Quest Journals Journal of Research in Applied Mathematics Volume 6 ~ Issue 1 (2020) pp: 01-03 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org



## **Research Paper**

## **Unique Metro Domination of Square of Cycles**

Kishori P. Narayankar<sup>#1</sup>, Denzil Jason Saldanha<sup>#2</sup>, John Sherra<sup>#3</sup>

<sup>#1</sup>Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India.

<sup>#2</sup>Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India.

<sup>#3</sup>Department of Mathematics (Retired), St Aloysius College (Autonomous), Mangalore-575003, India.

**Abstract**: A dominating set D of G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph G(V,E) is a unique metro dominating set (in short an UMD-set) if  $|N(v) \cap D| = 1$  for each vertex  $v \in V$  – Dandthe minimum cardinality of an UMD-set of G is the unique metro domination number of G denoted by  $\gamma_{\mu\beta}(G)$ . In this paper, we determine unique metro domination number of  $C_n^2$  graphs. **Keywords:** Domination, metric dimension, metro domination, unique metro domination.

*Received 07 Apr, 2020; Accepted 22 Apr, 2020* © *The author(s) 2020. Published with open access at www.questjournals.org* 

## I. INTRODUCTION

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by d(u, v). For a vertex v of a graph, N(v) denote the set of all vertices adjacent to v and is called open neighborhood of v. Similarly, the closed neighborhood of v is defined as  $N[v] = N(v) \cap \{v\}$ . Let G(V, E) be a graph. For each ordered subset  $S = \{v_1, v_2, v_3, ..., v_k\}$  of V, each vertex  $v \in V$  can be associated with a vector of distances denoted by  $\Gamma(v/S) = (d(v_1, v), d(v_2, v), ..., d(v_k, v))$ . The set S is said to be a resolving set of G, if  $\Gamma(v/S) \neq \Gamma(u/S)$ , for every  $u, v \in V - S$ . A resolving set of minimum cardinality is a *metric basis* and cardinality of a metric basis S, is referred as a code generated by S for that vertex v. If  $\Gamma(v/S) = (c_1, c_2, ..., c_k)$ , then  $c_1, c_2, c_3, ..., c_k$  are called components of the code of v generated by S and in particular  $c_i, 1 \leq i \leq k$ , is called  $i^{th}$ -component of the code of v generated by S.

A dominating set D of a graph G(V, E) is the subset of V having the property that for each vertex  $v \in V - D$ , there exists a vertex  $u \in D$  such that uv is in E. A dominating set D of G which is also a resolving set of G is called a *metro dominating set*. A metro dominating set D of a graph G(V, E) is a *unique metro dominating set* (in short an UMD - set) if  $|N(v) \cap D| = 1$  for each vertex  $v \in V - D$  and the minimum of cardinalities of UMD-sets of G is the *unique metro domination number* of G denoted by  $\gamma_{u\beta}(G)$ .

Consider  $C_n, n \ge 4$  labelled as  $v_1, v_2, ..., v_n$  in anticlockwise direction. Join  $v_i$  to  $v_{i+2}$  for  $1 \le i \le n-2, v_{n-1}$  to  $v_1$  and  $v_n$  to  $v_2$ . The resulting graph is denoted by  $C_n^2$ .

**Lemma 1**: For any positive integer  $n, \gamma_{\mu\beta}(C_n^2) \ge \left|\frac{n}{r}\right|$ .

**Proof**: A vertex  $v_i$  dominates five vertices  $v_i$ ,  $v_{i-1}$ ,  $v_{i-2}$ ,  $v_{i+1}$ ,  $v_{i+2}$ . Therefore, if D is a minimal dominating set then  $|D| \ge \frac{n}{5}$ . Hence we have  $\gamma(C_n^2) \ge \lceil \frac{n}{5} \rceil$ .

