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I. INTRODUCTION 
The Hilbert transform has a variety of applications in many subjects of science and technology; the 

ones to be mentionedhere concern signal processing [1], [2], [3] and [4].More in general, in nonstationary signal 

analysis and processing, one needs to determine the instantaneous frequency of a real-valuedsignal s(t). We 

want to write s t  in the form ρ t cos θ  t , where ρ t  represents the instantaneous amplitude  and θ t the 

instantaneous phase. Then, the derivative of the phase θ t  is defined as the instantaneous frequency of s t . 

This process is called signal demodulation. It is easy to understand that finding ρ t  and θ t  satisfying s t =

ρ t cos θ  t  isequivalent to finding a function v t  such thatρ t eiθ t = s t + ıv t .This means, a definition 

of the amplitude and phase of s t  corresponds to a definition of the imaginary part function v t . Generally, 

v t  depends on s t , we denote the relationship between s t  and v t  by writing v t = Ps t , and call P 

theimaginary part operator. There are infinite possibilities of P, which corresponds to different demodulation 

methods andproviding different definitions of instantaneous frequency and amplitude. If we choose P to be the 

Hilbert transform, thisdemodulation is the well-known analytic signal method, which was first proposed by D. 

Gabor [5] in 1946 and has beenwidely used ever since.Then, defining the Hilbert transform of a function  f as 

the Cauchy principal value integral: 

H f; t ≔
1

π
 

f x 

x − t
dx,               

∞

−∞

→ (1) 

the complex valued signal 

z(t) = s(t) + ıH(s; t) = ρ t expıθ t  

is called its analytic signal and the instantaneous frequency of s t  is defined as 

ω t =
1

2π

dθ t 

dt
,   θ t = arctan  

H s; t 

s t 
 . 

 In [6], [7] and [8] is proved that, given a function s t  with actual instantaneous phase θ t  and 

amplitude ρ t , recovering θ t  and ρ t  from s t  by the Hilbert transform is guaranteed if and only if it 

satisfies the following Bedrosian identity 

H ρ cos θ ; t = ρ t sin θ  t . 
D. Vakman in [9] and [10] proved that the Hilbert transform is necessary for the definition of the instantaneous 

frequency, since it is the only operator that does not violate certain fundamental conditions of demodulation. 

Briefly, we recall these conditions that can be found in [11]: 

i.   H is linear and continuous; 

ii. H maps expıω t  to −ısgn ω expıω t  for any ω ∈ ℝ. 

 Therefore, the importance of the Hilbert transform coming from its many applications, justifies some 

interest in its numerical evaluation. For this reason, we want at first to recall some of the results obtained by the 

authors in the last years to compute numerically the finite and the infinite Hilbert transform based on  Gaussian 

rules and product rules, and then, in this paper, we show new numerical schemes with the aim of finding 

efficient and stable procedures in order to compute effectively the Hilbert transform.In the case of the finite 
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Hilbert transformthere are other possible strategies using, for instance, splinesor wavelets approximation (see 

e.g. [12], [13]). Also in the case of the Hilberttransform defined on the real line there are several papers in the 

literature for example which use the sinc approximation (see for instance [14]). However we will not discuss 

about these cases. 

 The paper is organized as follow. In Section II we recall some methods for the finite Hilbert transform; 

Section III is devoted to present results about numerical methods for solving the Hilbert transform and in 

Section IV we present some efficient quadrature rules to this end. Finally, Section V is devoted to present some 

numerical simulations of the proposed methods  that yield satisfactory numerical results in comparison with the 

MatLab routine "hilbert". 

 

II. NUMERICAL SCHEMES FOR THE FINITE HILBERT TRANSFORM 
The finite Hilbert transform H wf  of the function wf is defined by the integral in the Cauchy principal value 

sense 

H wf; t ≔  
f x 

x − t
w x dx

1

−1

= lim  
ϵ→0+

 
f x 

x − t
w x dx,

 x−t ≥ϵ

         → (2) 

where w is a nonnegative weight function on I ≔  −1,1  such that 0 <  w t dt
1

−1
< ∞, and x ∈ A ≔ I −

{singularities of w}. 

