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ABSTRACT 
In this article, based on population ecology theory, we present a competition and cooperation system of the 
enterprise cluster with feedback controls. Based on the theory of calculus on time scales, by using the properties 
of almost periodic functions and constructing a suitable Lyapunov functional, sufficient conditions which 
guarantee the permanence and the existence of a unique globally attractive positive almost periodic solution of 
the system are obtained.  
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I. INTRODUCTION 
Enterprise cluster refers to the concentration of similar or related enterprises in a specific area, which 

form fixed economic outputs and have certain economic influence on outsides [1]. After a large number of 
observations, it is found that there is a similarity between the enterprise cluster and the ecological population 
system. Recently, some researchers have presented some models about enterprise clusters based on ecology 
theory, which arouse growing interest in applying the methods of ecology and dynamic system theory to study 
enterprise clusters, for example [2-8] and references cited therein. For an example, in [9], the authors considered 
the following competition and cooperation of enterprise cluster based on the ecosystem 
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where 1 2( ), ( )x t x t  represent the outputs of enterprise A and enterprise B, respectively, , , , ,i ir b K a b  are 

positive constants, 1, 2i = . 1 2,r r  are the intrinsic growth rates, K  denotes the carrying capacity 
of market under the natural conditions, ,a b  are the competitive power coefficients of the two enterprises, and 

1 2,b b  are the initial productions of the enterprises, respectively. 

Let 1 2
1 2 1 2, , ,

r r
a a c c

K K K K
a b

= = = = , the system above becomes 

2
1 1 1 1 1 1 2 2

2
2 2 2 2 2 2 1 1

( ) ( )[ ( ) ( ( ) ) ],

( ) ( )[ ( ) ( ( ) ) ].

x t x t r a x t c x t b

x t x t r a x t c x t b

¢

¢

ì = - - -ï
í
ï = - + -î

 

In the real world, enterprises are continuously distributed by unpredictable forces which can result in 
changes in the economic parameters, if the various constituent components of the temporally nonuniform 
environment are with incommensurable (nonintegral multiples) periods, then one has to consider the 
environment to be almost periodic since there is no a priori reason to expect the existence of periodic solutions; 
see, for example, [10-13]. However, there are seldom results on the existence of almost periodic solutions of 
enterprise cluster systems on time scales. 

Motivated by above, in this paper, we propose a competition and cooperation model of enterprise 
cluster with feedback controls on time scales as follows: 
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where ,tÎT T  is an almost time scale; 1( )x t  and 2 ( )x t  denote the outputs of enterprises A and B in cluster 

respectively, 1( )r t  and 2 ( )r t  are their intrinsic growth rates at time 1, ( )t a t  and 2 ( )a t  account for their 

self-regulation coefficients, 1( )c t  and 2 ( )c t  represent their contribution coefficients to the other, 1 2,b b  are 

the initial productions of the enterprises respectively; the latter two equations are control equations, 1( )y t  and 

2 ( )y t  are feedback control variables. 
In this paper, the time scale T  considered is unbounded above, and for each interval I  of T , we denote 

by = ÇTI I T . For convenience, we introduce the notation 

sup ( ), inf ( ),u l

tt
f f t f f t

ÎÎ
= =

TT
 

where f  is a positive and bounded function. Throughout this paper, we assume that the coefficients 

( ), ( ), ( ), ( ), ( ), ( ), 1,2,i i i i i ir t a t c t d t k t h t i =  are continuous, almost periodic functions, and satisfy 

min{ , , , , , } 0, max{ , , , , , } , 1,2.l l l l l l u u u u u u
i i i i i i i i i i i ir a c d k h r a c d k h i> < +¥ =  

The initial condition of system (1.1) in the form 

0 0 0 0 0 0 0( ) , ( ) , 0, 0, , 1,2.i i i i i ix t x y t y x y t i= = > > Î =T                                         （2） 
The aim of this paper is, by using the properties of almost periodic functions and constructing a suitable 

Lyapunov functional, to obtain sufficient conditions for the permanence and the existence of a unique globally 
attractive positive almost periodic solution of system (1). 
 