**Definition 1. [8]** Consider a set S with two or more vertices of the graph G and let  $v_i$  and  $v_j$  be two distinct vertices of S. Further, let P and P' denote two distinct  $v_i v_j$  -paths in G. If either P or P', say Pcontains only two vertices of S namely  $v_i$  and  $v_j$ , then we refer to  $v_i$  and  $v_j$  as neighboring vertices of S. Then the set of all the vertices of  $P - \{v_i v_j\}$  is called a gap of S determined by  $v_i$  and  $v_j$  and denoted by  $\eta_S(v_i, v_j)$  if the following hold  $1.v_i, v_i$  are neighboring vertices in S and

2. No vertex in S is adjacent to any vertex in  $P - \{v_i, v_j\}$ .

**Definition 2.** [8]*The minimum number of vertices in the gap is called the order of the gap, denoted by*  $o(\eta_s(v_i, v_j))$ 

**Lemma 2**:*For* n = 5k,  $\gamma(C_n^2) = \left[\frac{n}{5}\right]$ .

**Proof**:Let n = 5k. Then  $D = \{v_3, v_8, v_{13}, ..., v_{5k-2}\}$  is a minimal dominating set. Further  $|D| = k = \frac{n}{5}$ . D is a dominating set of minimum cardinality, From Lemma 1,  $\gamma(C_n^2) = k = \frac{n}{5}$ .

When n = 5k + 1, then by Lemma 1, |D| > k. If  $v_i \in D$  then D contains  $v_i, v_{i+5}, v_{i+10}, \dots, v_{i+n-6}$ . The gap between  $v_{i+n-6}$  and  $v_i$  with respect to  $C_n$  is of order 5. Hence we include one more work to D. Any one of  $v_{i+n-5}, v_{i+n-4}, v_{i+n-3}, v_{i+n-2}, v_{i+n-1}$  can be included in D. Thus |D| = k + 1 and  $\frac{n}{5} < |D| < \frac{n}{5} + 1$ .

Now consider the cases, n = 5k + 2,5k + 3,5k + 4. In these cases D contains  $v_i, v_{i+5}, v_{i+10}, \dots, v_{i+n-6}$  and the gap between  $v_{i+n-6}$  and  $v_i$  with respect to  $C_n$  is of order greater than 4. Therefore one more vertex to be included in D. Thus, |D| = k + 1 and  $\frac{n}{5} < |D| < \frac{n}{5} + 1$ . Hence we have  $\gamma(C_n^2) = \left[\frac{n}{5}\right]$ .

**Lemma 3**: Let D be a unique dominating for  $C_n^2$ . If  $v_i$  and  $v_j \in D$  have a gap of order less than 4 with respect to  $C_n$  then D = V.

**Proof**: Let  $v_i, v_j \in D$ , j > i and gap between  $v_i$  and  $v_j$  with respect to  $C_n$  is of order less than 4. Suppose the order of the gap is 3. Then  $v_{i+2}$  is dominated by  $v_i$  and  $v_{i+4} = v_j$ . Hence domination is not unique. We include  $v_{i+2}$  in D. But if  $v_{i+2} \in D$  then  $v_{i+1}$  and  $v_{i+3}$  are not uniquely dominated. Hence we include  $v_{i+1}$  and  $v_{i+3}$  in D. Again  $v_{i-1}$  is dominated by  $v_i$  and  $v_{i+1}$  and likewise  $v_{i+5}$  is dominated by  $v_{i+4}$  and  $v_{i+3}$ . So we have to include  $v_{i-1}$  and  $v_{i+5}$  in D. Proceeding like this we conclude that all gaps will be reduced to 0 order. Hence D=V. Similarly if the gap is of order 2 or order 1, then D is not a UMD set and to make D an UMD set, we need to have D=V.



**Lemma 4**:Let *D* be a unique dominating for  $C_n^2$ , then the gap with respect to  $C_n$  between any two vertices in *D* is of order less than 5. If  $v_i$  and  $v_j \in D$  have a gap of order less than 4 with respect to  $C_n$  then D = V. **Proof**: Let  $v_i, v_j \in D$ , j > i. If the gap is of order 5, then j = i + 6. We observe that  $v_{i+3}$  is not dominated by any vertex in D. Hence D is not a dominating set, a contradiction. Similarly if gap is of order greater than 5, we get a contradiction.