 In the literature, essentially two kinds of quadrature rules of interpolatory type have been proposed to 

compute (2), according to whether among the nodes of quadrature one includes the point x or not.The former are 

the so-called "Gaussian rules" for the finite Hilbert transform, the latter are called "product rules". These rules 

have been extensively studied (cf. the literature cited in [15], [16], [17]). Throughout these papers there is an 

underlying theme of the instability of the computation and of the divergence of the rules. Here we present some 

our results about the numerical computation of (2). 

 Let {pm v }m∈ℕ be a sequence of orthogonal polynomials on I associated with the weight function v. 

We denote the zeros of pm v  by xm,k = xm,k v , k = 1, … , m. Let Lm v; f  be the Lagrange interpolating 

polynomial of f at the knots xm,k . By replacing f by Lm v; f  in (2), we obtain the following interpolatory 

product rule for the evaluation of H wf; t  

H wf; t = Hm v; wf; t + Em v; wf; t ,             → (3) 

where 

Hm v; wf; t =  Am,k v; w; t f xm,k 

m

k=1

, 

Am,k v; w; t = H wlm,k v ; t ,   k = 1, … , m, 

lm,k v , k = 1, … , m being the fundamental Lagrange polynomials and the error functional is denoted by 

 Em v; wf; t . An algorithm for the stable computation of the coefficients Am,k v; w  has been proposed 

in [17], whatever the weight w may be. Irrespective of w, the quadrature nodes xm,k  are always chosen to be the 

zeros of the Chebyshew polynomials of the first kind. Numerical computation of some finite Hilbert transform 

has been done by using this algorithm. Further, the uniform convergence of the product formula (3) when t 
tends to ±1 or to the interior singularities of w at a prescribed rate has been proved under the assumptions that 

w is a generalized Ditzian-Totik weight and the quadrature knots are the zeros of the orthogonal polynomials 

associated with a suitable Jacobi weight. From now, let 

vα,β x = v x =  1 − x α 1 + x β,   α, β ≻ 1,        →  4  

and 

w x =  1 − x γ logΓ  
e

1 − x
  1 + x δ logΔ  

e

1 + x
   ti − x 

i
γ

logi
Γ  

e

 ti − x 
 

s

i=1

,       →  5  

where γ, δ, γ
i
≻ 1, Γ, Δ, Γi ≥ 0, i = 1, … , s and −1 < t1 < ⋯ < ts < 1. We can state the following theorems. 

Theorem 1 

Let v and w be defined by (4) and (5) respectively, and t ∈  ts + ϵ, 1 − cm−2  with 0 < ϵ < 1 − ts . If the 

exponent γ of w satisfied −1 < γ ≤ 0, by choosing the exponent of v such that 2γ −
1

2
< α < −

1

2
, then, for 

f ∈ LipMλ, 

 Em v; wf; t  ≤ C  
m−2λ−2γ logΩ m, if − γ < λ ≤ −2γ,

m−λ logΩ m,                                       if − 2γ < λ ≤ 1,
                      → (6) 

where Ω = 2 + max{ Γ, Δ, Γi , i = 1, … , s} and C is a positive constant independent of m and f. Furthermore by 

choosing α such that −
1

2
≤ α < 2γ +

3

2
, if −1 < γ ≤ −

1

2
 or −

1

2
≤ α <

1

2
, if −

1

2
< γ ≤ 0, then, instead of (6), the 

following estimate holds 
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|Em (v; wf; t)| ≤ Cm−λ−2γ+α+
1

2 ,              − λ − 2γ + α +
1

2
< λ ≤ 1.               → (7)       ∎ 

Theorem 2 

Let 𝑣 and 𝑤 be defined by (4) and (5) respectively, 𝑡 ∈  𝑡𝑝 − 𝜖, 𝑡𝑝 + 𝜖 , 0 < 𝜖 < 𝑚𝑖𝑛{ 𝑡𝑝 − 𝑡𝑝−1, 𝑡𝑝+1 − 𝑡𝑝} and 

𝑝 ∈ {1, … , 𝑠} with 𝑡0 = −1 and 𝑡𝑠+1 = 1. If the exponent 𝛾𝑝  of 𝑤 satisfies −1 < 𝛾𝑝 ≤ 0, and 𝑓 ∈ 𝐿𝑖𝑝𝑀𝜆, then 

for every 𝑡 such that  𝑡 − 𝑡𝑝  > 𝑚−1 

 𝐸𝑚  𝑣; 𝑤𝑓; 𝑡  ≤ 𝐶𝑚−𝛾𝑝 −𝜆 𝑙𝑜𝑔𝛺 𝑚,              − 𝛾𝑝 < 𝜆 ≤ −1              →  8  

where 𝛺 = 2 + 𝑚𝑎𝑥{ 𝛤, 𝛥, 𝛤𝑖 , 𝐼 = 1, … , 𝑠} and 𝐶 is a positive constant independent of 𝑚 and 𝑓.            ∎ 

The proofs of the Theorems 1-2 can be found in [17]. 