II. PRELIMINARIES 
The basic theory of calculus on time scales, see [14]. 
Lemma 1 ([14]) If , :p q ® ¡T  be two regressive functions, then 
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Lemma 2 ([15]) Assume that 0, 0a b> >  and a +- ÎR . Then 
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Lemma 3 ([16]) Assume that 0, 0,a b b +> > - ÎR , and 0( ) 0, [ , )y t t t> Î +¥ T . 
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Lemma 4 ([17]) 
Assume that ( ) 0,y t t> ÎT . Let ktÎT , if ( )y t  is differentiable at t , then 
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Remark 1 If the time scale T  is unbounded above, then k=T T ; therefore, in Lemma 4, if sup = +¥T , then 
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[ln( ( ))] , .
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y t t
y t

D
D³ " ÎT  

Definition 1 ([18]) A time scale T  is called an almost periodic time scale if 
 { : , } {0}.t tt tP = Î ± Î " Î ¹¡ T T  

Throughout this paper, we restrict our discussion on almost periodic time scales. Let D  denotes n¡  or an 
open subset of n¡ . The relevant definitions and the properties of almost periodic functions, see [18-20]. 
Definition 2 ([19]) ( , )nf CÎ ¡T  is an almost periodic function if and only if for any sequence na¢ Ì P , there 

exists a subsequence n na a¢Ì   such that ( )nf t a+  converges uniformly on T  as n ® +¥ . Furthermore, 
the limit function is also an almost periodic function. 

Similar to the proof of Corollary 1.2 in [20], we can get the following lemma. 
Lemma 5 Let T  be an almost periodic time scale. If ( ), ( )f t g t  are almost periodic functions, then, for any 

0, { , } { , }E f E ge e e> Ç is a nonempty relatively dense set in T ; that is, for any given 0e > , there exists a 

constant ( ) 0l e > , such that in any interval of length ( )l e , there exists at least a positive 

{ , } { , }E f E gt e eÎ Ç  such that  

| ( ) ( ) | ,| ( ) ( ) | , .f t f t g t g t tt e t e+ - < + - < " ÎT  
Consider the following almost periodic dynamic equation on time scale T : 

( , )x f t xD =                                                                         （3） 
and the associate product system of (3) 

( , ), ( , ).x f t x y f t yD D= =                                                              （4） 

Lemma 6 ([19]) Suppose that there exists a Lyapunov function ( , , ) ([0, ) , )V t x y CÎ +¥ ´ ´ ¡T D D  satisfying 
the following conditions: 
 (1) ( ) ( , , ) ( )a x y V t x y b x y- £ £ -‖ ‖ ‖ ‖ , where , , { ( , ) : (0) 0a b K K a C a+ +Î = Î =¡ ¡ and a  is increasing; 

 (2) 1 1 2 2 1 2 1 2| ( , , ) ( , , ) | ( )V t x y V t x y L x x y y- £ - + -‖ ‖‖ ‖ , where 0L >  is a constant; 

 (3) (3) ( , , ) ( , , )D V t x y V t x yl+ D £ - , where l +- ÎR  and 0l > . 

Moreover, if there exists a solution ( )x t  of (3) such that ( )x t SÎ , where S ÌD  is a compact set. Then there 

exists a unique uniformly asymptotically stable almost periodic solution ( )p t  of (3) in S . Furthermore, if 

( , )f t x  is periodic with period w  in t , then ( )p t  is a periodic solution of (3) with period w . 
 

III．PERMANENCE 
Assume that the coefficients of (1) satisfy 
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Theorem 1 Let 1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  be any positive solution of system (1) with initial condition (2). If 

1 2( ) ( )H H-  hold, then system (1) is permanent, that is, any positive solution 1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  of 
system (1) satisfies 
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2 2lim linf ( ) sup ( ) ,imi i i it t
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especially if 1 0 1 2 0 2,i i i i i im x M m y M£ £ £ £ , then 

1 1 2 2 0( ) , ( ) , [ , ) ,i i i i im x t M m y t M t t£ £ £ £ Î +¥ T  

where 1, 2i = , and 
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Proof Assume that 1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  be any positive solution of system (1) with initial condition (2). It 

follows from the first equation of system (1) and the inequality 1xe x³ +  for xÎT  that 

