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ABSTRACT : When solving complex water resources management (WRM) problems, it is often preferable to 

construct a number of quantifiably good alternatives that provide multiple, different perspectives. This is 

because WRM normally involves multifaceted problems that are riddled with incompatible performance 

objectives and contain inconsistent design requirements which are very difficult to quantify and capture when 

supporting decisions must be constructed. These alternatives need to satisfy the required system performance 

criteria and yet be maximally different from each other in the decision space. The approach for creating 

maximally different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulation-

optimization approaches are frequently employed to solve computationally difficult problems containing 

significant stochastic uncertainties. This paper outlines an MGA approach for WRM that can generate sets of 

maximally different alternatives for any simulation-optimization method that employs a population-based search 

algorithm. This algorithmic approach is both computationally efficient and simultaneously produces the 

prescribed number of maximally different solution alternatives in a single computational run of the procedure. 

The effectiveness of this stochastic MGA approach for creating alternatives in “real world”, water policy 

formulation is demonstrated using a WRM case study. 
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I. INTRODUCTION 
Water resource managers have been confronted by water allocation problems for many decades ([1], 

[2]). Implementing effective water resources management (WRM) has proven to be both notoriously 

contentious and conflict-laden as inherent antagonism between multiple municipal, industrial and agricultural 

water-users has intensified. Increased population shifts and shrinking water supplies have further heightened the 

inter-user challenges. These antagonisms provoke additional aggravations when natural conditions become more 

unpredictable due to changing climatic conditions and as concern for water quantity and quality grows. Poorly-

planned water allocation systems can deteriorate into more serious conflicts under detrimental river-flow and 

climatic conditions. In the past, increasing demand for water was met by the development of new water sources. 

However, significant economic and environmental costs associated with developing new water sources have 

rendered this approach unsustainable. Unlimited expansion of water sources is no longer the primary objective 

in WRM. Instead, for optimum water resource allocation, the aim becomes to improve the existing water 

allocation and management in a more equitable, environmentally-benign, and efficient manner by fashioning 

environmental policy formulation techniques for water allocation under various complexities. Such innovative 

strategy formulation can be extremely problematic, as many components of water systems contain substantial 

uncertainties. The prevalence of stochastic uncertainty renders most common decision approaches relatively 

unsuitable for practical implementation. 

Since WRM problems generally possess all of the characteristics associated with environmental 

planning, WRM systems have provided an ideal backdrop for the testing of a wide spectrum of decision support 

techniques used in environmental decision-making [3], [4], [5]. WRM decision-making frequently possess 

inconsistent and incompatible design specifications that can be difficult to formulate into mathematical decision-

models [1], [2], [3], [4], [5], [6]. This situation commonly occurs when final decisions must be constructed 
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based not only upon clearly articulated specifications, but also upon environmental, political and socio-

economic objectives that are either fundamentally subjective or not clearly articulated [7], [8], [9], [10]. 

Although “optimal” solutions can be determined for the mathematical models, whether these can be considered 

the best solution to the “real” problem remains somewhat questionable. Moreover, in public policy formulation, 

it may never be possible to explicitly convey many of the subjective considerations because there are numerous 

competing, adversarial stakeholder groups holding diametrically opposed perspectives. Therefore, many of the 

subjective aspects remain unknown, unquantified and unmodelled in the construction of any corresponding 

decision models. WRM policy formulation can prove even more complicated when the various system 

components also contain considerable stochastic uncertainties [10]. Consequently, WRM policy determination 

proves to be an extremely challenging and complicated undertaking [10], [11]. 