Another possible method to compute (2) starts from 

𝐻 𝑤𝑓; 𝑡 = 𝑓 𝑡  
𝑤 𝑥 

𝑥 − 𝑡
𝑑𝑡

1

−1

+  
𝑓 𝑥 − 𝑓 𝑡 

𝑥 − 𝑡
𝑤 𝑥 𝑑𝑥

1

−1

;                    →  9  

 hence, assuming the 𝐻 𝑤; 𝑡  can be computed, we approximate the second integral on the right-had 

side of (9) by a classical quadrature rule 𝑄𝑚  on 𝑚 knots. This method has been frequently used (see [18] and the 

literature cited therein). Obviously, from a theoretical point of view, this method turns out to be convergent if 

the function 𝑓 is sufficiently smooth, for instance, when 𝑓 ∈ 𝐶1 𝐼  and 𝑄𝑚  is the quadrature Gaussian rule with 

respect to the weight 𝑤. An attempt in order to eliminate the numerical problems and to assure the convergence 

with 𝑓 not strongly smooth has been proposed, but the convergence results are proved only when 𝑡 is a fixed 

point of  −1,1 . 

 In [16], starting from (9), the authors have proposed a quadrature formula 𝑄𝑚  based on a special set of 

knots, all of which are sufficiently far from the singularity 𝑡. This procedure was introduced in [15] where 

𝑤 = 𝑣𝛼 ,𝛽  and the quadrature knots are suitable 𝑚 − 1 zeros of the 𝑚th Jacobi polynomial 𝑝𝑚 𝑣𝛼 ,𝛽 . An 

approximation method to compute 𝐻 w𝑓  using still the classical Jacobi zeros as knots even if 𝑤 ≠ 𝑣𝛼 ,𝛽  has 

been proposed in [16]. Let us consider the formula of interpolatory type 𝑄𝑚−1 constructed by replacing the 

function in the integral with the Lagrange polynomial interpolating it at the points {𝑥𝑚 ,𝑘 , 𝑘 = 1, … , 𝑚, 𝑘 ≠ 𝑐}, 

where 𝑐 = 𝑐 𝑡, 𝑚  is defined by 

 𝑡 − 𝑥𝑐 𝑡 ,𝑚  = 𝑚𝑖𝑛{  𝑡 − 𝑥𝑚 ,𝑘  , 𝑘 = 1, … , 𝑚}. 

Now, starting from (9) and using the previous formula 𝑄𝑚−1, we arrive at the formula 

𝐻 𝑤𝑓; 𝑡 = 𝐻𝑚
𝛼 ,𝛽 𝑓; 𝑤; 𝑡 + 𝐸𝑚

𝛼 ,𝛽  𝑓; 𝑤; 𝑡                      → (10) 

where 

𝐻𝑚
𝛼 ,𝛽

= 𝑓 𝑡 𝐻 𝑤; 𝑡 + 𝑄𝑚−1  
𝑓 − 𝑓 𝑡 

. −𝑡
  

= 𝑓 𝑡 𝐻 𝑤; 𝑡 +  𝑐𝑚 ,𝑘

𝑓 𝑥𝑚 , 𝑘 − 𝑓 𝑡 

𝑥𝑚 ,𝑘 − 𝑡
𝑘=1,𝑘≠𝑐

, 

𝑐𝑚 ,𝑘 =  𝑙𝑚 ,𝑘 𝑣; 𝑥 𝑤 𝑥 𝑑𝑥
1

−1

−
𝜆𝑚 ,𝑘𝑃𝑚−1 𝑥𝑚 ,𝑘 

𝜆𝑚 ,𝑐𝑃𝑚−1 𝑥𝑚 ,𝑐 
 𝑙𝑚 ,𝑐 𝑣; 𝑥 𝑤 𝑥 𝑑𝑥

1

−1

,            𝑘 = 1, … , 𝑚,  𝑘 ≠ 𝑐 

𝜆𝑚 ,𝑘 , 𝑘 = 1, … , 𝑚, being the Christoffel constants with respect to 𝑣𝛼 ,𝛽 . 

