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ABSTRACT: It was proved that wheneveris partitioned into finitely manycells, one cell must contain arbitrary 

length geo-arithmetic progressions. It was also proved that arithmetic and geometric progressions can be nicely 

in-entwined in one cell of partition, whenever ℕ is partitioned into finitely many cells. In this article we shall 

prove that similar types of results also hold near zero in some suitable dense sub semigroup S of ((0, ∞) ,+), 

using the Stone-Čech compactification βS. 
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I. INTRODUCTION 
 One of the famous Ramsey theoretic results is van der Waerden’s Theorem [11], which says that 

whenever the set N of natural numbers is divided into finitely many classes, one of these classes contains 

arbitrarily long arithmetic progressions. The analogous statement about geometric progressions is easily seen to 

be equivalent via the homomorphisms p: (ℕ, +) → (ℕ, ·) such that p (x) = 2
x
, andq: (ℕ \ {1}, ·) → (ℕ, +),where 

q (x) is the length of the prime factorization of x. 

 It has been shown in [1, Theorem 3.11] that any set which is multiplicatively large, that is a piecewise 

syndetic IP set in (ℕ, · ) must contain substantial combined additive and multiplicative structure; in particular it 

must contain arbitrarily large geo-arithmetic progressions, that is, sets of the formr
j
(a + id) :i, j ∈{1, 2, . . . , k}. 

 A well-known extension of van der Waerden’s Theorem allows one to get the additive increment of the 

arithmetic progression in the same cell as the arithmetic progression. Similarly, for any finite partition of N there 

exist some cell A and b, r ∈ℕsuch that r, b, br, . . . , brk ⊆ A. It is proved in [1, Theorem 1.5] that these two 

facts can be intertwined. 

 

Theorem 1.1. Let r, k∈ℕ and ℕ=∪i=1
r Ai. Then there existss∈{1,2, . . ., r}and a, b, d ∈ As, such that 

 b a +  id j: i, j ∈ {0, 1, . . . , k} ꓴ bdj ∶  j ∈  {0, 1, . . . , k}  

ꓴ{a + id : i∈ {0, 1, . . . , k}}⊆As 

 

 We know that if A⊆ℕ belongs to every idempotent in βℕ, then it is calledan IP* set. Given a sequence 

 xn n=1
∞  in ℕ, we let FP xn n=1

∞  be the product analogue of Finite Sum. Given a sequence xn n=1
∞ in ℕ, we say 

that  yn n=1
∞  is a sum subsystem of  xn n=1

∞  provided there is a sequence  Hn n=1
∞  of nonempty finite subsets of 

ℕ such that max Hn< min Hn+1, and yn =  xtt∈Hn
 for each n ∈ ℕ. 

 

Theorem 1.2. Let  xn n=1
∞  be a sequence in ℕ and A be an IP* set in (ℕ,+). Then there exists a sum subsystem 

 yn n=1
∞   of  xn n=1

∞   such thatFS yn n=1
∞ ∪FP yn n=1

∞ ⊆ A. 

 

Proof.  [2, Theorem 2.6] or see [9, Corollary 16.21]. 

 

 The algebraic structure of the smallest ideal of βS has played a significant role in Ramsey Theory. It is 

known that any central subset of (ℕ, +) is guaranteed to have substantial additive structure. But Theorem 16.27 

of [9] shows that central sets in (ℕ, +) need not have any multiplicative structure at all. On the other hand, in [2] 

we see that sets which belong to every minimal idempotent of ℕ, called central* sets, must have significant 

multiplicative structure. 

In case of central* sets a similar result has been proved in [4] for a restricted class of sequences called minimal 

sequences, where a sequence  xn n=1
∞  in N is said to be a minimal sequence if 
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∩m=1
∞ FS  xn n=1

∞                                ∩ K βN ≠ ∅. 
 

Theorem 1.3. Let  yn n=1
∞  be a minimal sequence and A be a central* set in (ℕ,+). Then there exists a sum 

subsystem xn n=1
∞ of yn n=1

∞ such thatFS( xn n=1
∞ )∪ FP ( xn n=1

∞ )⊆A. 

 

Proof.[2, Theorem 2.4]. 

 

A similar result in this direction in the case of dyadic rational numbers has been proved by Bergelson, Hindman 

and Leader. 