Within WRM decision-making, there are routinely many stakeholder groups holding completely 

incongruent standpoints, essentially dictating that policy-makers need to construct decision frameworks that can 

somehow simultaneously reflect numerous irreconcilable points of view. Under such circumstances, it is often 

more desirable to construct a small number of distinct alternatives that provide dissimilar viewpoints for the 

particular problem [3], [7]. These dissimilar solutions should be close-to-optimal with respect to the specified 

objective(s), but be maximally different from each other within the decision domain. Numerous approaches 

collectively referred to as modelling-to-generate-alternatives (MGA) have been created to address this multi-

solution requirement [6], [7], [8]. The principal motivation behind MGA is the production of a set of alternatives 

that are “good” with respect to the specified objective(s), but are fundamentally dissimilar from each other in the 

decision space. Decision-makers then need to perform a subsequent evaluation of this set of alternatives to 

determine which specific alternative(s) most closely satisfy their specific goals. Consequently, MGA approaches 

are classified as decision support methods rather than as solution creation processes as assumed in explicit 

optimization. 

Early MGA algorithms employed direct, incremental approaches for constructing their alternatives by 

iteratively re-running their procedures whenever new solutions needed to be generated [6], [7], [8], [9], [10]. 

These iterative approaches replicated the seminal MGA technique of Brill et al. [8] where, once the initial 

mathematical formulation has been optimized, all supplementary alternatives are produced one-at-a-time. 

Therefore, these approaches all employed n+1 iterations of their respective algorithms – firstly to optimize the 

original problem, then to construct each of the n subsequent alternatives [7], [11], [12], [13], [14], [15], [16], 

[17], [18]. 

In this paper, it is demonstrated how a set of maximally different solution alternatives can be generated 

by extending several earlier MGA techniques to stochastic optimization ([12], [13], [14], [15], [16], [17], [18]). 

The stochastic algorithm provides an MGA process that can be accomplished by any population-based 

mechanism. This algorithm advances earlier concurrent procedures ([13], [15], [16], [17], [18]) by permitting 

the simultaneous generation of n distinct alternatives in a single computational run. Specifically, to generate n 

maximally different alternatives, the algorithm runs exactly the same number of times that a function 

optimization procedure needs to run (i.e. once) irrespective of the value of n [19], [20], [21], [22], [23]. A dual-

criterion, max-sum, max-min objective is employed that combines a novel data structure into the simultaneous 

solution approach to create an effective MGA approach. The max-sum portion of the objective endeavours to 

produce a maximum distance between solutions by ensuring that the total deviation between all of the variables 

in all of the alternatives is large. It does not preclude, however, the possibility of relatively small (or zero) 

deviations occurring between some of the individual variables in certain solutions. In contrast, the max-min 

objective seeks a maximum distance between every variable over all solutions. By considering both objectives 

simultaneously, the alternatives created will be as far apart as possible for all variables in general and the closest 

distance in the worst case between any solutions will never be less than the value obtained for the max-min 

objective. Furthermore, the dual-objective stochastic MGA algorithm employs a data structure that permits 

simultaneous alternatives to be constructed in a very computationally effective way. This data structure 

facilitates the above-mentioned solution generalization to all population-based methods. Consequently, this 

stochastic MGA algorithmic approach proves to be extremely computationally efficient. The effectiveness of 

this method for WRM purposes is demonstrated using a case study taken from [24] and [25]. 

 

II. MODELLING TO GENERATE ALTERNATIVES 
 Mathematical optimization has focused almost entirely on constructing single optimal solutions to 

single-objective problems or determining sets of noninferior solutions for multi-objective formulations [2], [5], 

[8]. While such approaches may create solutions to the mathematical models, whether these outputs are the best 

solutions to the “real” problems remains can be debatable [1], [2], [6], [8]. Within most “real world” decision-

making environments, there are countless system requirements and objectives that will never be explicitly 

apparent or included in the model formulation stage [1], [5]. Furthermore, most subjective aspects remain 

unavoidably unmodelled and unquantified in the constructed decision models. This regularly occurs where final 
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decisions are constructed based not only on modelled objectives, but also on more subjective stakeholder goals 

and socio-political-economic preferences [7]. Several incongruent modelling dualities are discussed in [6], [8], 

[9], and [10]. 

When unmodelled objectives and unquantified issues exist, non-traditional methods are required for 

searching the decision region not only for noninferior sets of solutions, but also for alternatives that are 

evidently sub-optimal to the modelled problem. Namely, any search for alternatives to problems known or 

suspected to contain unmodelled components must concentrate not only on a non-inferior set of solutions, but 

also necessarily on an explicit exploration of the problem’s inferior solution space. 