 In [16] it has been proved that the quadrature rule (10) is equivalent to the product rule (3) from a 

convergent point of view, i.e. in the same assumptions of the Theorems 1-2, the bounds (6),(7) and (8) are true 

for 𝐸𝑚
𝛼 ,𝛽 𝑓; 𝑤; 𝑡 , too. However, the formula (3) involves some computational efforts; indeed, calculation of the 

generalized functions of the second kind is required; whereas, the computational effort of (10) is the same of an 

interpolation quadrature rule to compute an ordinary integral. 

 

III. NUMERICAL EVALUATION OF THE HILBERT TRANSFORM ON THE REAL 

LINE 
We have been interested in developing a simple numerical integration method for weighted Hilbert transform 

𝐻 𝑤𝑓  defined by 

𝐻 𝑤𝑓; 𝑡 ≔
1

𝜋
 

𝑓 𝑥 

𝑥 − 𝑡
𝑤 𝑥 𝑑𝑥

∞

−∞

,   𝑡 ∈ ℝ 

 where the divergence at 𝑡 = 𝑥 is allowed for by taking the Cauchy principal value integral. Even if 𝐻 is 

a bounded operator in the 𝐿𝑝 ℝ  spaces, 1 < 𝑝 < ∞, it is an unbounded operator in the space of continuous 

function on ℝ equipped with the uniform norm. Nevertheless, if 𝑓 belongs to the set 

𝑊0
∞ ≔  𝑔 ∈ 𝐶𝐿𝑂𝐶

0  ℝ : 𝑙𝑖𝑚
 𝑥 →∞

𝑔 𝑥 𝑒𝑥𝑝−𝑥2/2 = 0  

and satisfy a Dini type condition by the Ditzian-Totik modulus of continuity, then 𝐻 𝑤𝑓  is bounded on ℝ[19]. 
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We have proposed an algorithm to compute 𝐻 𝑤𝑓  assuming that the function 𝑓 has good integration properties 

at the limits of the integration interval; these assumptions are the same ones to assure the boundedness of 

𝐻 𝑤𝑓 . The proposed procedure is of interpolatory type and it uses as quadrature nodes the zeros of orthogonal 

polynomials with respect to the Hermite weight function 𝑤 on ℝ. 

  Let {𝑝𝑚  𝑤 } be a sequence of orthogonal Hermite polynomials associated with the weight function 

𝑤 𝑥 = 𝑒𝑥𝑝 −𝑥2 . Let 𝐿𝑚  𝑤; 𝑓  be the lagrange interpolating polynomial of 𝑓 at the zeros 𝑥𝑚 ,𝑘  of 𝑝𝑚  𝑤 . If 

we approximate the function 𝑓 in 𝐻 𝑤𝑓  by 𝐿𝑚  𝑤; 𝑓 , than we obtain a formula of the type 

𝐻 𝑤𝑓; 𝑥 = 𝐻𝑚  𝑤; 𝑓; 𝑥 + 𝑅𝑚  𝑤; 𝑓; 𝑥 , 
with 

𝐻𝑚  𝑤; 𝑓; 𝑥 =  𝐴𝑚 ,𝑘 𝑤; 𝑥 𝑓 𝑥𝑚 ,𝑘 

𝑚

𝑘=1

, 

𝐴𝑚 ,𝑘 𝑤; 𝑥 = 𝐻 𝑤𝑙𝑚 ,𝑘 𝑤 ; 𝑥 ,  𝑘 = 1, … , 𝑚, 

where 𝑙𝑚 ,𝑘 𝑤  are the fundamental Lagrange polynomials and 𝑅𝑚 𝑤; 𝑓; 𝑡  is the error functional. The 

coefficients 𝐴𝑚 ,𝑘 𝑤; 𝑥  can be computed by 

𝐴𝑚 ,𝑘 𝑤 =
1

𝜋
𝜆𝑚 ,𝑘  𝑝𝑗  𝑤; 𝑥𝑚 ,𝑘 𝑞𝑗  𝑤 

𝑚−1

𝑗 =0

,   𝑘 = 1,2, … , 𝑚, 

where 𝜆𝑚 ,𝑘 = 𝜆𝑚 ,𝑘 𝑤 , 𝑘 = 1,2, … , 𝑚, 𝑚 ∈ ℕ are the Christoffel constants with respect to the weight 𝑤 and the 

functions 𝑞𝑗  𝑤  are the functions of the second kind. For the amplification coefficient of the rule 𝐻𝑚  𝑤; 𝑓  we 

can state the following theorem. 