 

Theorem 1.4. There exists a finite partition 𝔻\ {0}=∪i=1
r Ai such that there do not exist i∈{1,2, . . . , r} and a 

sequence  xn n=1
∞  withFS( xn n=1

∞ )∪ FP ( xn n=1
∞ )⊆Ai. 

Proof.[3, Theorem 5.9]. 

 

In [3], the authors also presented the following conjecture and question. 

 

Conjecture 1.5.There exists a finite partition ℚ\ {0}=∪i=1
r Ai  such that there do not exist i∈{1,2, . . . , r} and a 

sequence  xn n=1
∞  withFS( xn n=1

∞ )∪ FP ( xn n=1
∞ )⊆Ai. 

 

Problem 1.6. Does there exists a finite partition ℝ\ {0}=∪i=1
r Ai  such that there do not exist i∈{1,2, . . . , r} and 

a sequence  xn n=1
∞  withFS( xn n=1

∞ )∪ FP ( xn n=1
∞ )⊆Ai ? 

 

 In the section 2, we shall first work on some combined algebraic properties near 0 in the ring of 

quaternions, denoted byℍ. The ring being non-abelian, is a division ring having an idempotent 0. In section 3, 

for any suitable dense sub semigroup S of ((0, ∞), +), our aim is to establish partition regularity among two 

matrices using additive and multiplicative structure of βS, Stone-Čech compactification of S. 

 

II. COMBINED ALGEBRAIC  AND  MULTIPLICATIVE  PROPERTIES 
NEARAN IDEMPOTENT IN  RELATION  WITH  QUATERNION  RINGS 

 

In the following discussion our aim is to extend Theorem 1.2 and Theorem 1.3 for dense subsemigroups (ℍ, +) 

in the appropriate context. 

 

Definition 2.1. IfSis a dense subsemigroup of(ℍ,+), we define0
+
(S) ={p∈βSd: ( r >0)(Bd(r)∈ p)}. 

 It is proved in [7], that 0+(S) is a compact right topological subsemigroup of (βSd, +) which is disjoint 

fromK(βSd) and hence gives some new informationwhich are not available from K(βSd). Being compact right 

topological semigroup 0+(S) contains minimal idempotents of 0+(S). A subsetAofSis said to be IP*-setnear 0 if 

it belongs to every idempotent of 0+(S) and a subset C of S is said to be central* set near 0 if it belongs to every 

minimal idempotent of 0+(S). In [5] the authors applied the algebraic structure of 0+(S) on their investigation of 

image partition regularity near 0 of finite and infinite matrices. Article [6] used algebraic structure of 0+(R) to 

investigate image partition regularity of matrices with real entries from R. 

 

Definition 2.2.LetSbe a dense subsemigroup of(ℍ,+). A subsetAofSis said to be an IP setnear 0 if there exists a 

sequence  𝑥𝑛  𝑛=1
∞  with  𝑥𝑛

∞
𝑛=1  converges such that FS( 𝑥𝑛 𝑛=1

∞ )⊆A. We call a subset D of S is an IP* set near 

0 if for every subset C of S which is IP set near 0, C ∩ D is IP set near 0. 

 

From [10, Theorem 3.2], it follows that for a dense subsemigroup S of (ℍ, +) a subset A of S is an IP set near0 

if only if there exists some idempotent p ∈0
+
(S) with A ∈ p. Further it can be easily observed that a subset D of 

S is an IP* set near 0 if and only if it belongs to every idempotent of 0
+
(S). 

Given c ∈H\ {0} and p ∈ βℍd, the product c·p and p·c are defined in (βℍd, ·). One has A ⊆ℍ is a member of c·p 

if and only if c−
1
A ={x ∈ℍ:c·x∈ A} is amember of p and similarly for c·p. 

 

Lemma 2.3. Let S be a dense subsemigroup of (ℍ,+) such that S∩ℍis a sub-semigroup of (ℍ\ {0},·). If A is an 

IP set near 0 in S then sA is also an IP set near 0 for every s∈S∩Bd(1)\ {0}. Further if A is a an IP* set near 0 in 

(S,+) then both s
−1

A and As
−1

 are IP set near 0 for every s∈S∩Bd(1)\ {0}. 