If gap between  $v_i$  and  $v_j$  with respect to  $C_n$  is of order 4, then j = i + 5 and  $v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$  are uniquely dominated by  $v_i$  and  $v_j$ . Hence we have

**Lemma 4**: If all gaps are of order 4, then D is a unique dominating set . **Proof**: Let  $D = \{v_{5p+1} | p \in \mathbb{N}, 0 \le p < k\}$ . Then D is a unique dominating set for  $C_n^2, n = 5k, k \ge 3$ . We observe that  $d(v_1, v_j) = d(v_1, v_{j+1}) = \frac{j-i+1}{2} = d(v_1, v_{n-j+2}) = d(v_1, v_{n-j+1})$  where  $j \in \mathbb{N}$  is even. However  $d(v_6, v_{n-j+2}) = \left(\frac{6+j}{2}\right) - 1$  and  $d(v_6, v_{n-j+1}) = \frac{6+j}{2}$ . Hence  $d(v_6, v_{n-j+2}) \ne d(v_6, v_{n-j+1})$ . When j > 6,  $d(v_6, v_j) = \left(\frac{j-6}{2}\right) + 1$ . Hence  $d(v_6, v_{j+1})$ . Therefore codes generated by  $\{v_1, v_6\}$  are distinct to

\*Corresponding Author : Ortiz. L

all the vertices  $v_j$ ,  $6 < j \le n$ . For  $v_2$ ,  $v_3$ ,  $v_4$  and  $v_5$  codes generated by  $\{v_1, v_6, v_{11}\}$  are (1, 2, 5), (1, 2, 4), (2, 1, 4) and (2,1,3). Hence  $\{v_1, v_6, v_{11}\}$  resolves all vertices of  $C_n^2, n \ge 15$ .

Therefore  $D = \{v_{5p+1} | p \in \mathbb{N}, 0 \le p < k\}$  is a UMD set and hence we have Theorem 3:

$$\gamma_{\mu\beta}(C_n^2) = \begin{cases} \frac{n}{5}, & \text{when } n = 5k, k \in \mathbb{N}, k \ge 3\\ n, & \text{for all other } n \end{cases}$$

## REFERENCES

- Gary Chartrand, Linda Eroh, Mark A. Johnson and OrtrudR.Oellermann. Resolvability in graphs and the metric dimension of [1].
- [2]. a graph. Discrete Appl. Math., 105(1-3)(2000) 99-113.
- Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2 (1976) 191-195 [3].
- [4]. S. Kuller, B. Raghavachari and A. Rosenfied, Land marks ingraphs, Disc. Appl. Math.70 (1996) 217-229
- [5]. C. Poisson and P. Zhang, The metric dimension of unicyclicgraphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
- [6]. P. J. Slater, Domination and location in acyclic graphs, Networks17 (1987) 55-64
- P. J. Slater, Locating dominating sets, in Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Applications, [7]. Proc.Seventh Quad International Conference on the theory and appli-cations of Graphs. John Wiley & Sons, Inc. (1995) 1073-1079
- [8]. B. Sooryanarayana and John Sherra, Unique metro domination in graphs, Adv Appl Dis- creteMath., Vol 14(2), (2014),
- B. Sooryanarayana and John Sherra, Unique Metro Domination Number of Circulant Graphs, International J.Math. Combin. Vol. 1(2019), 53-61 [9].
- [10]. H.B.Walikar, Kishori P. Narayankar and Shailaja S. Shirakol, *The Number of Minimum Dominating Sets in P<sub>n</sub> × P<sub>2</sub>*, International J.Math. Combin. Vol.3 (2010), 17-21.

Kishori P. Narayankar, et.al." Unique Metro Domination of Square of Cycles." Quest Journals Journal of Research in Applied Mathematics, vol. 06, no. 01, 2020, pp. 01-03. .....

\_\_\_\_\_

\*Corresponding Author : Ortiz. L