Theorem 3 

For any 𝑡 ∈ ℝ, we have 

  𝐴𝑚 ,𝑘 𝑤; 𝑥  

𝑚

𝑘=1

≤ 𝐶 𝑙𝑜𝑔 𝑚 ,   𝑚 ≥ 1, 

with some constant independent of 𝑚.∎ 

In order to give a convergence result for the quadrature procedure 𝐻𝑚  𝑤; 𝑡  we need some notations. We set 

𝐸𝑚  𝑓  𝑤 ,∞ ≔ 𝑖𝑛𝑓
𝑃∈\ℙ𝑚

   𝑓 − 𝑃  𝑤  
∞

, 

for any function 𝑓 ∈ 𝐶
 𝑤
0 ≔ {𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 ℝ 𝑎𝑛𝑑 𝑙𝑖𝑚 𝑥 →∞ 𝑓  𝑥  𝑤 = 0}, and whereℙ𝑚 denotes the set of 

the polynomials of degree at most 𝑚. Denoting by 𝜔𝑟 𝑓, 𝛿  𝑤 ,∞ the 𝑟th Ditzian-Totik weighted modulus of 

smoothness, we can state the following result. 

Theorem 4 

Assume that $F\in W^\infty_0$ satisfies the condition 

 
𝜔𝑟 𝑓, 𝛿  𝑤 ,∞

𝛿
𝑑𝛿

1

0

< ∞. 

Then, 

𝑚𝑎𝑥
𝑡∈ℝ

 𝑅𝑚  𝑤; 𝑓; 𝑡  ≤ 𝐶  𝑙𝑜𝑔 𝑚 𝐸𝑚−1 𝑓  𝑤 ,∞ +  
𝜔𝑟 𝑓, 𝛿 

 𝑤 ,∞

𝛿
𝑑𝛿

1

 𝑤

0

 , 

for some constant independent of 𝑓 and 𝑚.∎ 

The proof of the Theorems3 and 4 can be found in [20]. 

Starting from the identity 

𝐻 𝑤𝑓; 𝑡 = 𝑓 𝑡 𝐻 𝑤; 𝑡 +  
𝑓 𝑥 − 𝑓 𝑡 

𝑥 − 𝑡
𝑤 𝑥 𝑑𝑥

∞

−∞

, 

a completely different approach for the numerical approximation of the Hilbert transform has been proposed in 

[21]. This procedure corresponds to evaluate exactly the integral 𝐻 𝑤; 𝑡  and to approximate the integral 

 
𝑓 𝑥 −𝑓 𝑡 

𝑥−𝑡
𝑤 𝑥 𝑑𝑥

∞

−∞
 by an ordinary Gaussian rule. As pointed out in [21] the convergence and stability of this 

quadrature rule is not assured and it depends on the distance of the singularity 𝑡 by the points𝑥𝑚 ,𝑘 , 𝑘 = 1, … , 𝑚. 

In [21] it is also proved that this problem is overcome by choosing 𝑚 in a suitable space 𝑁. 

More recently, in [22] the authors prove the convergence and the stability properties of the following quadrature 

rule 

𝐻𝑚  𝑤𝑓; 𝑡 = 𝑓 𝑡 𝐻 𝑤; 𝑡 +  𝜆𝑚 ,𝑘  1 −
𝑝𝑚−1 𝑤; 𝑥𝑚 ,𝑘 

𝑝𝑚−1 𝑤; 𝑥𝑚 ,𝑐 
 

𝑓 𝑥𝑚 ,𝑘 − 𝑓 𝑡 

𝑥𝑚 ,𝑐 − 𝑡
𝑘=1,𝑘≠𝑐

, 
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where 𝜆𝑚 ,𝑘  and 𝑥𝑚 ,𝑘 , for 𝑘 = 1, … , 𝑚 are the Christoffel constants and the knots of the 𝑚th orthogonal  

polynomial 𝑝𝑚  𝑤 , respectively and 𝑥𝑚 ,𝑐  is the closest knot near the singularity 𝑡. 