1 1 1 1 1 1 1 1( ) ( ) ( )(1 ( )) ( ) ( ).u l lx t r t a t x t r a a x tD £ - + £ - -                                           （7） 
By Lemma 2, we can get 
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Similarly, by Lemma 2, from the second equation of system (1), we can obtain 
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Then, for arbitrarily small positive constant 0e > , there exists a 1 0T >  such that 

1 11 2 12 1( ) , ( ) , [ , ] .x t M x t M t Te e< + < + " Î +¥ T  

From the third equation of system (1), when 1[ , )t TÎ +¥ T , 
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By Lemma 2, we can get  
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Similarly, by Lemma 2, from the fourth equation of system (1), we can obtain 
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Then, for arbitrarily small positive constant 0e > , there exists a 2 1T T>  such that 

1 21 2 22 2( ) , ( ) , [ , ] .y t M y t M t Te e< + < + " Î +¥ T  

On the other hand, from the first equation of system (1), when 2[ , )t TÎ +¥ T , 
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By Lemma 4 and Remark 1, it follows from (10) that 
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Then, for arbitrarily small positive constant 0e > , 
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there exists a 3 2T T>  such that 
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Then, for arbitrarily small positive constant 0e > , there exists a 4 3T T>  such that 

1 21 2 22 4( ) , ( ) , [ , ] .y t m y t m t Te e> - > - " Î +¥ T  

In special case, if 1 0 1 2 0 2,i i i i i im x M m y M£ £ £ £ , by Lemma 2 and Lemma 3, it follows from (7)-(8), 
(11)-(12) and the above analysis that 

1 1 2 2 0( ) , ( ) , [ , ) ,i i i i im x t M m y t M t t£ £ £ £ Î +¥ T  
This completes the proof. 
 

IV. ALMOST PERIODIC SOLUTION 
Let ( )S T  be the set of all solutions 1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  of system (1) satisfying  

11 1 11 12 2 12 21 1 21 22 2 22( ) , ( ) , ( ) , ( )m x t M m x t M m y t M m y t M£ £ £ £ £ £ £ £  
for all tÎT . 
Lemma 7 ( ) .S ¹ ÆT  

Proof By Theorem 1, we see that for any 0t ÎT  with  

11 10 11 12 20 12 21 10 21 22 20 22, , ,m x M m x M m y M m y M£ £ £ £ £ £ £ £ ,  

system (1) has a solution 1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  satisfying  

11 1 11 12 2 12 21 1 21 22 2 22 0( ) , ( ) , ( ) , ( ) , [ , ) .m x t M m x t M m y t M m y t M t t£ £ £ £ £ £ £ £ Î +¥ T  

Since ( ), ( ), ( ), ( ), ( ), ( ), 1,2,i i i i i ir t a t c t d t k t h t i =  are almost periodic, it follows from Lemma 5 that there exists a 

sequence { } ,n nt tÌ P ® +¥  as n ® +¥  such that  

( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ), 1,2,
i n i i n i i n i i n i

i n i i n i

r t t r t a t t a t c t t c t d t t d t

k t t k t h t t h t i

+ ® + ® + ® + ®

+ ® + ® =
  

as n ® +¥  uniformly on T . 
Now, we claim that { ( )},{ ( )}, 1,2,i n i nx t t y t t i+ + =  are uniformly bounded and equi-continuous on any 

bounded interval in T . In fact, for any bounded interval [ , ]a b ÌT T , when n  is large enough, 0nt ta + > , 

then 0 , [ , ]nt t t t a b+ > " Î T . So, 

11 1 11 12 2 12 21 1 21 22 2 22( ) , ( ) , ( ) , ( )n n n nm x t t M m x t t M m y t t M m y t t M£ + £ £ + £ £ + £ £ + £  for [ , ]t a bÎ T , that is, 

{ ( )},{ ( )}, 1,2,i n i nx t t y t t i+ + =  are uniformly bounded. On the other hand, 1 2, [ , ]t t a b" Î T , from the mean 
value theorem of differential calculus on time scales, we have 

