  𝐻 𝑑1 ,𝑑2, 𝜇 > 0 for any 𝜇 > 0, then 𝜎 = 0. 

Theorem 10.Assume  1 <
𝑝∗

 𝑛∗+𝛼𝑝∗ 2 +
𝑔

 +𝑛∗ 2 ,   − 𝑔 𝛼𝛿 < 𝛿 and 𝑓11/𝑑1 ∈ (𝜇𝑛 ,𝜇𝑛+1) for some 𝑛 and 

𝑟𝑛 =  𝑚 𝜇𝑖 
𝑛
𝑖=1  is odd, then there exists 𝑑∗ > 0, such that (25) has atleast one non-constant positive solution 

when 𝑑2 ≥ 𝑑∗. 
Proof. If (10) holds with conditions H1 or H2 or H3, then (25) possess unique positive constant equilibrium 𝐸∗. 

Furthermore, if 1 <
𝑝∗

 𝑛∗+𝛼𝑝∗ 2 +
𝑔

 +𝑛∗ 2 then 𝑔11 𝐸
∗ > 0 and 𝑓22 𝐸

∗ > 0 It follows that if  𝑑2 is large enough 

then (47) is easily obtained, and  

0 < 𝜇− 𝑑1 ,𝑑2 < 𝜇+ 𝑑1,𝑑2 = 0.                                                                                                                        (52) 
Furthermore, 

lim
𝑑2→∞

𝜇+ 𝑑1 ,𝑑2 =
𝑓11

𝑑1 

, lim
𝑑2→∞

𝜇− 𝑑1 ,𝑑2 = 0.                                                                                                     (53) 

Since  𝑓11/𝑑1 ∈ (𝜇𝑛 , 𝜇𝑛+1), there exists 𝑑0 >> 1 such that 

𝜇+ 𝑑1 ,𝑑2 ∈  𝜇𝑛 , 𝜇𝑛+1 , 0 < 𝜇− 𝑑1,𝑑2 < 𝜇2, for any𝑑2 ≥ 𝑑0.                                                                  (54) 

According to Theorem 9, it is evident that there exists a large enough 𝑑0 such that 𝑑1 > 𝑑0 and (25) 

corresponding to 𝑑1 = 𝑑,𝑑2 ≥ 𝑑 has no non-constant positive solution. Moreover, we can take enough large 𝑑 

such that 0 < 𝑓11/𝑑1 < 𝜇2, so there exists 𝑑∗ > 𝑑 such that 

0 < 𝜇−1 𝑑1,𝑑2 < 𝜇2,   for any𝑑2 ≥ 𝑑∗(55) 

    Now we are going to prove (25) has at least one non-constant positive solution by the namely, we assume that 

this assertion is not true for 𝑑2 ≥ 𝑑∗. Then, a required contradiction is made by using a homotopy argument. Fix 

𝑑2 = 𝑑∗ and define 

𝐷 𝑡 =  
𝑡𝑑1 + (1 − 𝑡)𝑑 0

0 𝑡𝑑2 +  1 − 𝑡 𝑑∗ (56) 

and consider the following problem 

−Δ𝒛 = 𝐷−1𝐺 𝒛  
𝜕𝒛

𝜕𝑛
= 0.                                                                                                                                                                     (57) 

Then 𝒛 is non-constant positive solution of (25) if and only if it is a non-constant positive solution of equation 

(57) when 𝑡 = 1. It is clear that 𝐸∗ is unique constant positive solution of (57) for 𝑡 ∈ [0,1] We know that 𝒛 is 

positive solution of (57) for 𝑡 ∈ [0,1] if and only if 

𝐺 𝑡, 𝒛 ≔ 𝒛 −  𝐼 − Δ −1 𝐷−1𝐺 𝒛 + 𝒛 = 0.                                                                                                    (58) 

where𝒛 ∈ 𝑋+.  Obviously, 𝐹 1, 𝒛 = 𝐹 𝑑1 ,𝑑2, 𝒛 , see equation (40). Via Theorem 9, it is well known that 

𝐹 0, 𝒛 = 0 has only one positive constant solution 𝐸∗ in 𝑋+.By direct computation, we obtain 

𝐷𝒛𝐹 𝑡,𝐸∗ = 𝐼 −  𝐼 − Δ −1 𝐷−1𝐺𝒛 𝐸
∗ + 𝐼 .                                                                                                   (59) 

In specific 

𝐷𝒛𝐹 0,𝐸∗ = 𝐼 −  𝐼 − Δ −1 𝐷 −1𝐺𝒛 𝐸
∗ + 𝐼                                                                                                    (60) 

𝐷𝒛𝐹 1,𝐸∗ = 𝐼 −  𝐼 − Δ −1 𝐷−1𝐺𝒛 𝐸
∗ + 𝐼 = 𝐷𝒛𝐹 𝑑1 ,𝑑2,𝐸∗ ,                                                                (61) 

 

where𝐷 −1 = 𝑑𝑖𝑎𝑔{𝑑,𝑑∗} From (54) and (55), we have 𝐴 𝑑1 ,𝑑2 ∩ 𝑆𝑝  and 𝐴(𝑑,𝑑∗) ∩ 𝑆𝑝  Since 𝑟𝑛  is odd, 

Lemma 4 yields 

index 𝐹 1,⋅ ,𝐸∗ =  −1 𝑟𝑛 = −1, index 𝐹 0,⋅ ,𝐸∗ =  −1 0 = −1.                                                       (62) 

From Theorem 7 and 8, there exists 𝐶 𝑑,𝑑1 ,𝑑∗,𝑑2
∗ , Λ > 0 and 𝐶 𝑑,𝑑1 ,𝑑∗,𝑑2

∗ , Λ > 0 such that the positive 

solution of (25) satisfies 𝐶 < 𝑛 𝑥 , 𝑝(𝑥)𝐶 for all 𝑡 ∈  0,1 . Define 𝐵∗ = {𝒛 ∈  𝑋 2,𝐶 ≤ 𝑛 𝑥 , 𝑝 𝑥 𝐶, 𝑥 ∈ Ω} 

then 𝐹 𝑡, 𝒛 ≠ 0  for all 𝒛 ∈ ∂B∗ and 𝑡 ∈  0,1 .By using homotopy invariance of the Leray-Schauder degree, we 

get  
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deg(𝐹 1,⋅ ,𝐵∗, 0) = deg 𝐹 0,⋅ ,𝐵∗, 0 .                                                                                                              (63) 

Note that both equations 𝐹 0, 𝒛 = 0 and 𝐹 1, 𝒛 = 0 have unique positive solutions 𝑢∗in 𝐵∗, then 

deg 𝐹 0,⋅ ,𝐵∗, 0 = index 𝐹 0,⋅ ,𝐸∗ = 1,                                                                         (64) 

deg 𝐹 0,⋅ ,𝐵∗, 0 = index 𝐹 1,⋅ ,𝐸∗ = −1,                                                                                                    (65) 
which contradict (63). The proof is complete. 
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