 

Proof.SinceAis an IP set near0then by [7, Theorem 3.1] there exists a sequence 𝑥𝑛  𝑛=1
∞  in S with the property 

that  𝑥𝑛
∞
𝑛=1  converges and FS(  𝑥𝑛  𝑛=1

∞ )⊆A. This implies that   𝑠. 𝑥𝑛 
∞
𝑛=1  is also convergent and 

FS( 𝑠𝑥𝑛  𝑛=1
∞ )⊆sA. This proves that sA is also IP set near 0. Similarly, we can prove that 𝐴𝑠−1 is also 
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IP set near 0 for every s ∈ S ∩Bd(1)\ {0}. For the second let A be a an IP* set near 0 and s ∈ S ∩Bd(1)\ {0}. To 

prove that s−
1
A is a an IP* set near 0 it is sufficient to show that if B is any IP set near 0 then 𝐵 ∩ 𝑠−1𝐴 ≠ ∅. 

Since B is an IP set near 0, sB is also an IP set near 0 by the first part of the proof, so that 𝐴 ∩ 𝑠𝐵 ≠ ∅. Choose t 

∈sB∩ A and k ∈ B such that t = sk. Therefore k ∈ s−
1
Aso that 𝐵 ∩ 𝑠−1𝐴 ≠ ∅ . 

 

Given A⊆S and s ∈ S, s−
1
A ={t ∈ S :  st∈ A} and -s + A ={t ∈ S : s+ t∈A}. In case of product we must keep in 

mind the order of elements asthe product is noncommutative here. 

 

Definition 2.4.Let 𝑥𝑛  𝑛=1
∞ be a sequence in the ring(ℍ,+,·), and letk∈ℕ.Then FP( 𝑥𝑛  𝑛=1

𝑘 ) is the set of all 

products of terms of  𝑥𝑛  𝑛=1
𝑘  in any order with no repetitions. Similarly FP( 𝑥𝑛  𝑛=1

∞ ) is the set of all products of 

terms of  𝑥𝑛  𝑛=1
∞  in any order with no repetitions. 

 

Theorem 2.5. Let S be a dense subsemigroup of (ℍ,+), such that S∩Bd(1)\ {0} is a subsemigroup of (Bd(1)\ 

{0},·). Also let  𝑥𝑛  𝑛=1
∞  be a sequence in S such that 𝑥𝑛

∞
𝑛=1 converges to0and A be a IP* set near 0 in S.  Then 

there exists a sumsubsystem 𝑦𝑛  𝑛=1
∞  of  𝑥𝑛  𝑛=1

∞  such that 

FS( 𝑦𝑛  𝑛=1
∞ )∪ FP ( 𝑦𝑛  𝑛=1

∞ )⊆A. 

 

Proof. Since  𝑥𝑛
∞
𝑛=1   converges to 0, from [7, Theorem 3.1] it follows that we can find some idempotent 

𝑝 ∈ 0+ 𝑆  for which 𝐹𝑆  𝑥𝑛  𝑛=1
∞  ∈ 𝑝. In fact,𝑇 =∩𝑚=1

∞ 𝑐𝑙𝛽𝑆𝑑𝐹𝑆( 𝑦𝑛  𝑛=𝑚
∞ ) ⊆ 0+(𝑆) and 𝑝 ∈ 𝑇. Again, since A 

is an IP* set near 0 in S, by the above Lemma 2.3 for every 𝑠 ∈S∩Bd(1)\ {0}, both 𝑠−1𝐴, 𝐴𝑠−1 ∈ 𝑝.    Let A*

 = {s∈A : −s + A∈p}. Then by  [9, Lemma 4.14],A*∈p. We can choosey1∈ A*∩𝐹𝑆( 𝑥𝑛  𝑛=1
∞ ) . 

Inductively let m ∈Nand 𝑦𝑖 𝑖=1
𝑚 , 𝐻𝑖 𝑖=1 

𝑚 inPf(N)bechosen with the following properties: 

(a) i∈{1, 2, . . . , m −1}Max Hi<Min Hi+1; 

(b) If 𝑦𝑖 =  𝑥𝑡𝑡∈𝐻𝑖
 then  𝑥𝑡𝑡∈𝐻𝑚 ∈ 𝐴∗ and 𝐹𝑆( 𝑦𝑖 𝑖=1

𝑚 ) ⊆ 𝐴. 