11 12 2
1 1 1 2 1 1 1 2 1 21 1 2| ( ) ( ) | [ ( ) ] | |,M Mu u u u

n nx t t x t t r a e c e b k M t t+ - + £ + + - + -                           （13） 
12 11 2

2 1 2 2 2 2 2 1 2 22 1 2| ( ) ( ) | [ ( ) ] | |,M Mu u u u
n nx t t x t t r a e c e b k M t t+ - + £ + + - + -                           （14） 

11
1 1 1 2 1 21 1 1 2| ( ) ( ) | ( ) | |,Mu u

n ny t t y t t h M d e t t+ - + £ + -                                           （15） 
12

2 1 2 2 2 22 2 1 2| ( ) ( ) | ( ) | | .Mu u
n ny t t y t t h M d e t t+ - + £ + -                                          （16） 

The inequalities (13)-(16) show that { ( )},{ ( )}, 1,2,i n i nx t t y t t i+ + =  are equi-continuous on [ , ] .a b T By the 

arbitrariness of [ , ]a b T , the conclusion is valid. 

By the Ascoli-Arzela theorem for time scales [21], there exists a subsequence of { }nt , we still denote it as 

{ }nt , such that 
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( ) ( ), ( ) ( ), 1,2,i n i i n ix t t p t y t t q t i+ ® + ® =  
as n ® +¥  uniformly in t  on any bounded interval in T . 
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Let n ® +¥ , then 
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It is clear that 1 2 1 2( ( ), ( ), ( ), ( ))p t p t q t q t  is a solution of system (1). Moreover, 

11 1 11 12 2 12 21 1 21 22 2 22( ) , ( ) , ( ) , ( ) , .m p t M m p t M m q t M m q t M t£ £ £ £ £ £ £ £ " ÎT  
This completes the proof. 
Remark 2 From the proofs of Theorem 1 and Lemma 7, we know that if the conditions of Theorem 1 hold, 

( )S T  is a positive invariant set of system (1). 

Theorem 2 Suppose the conditions 1 2( ) ( )H H-  hold, assume further that 
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then there exists a unique uniformly asymptotically stable almost periodic solution 1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  of 

system (1) which is bounded on ( )S T  for all tÎT . 
Proof From Lemma 7, system (1) has a bounded solution satisfying 
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D

D

D

= - - - -

= - + - -

= - +

= - +

                              （17） 

Suppose 1 2 1 2 1 2 1 2( ( ), ( ), ( ), ( )), ( ( ), ( ), ( ), ( ))X x t x t y t y t Y u t u t v t v t= =  are any two solutions of system (15), then 

,X B Y B£ £‖ ‖ ‖ ‖ , where 11 12 21 22B M M M M= + + + . 

Consider a Lyapunov function defined on ( ) ( )S S´ ´T T T  as follows 

1 1 2 2 1 1 2 2( , , ) | ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) | .V t X Y x t u t x t u t y t v t y t v t= - + - + - + -                          （18） 

Since 1 1 2 2 1 1 2 2| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |X Y x t u t x t u t y t v t y t v t- = - + - + - + -‖ ‖ , we have 

1
( , , ) 2 .

2
X Y V t X Y X Y- £ £ -‖ ‖ ‖ ‖ 

Let 
1

, ( , ), ( ) , ( ) 2 ,
2

a b C a x x b x x+ +Î = =¡ ¡ thus the condition (1) in Lemma 6 is satisfied. 

In addition, 
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1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

| ( , , ) ( , , ) |

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) (

|
|

V t X Y V t X Y

x t u t x t u t y t v t y t v t

x t u t x t u t y t v t y t v t

x t x t x t x t y t y t y t y

-

= - + - + - + -

- - - - - - - -

£ - + - + - + -

% %

% % % % % % % %
% % % %

1 1 2 2 1 1 2 2

) |

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

.

t

u t u t u t u t v t v t v t v t

X X Y Y

+ - + - + - + -

= - + -

% % % %
% %‖ ‖‖ ‖

 

Let 1L = , then the condition (2) of Lemma 6 is satisfied. 
Finally, calculate the ( , , )V t X YD  along the solutions of (18), we can obtain 