 

IV. NEW SCHEMES FOR COMPUTING  THE HILBERT  TRANSFORM 
 In this Section we came back to consider the Hilbert transform defined in (1), where the weight 

function 𝑤 𝑥 = 1. For a  sufficiently large constant 𝑎,  we consider the central interval with respect to the 

singularity 𝑡, i.e. the interval  𝑡 − 𝑎, 𝑡 + 𝑎 ; then, we can write the Hilbert transform 𝐻𝑓 in (1) as 

𝐻(𝑓; 𝑡) =
1

𝜋
 

𝑓(𝑥)

𝑥 − 𝑡

∞

−∞

𝑑𝑥 =
1

𝜋
{  +

𝑡−𝑎

−∞

 +  }

∞

𝑡+𝑎

𝑡+𝑎

𝑡−𝑎

𝑓(𝑥)

𝑥 − 𝑡
𝑑𝑥. 

Now, operating a change of variable for the interval  𝑡 − 𝑎, 𝑡 + 𝑎 →  −1,1   in place of 𝐻𝑓 we consider an 

approximation by a suitable quadrature rule of  the finite Hilbert transform 

𝐻𝑎𝑓 𝑡 =
1

𝜋
 

𝑓 𝑥 

𝑥 − 𝑡
𝑑𝑥

𝑡+𝑎

𝑡−𝑎

=
1

𝜋
 

𝑓 𝑎𝑧 + 𝑡 

𝑧
𝑑𝑧

1

−1

.                → (11) 

Denoting with 𝑤2𝑚 ,𝑖
𝐿  and 𝑥2𝑚 ,𝑖

𝐿  , for 𝑖 = 1, … ,2𝑚  the weights and the nodes of the  2𝑚 Gauss-Legendre (GL) 

quadrature rule, respectively, we compute (11)  by the Gauss-Legendre (GL) rule 

𝐻𝑎𝑓 𝑡 ≈ 𝐻𝑚
𝑎 𝑓 𝑡 =

1

𝜋
 

𝑤2𝑚 ,𝑖
𝐿

𝑥2𝑚 ,𝑖
𝐿 .

𝑚
𝑖=1  𝑓 𝑎𝑥2𝑚 ,𝑖

𝐿 + 𝑡 − 𝑓 −𝑎𝑥2𝑚 ,𝑖
𝐿 + 𝑡  . 

 We remark that the error order of the proposed scheme is the same of the corresponding ordinary 

Gauss-Legendre quadrature rule (see [23] for more detail). Therefore,  for obtaining a convergent result we need 

to bound the two integrals we drop, i.e.{ +
𝑡−𝑎

−∞
 }

∞

𝑡+𝑎

𝑓(𝑥)

𝑥−𝑡
𝑑𝑥. 

It is easy to show that 

  
𝑓 𝑥 

𝑥 − 𝑡
𝑑𝑥

∞

𝑡+𝑎

 ≤
1

𝑎
  𝑓 𝑥  𝑑𝑥

∞

𝑡+𝑎

, 

and this quantity tends to 0 for every 𝑎 sufficiently large, due to the integrability property of the function 𝑓 on 

ℝ. 

The second scheme consists in approximating the integral with a Gauss-Hermite quadrature rule 

𝐻𝑓 𝑡 =  
𝑓 𝑦 + 𝑡 𝑒𝑥𝑝 𝑦2 

𝑦

∞

−∞

𝑒𝑥𝑝 −𝑦2 𝑑𝑦 

𝐻𝑚𝑓 𝑡 =
1

𝜋
 

𝑤2𝑚 ,𝑖
𝐻

𝑥2𝑚 ,𝑖
𝐻

𝑚

𝑖=1

 𝑓 𝑥2𝑚 ,𝑖
𝐻 + 𝑡 − 𝑓 −𝑥2𝑚 ,𝑖

𝐻 + 𝑡  𝑒𝑥 𝑝(𝑥2𝑚 ,𝑖
𝐻 2

), 

where 𝑤2𝑚 ,𝑖
𝐻  and 𝑥2𝑚 ,𝑖

𝐻  , for 𝑖 = 1, … ,2𝑚 denote  weights and nodes of the  2𝑚 Gauss-Hermite rule, 

respectively. 