We observe that   𝑥𝑡𝑡∈𝐻 :𝐻 ∈ 𝑃𝑓 𝑁 , 𝑚𝑖𝑛𝐻 > 𝑚𝑎𝑥𝐻𝑚  ∈ 𝑝 . Let B =   𝑥𝑡𝑡∈𝐻 :𝐻 ∈ 𝑃𝑓 𝑁 , 𝑚𝑖𝑛𝐻 >

𝑚𝑎𝑥𝐻𝑚, let 𝐸1=𝐹𝑆(𝑦𝑖𝑖=1𝑚) and 𝐸2=𝐴𝑃(𝑦𝑖𝑖=1𝑚). Now consider 

𝐷 = 𝐵 ∩ 𝐴∗   −𝑠 + 𝐴∗ ∩

𝑠∈𝐸1

  𝑠−1𝐴∗ ∩

𝑠∈𝐸2

  𝐴∗𝑠−1 

𝑠∈𝐸2

 

Then 𝐷 ∈ 𝑝 . Now choose 𝑦𝑚+1 ∈ 𝐷  and 𝐻𝑚+1 ∈ 𝑃𝑓(𝑁)  such that 𝑚𝑖𝑛𝐻𝑚+1 > 𝑚𝑎𝑥𝐻𝑚 . Putting 𝑦𝑚+1 =

  𝑥𝑡𝑡∈𝐻𝑚+1
 shows that the induction can be continued, and this proves the theorem. 

 

 

III. AN APPLICATION OF ADDITIVE AND  MULTIPLICATIVE  STRUCTURE  OF  βS 

 

We shall like to produce an alternative proof of the above Theorem 3.1 using additive and multiplicative 

structure of βS. We need the following notion. 

 

Theorem 3.1. Let u, v∈ℕ. Let M be a finite image partition regular matrix over ℕof orderu × v, and letNbe an 

infinite image partition regular near 0 matrixover a dense subsemigroup S of ((0,∞),+). Then 

 
𝑀 𝑂
𝑂 𝑁

  

is image partition regular near 0 over S. 

 

Definition 3.2.LetSbe a subsemigroup of((0,∞),+)and letAbe a matrix, finite or infinite with entries fromℚ . 

Then I(A) = {p∈ 0
+
 : for every P∈p, there exists 𝑥  with entries from S such that all entries of 𝐴𝑥 are in P }. 

 

The following lemma can be easily proved as [8, Lemma 2.5]. 

 

Lemma 3.3. Let A be a matrix, finite or infinite with entries from ℚ. 

(a) The set I(A) is compact and I(A)≠ ∅if and only if A is image partition regular near 0. 

(b) If A is finite image partition regular matrix, then I(A) is a sub-semigroup of (0
+
, +). 

 

Next, we shall investigate the multiplicative structure of I(A). In the following Lemma 3.4, we shall see that if A 

is an image partition regular near 0, then I(A) is a left ideal of (0+, ·). It is also a two-sided ideal of (0+, ·), 

provided A is a finite image partition regular near 0. 

 

Lemma 3.4. Let A be a matrix, finite or infinite with entries from ℚ. 

(a) If A is an image partition regular near 0, then I(A) is a left ideal of (0
+
,·). 
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(b) If A is a finite image partition regular near 0, then I(A) is a two-sided ideal of (0
+
,·). 

 Proof. (a). Let Abe au×vimage partition regular matrix, whereu,v∈ℕ∪{ω}.Let p ∈ 0
+
 and q ∈ I(A). 

Also let U ∈ p · q. Then{x ∈S : x
-1

U∈ q} ∈ p.  Choose z ∈ {x ∈S : x
-1

U∈ q}.  Then z−
1
U ∈ q.  So there exists 𝑥  

with entries from S such that yj∈ z−
1
U for 0 ≤ j < u where 𝑦 = 𝐴𝑥 ,   

𝑦 =  

𝑦0

𝑦1

𝑦2

⋮

   and 𝑥 =  

𝑥0

𝑥1

𝑥2

⋮

  ; 𝑦  and 𝑥  are u×1 and v×1 matrices respectively. 