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 1 1 2

( , , ) sgn( ( ) ( ))( ( ) ( )) sgn( ( ) ( ))( ( ) ( ))

sgn( ( ) ( ))( ( ) ( )) sgn( ( ) ( ))( ( ) ( ))

sgn( ( ) ( ))[ ( )(exp{ ( )} exp{ ( )}) ( )((exp{ ( )}

V t X Y x t u t x t u t x t u t x t u t

y t v t y t v t y t v t y t v t

x t u t a t x t u t c t x t b

D D D

D D

= - - + - -

+ - - + - -

= - - - - - 2
2

2
2 2 1 1 1

2 2 2 2 2 2 2 1 1

2
1 1 2 2 2

1 1 1 1 1 1

)

(exp{ ( )} ) ) ( )( ( ) ( ))]

sgn( ( ) ( )) ( )[ ( )(exp{ ( )} exp{ ( )}) ( )((exp{ ( )} )

(exp{ ( )} ) ) ( )( ( ) ( ))]

sgn( ( ) ( ))[ ( )( ( ) ( )) ( )(exp

u t b k t y t v t

x t u t r t a t x t u t c t x t b

u t b k t y t v t

y t v t h t y t v t d t

- - - -
+ - - - + -

- - - -
+ - - - + 1 1

2 2 2 2 2 2 2 2

{ ( )} exp{ ( )})]

sgn( ( ) ( ))[ ( )( ( ) ( )) ( )(exp{ ( )} exp{ ( )})].

x t u t

y t v t h t y t v t d t x t u t

-
+ - - - + -

                   （19） 

By using the mean value theorem, we have 

1 1 1 1 1

2 2 2 2 2

exp{ ( )} exp{ ( )} ( )( ( ) ( )),

exp{ ( )} exp{ ( )} ( )( ( ) ( )),

x t u t t x t u t

x t u t t x t u t

x
x

- = -
- = -

 

where 1( )tx  lies between 1exp{ ( )}x t  and 1exp{ ( )}u t , and 2 ( )tx  lies between 2exp{ ( )}x t  and 

2exp{ ( )}.u t  
From (19), we have 

1 2 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2

( , , ) [ ( ) ( )(exp{ ( )} exp{ ( )} 2 ) ( )] ( ) | ( ) ( ) |

[ ( ) ( )(exp{ ( )} exp{ ( )} 2 ) ( )] ( ) | ( ) ( ) |

( ( ) ( )) | ( ) ( ) | ( ( ) ( )) | ( ) ( ) |

[

V t X Y a t c t x t u t b d t t x t u t

a t c t x t u t b d t t x t u t

h t k t y t v t h t k t y t v t

x
x

D £ - + + - + -
+ - + + - + -
+ - + - + - + -

£- 11 1 212
1 2 1 1 1 1 2 1 2 2 2 2

1 1 1 1 2 2 2 2

2 ( ) ] | ( ) ( ) | [ 2 ( ) ] | ( ) ( ) |

( ) | ( ) ( ) | ( ) | ( ) ( ) | ( , , ),

M m ml u u l u M u

l u l u

a c e b d e x t u t a c e b d e x t u t

h k y t v t h k y t v t V t X Yl

- - - - - - - - -

- - - - - - £-

 

where 11 12
1 2 1 1 2 1 2 2 1 1 2 2min{ 2 ( ) , 2 ( ) , , }.Ml u u l u M u l u l ua c e b d a c e b d h k h kl = - - - - - - - - From the condition 3( ),H  

0l >  and l +- ÎR , the condition (3) of Lemma 6 is satisfied. 
   To sum up, from Lemma 6, there exists a unique uniformly asymptotically stable almost periodic solution 

1 2 1 2( ( ), ( ), ( ), ( ))x t x t y t y t  of system (1) which is bounded on ( )S T  for all tÎT . This completes the proof. 

Corollary 1 Assume that 1 3( ) ( )H H-  hold. Suppose that the nonnegative coefficients ( ), ( ), ( ), ( ),i i i ir t a t c t d t  

( ),ik t ( ), 1, 2ih t i =  are periodic of period w ; then system (1) has a unique uniformly asymptotically stable 
periodic solution of period w . 
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