Also in this case the error is the same of the ordinary Gauss-Hermite quadrature rule. 

 

V. NUMERICAL TESTS 
 In this section  experiments for two functions are conducted. These functionsare chosen for our 

experiments since their Hilbert transforms are analytically known.In Figs. 1,2 and 3,4 is shown the comparison 

of our methods with the "hilbert" routine of MatLab and the exact solution for these two test functions 

𝑓1 𝑡 =
𝑠𝑖𝑛 𝑡

1 + 𝑡4
,  𝑓2 𝑡 =

1

1 + 𝑡2
, 

for which the Hilbert transform is given by 

H f1; t =
1

1 + t4
 exp

−
1

 2 cos
1

 2
+ exp

−
1

 2 sin
1

 2
t2 − cos t , 

H f2; t =
t

1 + t2
. 

 The  exact Hilbert  transform is  graphically  displayed  with a bluesolid   line,   while   the   same   

transforms   computed   by   MatLab   method and by our proposed schemes (taking m=64 and for the first 

scheme a = 12) are shown  with  red dotted line, green solid line and violet dotted  line,  respectively. All the 

numerical computations are done in double precision arithmetics.  One  has  no  difficulty  in seeing that our 

proposed methods give much finer numerical computation for all these test functions and they confirm that our 

proposed methods provides much better performance, especially  in  the  neighborhoods  of  the  boundary  of  

the  chosen interval. This circumstance can be shown also in Tables 1-2 where we report the exact value of the 

Hilbert transform evaluated in some points of the interval  −6,0  and the correspondent value  obtained with the 

two proposed methods and the MatLab routine"hilbert". We remark that in the paper the results are reported  for 

a = 12, but these are still valid for a convenient choice of the parameter a. 
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Figure 1: Comparison of the solution Hf1 evaluated by the proposed methods, MatLab method and the exact 

solution evaluated by Mathematica Software 

 
Figure 2: Comparison of the solution Hf1 evaluated by the proposed methods, MatLab method and the exact 

solution evaluated by Mathematica Software, a detail 
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Figure 3: Comparison of the solution Hf2 evaluated by the proposed methods, MatLab method and the exact 

solution evaluated by Mathematica Software 

 
Figure 4: Comparison of the solution Hf2 evaluated by the proposed methods, MatLab method and the exact 

solution evaluated by Mathematica Software, a detail 
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𝐭 𝐇𝐟𝟏 𝐭  𝐇𝐦
𝐚 𝐟𝟏 𝐭  𝐇𝐦𝐟𝟏 𝐭  MatLab 

-6         0.0084    0.0084   0.0084   0.0208 

-5         0.0129   0.0129   0.0129   0.0237 

-4         0.0239   0.0239   0.0239   0.0332 

-3        0.0518   0.0518   0.0518   0.0601 

-2        0.1218   0.1218   0.1218   0.1296 

-1        0.0774   0.0774   0.0774   0.0849 

0         -0.6251 -0.6251 -0.6251 -0.6177 

 

Table 1test function f1 t : Comparison for various values of t, for m = 64, a = 12 
𝐭 𝐇𝐟𝟐 𝐭  𝐇𝐦

𝐚 𝐟𝟐 𝐭  𝐇𝐦𝐟𝟐 𝐭  MatLab 

-6         -0.1621 -0.1616   -0.1613    -0.4852d-4 

-5         -0.1923 -0.1918   -0.1916   -0.0719 

-4         -0.2352 -0.2348  -0.2348   -0.4150 

-3        -0.2999 -0.2996   -0.2996    -0.2352 

-2        -0.4 -0.3996    -0.3997    -0.3580 

-1        -0.4999 -0.4998   -0.4998 -0.4793 

0         0 0 0 -0.2839d-16 

Table 2 test function f2 t : Comparison for various values of t, for m = 64, a = 12 

 

VI. CONCLUSION 
 In this paper the authors point out that very simple Gaussian quadrature rules  can be used to 

approximate the Hilbert transform, recalling the good convergence properties of such rules. Moreover, they 

show that the proposed formulas work better than the most common built-in function “hilbert” designed for the 

computation of Hf in the software tool MatLab,often used by the scientific community in the engineering 

applications. 
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