Now𝑦𝑖 ∈ 𝑧
−1𝑈 for 0 ≤ i < u implies that 𝑧𝑦𝑖 ∈ 𝑈 for 0 ≤ i < u. Let 𝑥 ′    = z𝑥  and 𝑦′    = z𝑦 . Then 𝑦′    = 𝐴𝑥 ′    . So there 

exists 𝑥 ′     with entries from S such that all entries of 𝐴𝑥 ′     are in U. Therefore 𝑝. 𝑞 ∈ 𝐼(𝐴) is a left ideal of (0+, . ). 

 

(b). Let A be a u × v matrix, where u, v ∈ N. By previous lemma, I(A) is a left ideal. We now show that I(A) is a 

right ideal of (0
+
, ·). Let p ∈ βS and q ∈ I(A). Now let U ∈ q · p. Then {x ∈ S: x−

1
U ∈ p} ∈ q. So there 

exists𝑥 with entries in S such that 𝑦𝑖 ∈  𝑥 ∈ 𝑆: 𝑥−1𝑈 ∈ 𝑝  for 0 ≤ i< u, where 𝑦 = 𝐴𝑥 , 𝑦 =  

𝑦0

.
⋮

𝑦𝑢−1

  and 

𝑥 =  

𝑥0

.
⋮

𝑥𝑣−1

 ; 𝑦  and 𝑥  are u×1 and v×1 matrices respectively. Now for 0 ≤ i < u, 𝑦𝑖 ∈  𝑥 ∈ 𝑆: 𝑥−1𝑈 ∈ 𝑝 . Hence 

𝑦𝑖
−1𝑈 ∈ 𝑝 for 0 ≤ i < u. This implies  𝑦𝑖

−1𝑈 ∈ 𝑝𝑢−1
𝑖=0 . So  𝑦𝑖

−1𝑈 ≠ ∅𝑢−1
𝑖=0 . Let 𝑧 ∈  𝑦𝑖

−1𝑈𝑢−1
𝑖=0 . Therefore, 

𝑧 ∈ 𝑦𝑖
−1𝑈 for all 𝑖 ∈  0,1,2,⋯ ,𝑢 − 1 . Hence 𝑦𝑖𝑧 ∈ 𝑈 for 0 ≤ i < u. Let 𝑥 ′    = 𝑥 𝑧 and 𝑦′    = 𝑦 z. Then 𝑦′    = 𝐴𝑥 ′    . So 

there exists 𝑥 ′     with entries from S such that all entries of 𝐴𝑥 ′     are in U. Thus 𝑞. 𝑝 ∈ 𝐼(𝐴). Therefore I(A) is also a 

right ideal of  𝛽ℕ,∙ . Hence I(A) is a two-sided ideal of (0
+
,·). 

 

 

Alternative proof of Theorem 2.2.7.Let 𝑟 ∈ ℕ be given and 𝜖 > 0. Let ℚ =  𝐸𝑖
𝑟
𝑖=1 . Suppose that A be a 𝑢 × 𝑣 

matrix where 𝑢, 𝑣 ∈ ℕ. Also let 𝐴 =  
𝑀 𝑂
𝑂 𝑁

 . Now by previous lemma 3.4, I(M) is a two sided ideal of (0
+
,·). 

So 𝐾(0+,·) ⊆ 𝐼(𝐴). Also by lemma 3.4, I(M) is a left ideal of (0
+
,·). Therefore, 𝐾(0+,·) ∩ 𝐼(𝑁) ≠ ∅. Hence, 

𝐼(𝑀) ∩ 𝐼(𝑁) ≠ ∅ . Now choose 𝑝 ∈ 𝐼(𝑀) ∩ 𝐼(𝑁) . Since ℚ =  𝐸𝑖
𝑟
𝑖=1 , there exist 𝑘 ∈  1,2,⋯ , 𝑟  such that 

𝐸𝑘 ∈ 𝑝. Thus,by definition of I(M) and I(N), there exist 𝑥 ∈ 𝑆𝑣 and 𝑦 ∈ 𝑆𝜔  such that 𝑀𝑥 ∈ 𝐸𝑘
𝑢  and 𝑁𝑦 ∈ 𝐸𝑘

𝜔 . 

Take 𝑧 =  
𝑥 
𝑦 
 . Then A𝑧 =  

𝑀𝑥 
𝑁𝑦 

 .So, A𝑧 ∈ 𝐸𝑘
𝜔 . Therefore, 𝐴 =   

𝑀 𝑂
𝑂 𝑁

  is image partition regular near 0. 
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