To demonstrate the implications of unmodelled objectives in a decision search, assume that an optimal 

solution for a maximization problem is X* with objective value Z1* [26]. Suppose a second, unquantified, 

maximization objective Z2 exists that represents some “politically acceptable” factor. Assume that the solution, 

X
a
, belonging to the 2-objective noninferior set, exists that corresponds to a best compromise solution if both 

objectives could have been simultaneously considered. Although X
a
 would be considered as the best solution to 

the real problem, in the actual mathematical model it would appear inferior to solution X*, since Z1
a
   Z1*. 

Therefore, when unquantified components are included in the decision-making process, inferior decisions to the 

mathematically modelled problem could be optimal to the underlying “real” problem. Thus, when unquantified 

issues and unmodelled objectives could exist, alternative solution procedures are required to not only explore 

the decision domain for noninferior solutions to the modelled problem, but also to concurrently search the 

decision domain for inferior solutions. Population-based algorithms permit concurrent searches throughout a 

decision space and prove to be particularly proficient solution methods. 

The objective of MGA is to construct a viable set of alternatives that are quantifiably good with respect 

to all modelled objectives, yet are as different as possible from each other within the solution space. By 

accomplishing this requirement, the resulting set of alternatives is able to provide truly different perspectives 

that perform similarly with respect to the known modelled objective(s) yet very differently with respect to 

various potentially unmodelled aspects. By creating these good-but-different solutions, the decision-makers are 

able to explore potentially desirable qualities within the alternatives that might be able to satisfy the unmodelled 

objectives to varying degrees of stakeholder acceptability. 

 To motivate the MGA process, it is necessary to more formally characterize the mathematical 

definition of its goals [6], [7]. Assume that the optimal solution to an original mathematical model is X* with 

corresponding objective value Z* = F(X*). The resultant difference model can then be solved to produce an 

alternative solution, X, that is maximally different from X*: 

Maximize  (X, X*) = Min
i

 | Xi - Xi* | (1) 

Subject to:    X   D  (2) 

  | F(X) - Z* |   T  (3) 

 

 where   represents an appropriate difference function (shown in (1) as an absolute difference) and T 

is a tolerance target relative to the original optimal objective value Z*. T is a user-specified limit that determines 

what proportion of the inferior region needs to be explored for acceptable alternatives. This difference function 

concept can be extended into a difference measure between any set of alternatives by replacing X* in the 

objective of the maximal difference model and calculating the overall minimum absolute difference (or some 

other function) of the pairwise comparisons between corresponding variables in each pair of alternatives – 

subject to the condition that each alternative is feasible and falls within the specified tolerance constraint. 

 The population-based MGA procedure to be introduced is designed to generate a pre-determined small 

number of close-to-optimal, but maximally different alternatives, by adjusting the value of T and solving the 

corresponding maximal difference problem instance by exploiting the population structure of the algorithm. The 

survival of solutions depends upon how well the solutions perform with respect to the problem’s originally 

modelled objective(s) and simultaneously by how far away they are from all of the other alternatives generated 

in the decision space. 

 

III. SIMULATION-OPTIMIZATION FOR STOCHASTIC OPTIMIZATION 
 Finding optimal solutions to large stochastic problems proves complicated when numerous system 

uncertainties must be directly incorporated into the solution procedures ([26], [27], [28], [29]). Simulation-

Optimization (SO) is a broadly defined family of stochastic solution approaches that combines simulation with 

an underlying optimization component for optimization [26]. In SO, all unknown objective functions, 

constraints, and parameters are replaced by simulation models in which the decision variables provide the 

settings under which simulation is performed. 
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 The general steps of SO can be summarized in the following fashion ([27], [30]). Suppose the 

mathematical model of the optimization problem contains n decision variables, iX , represented in the vector X 

= [ 1X , 2X ,…, nX ]. If the objective function is expressed by F and the feasible region is designated by D, then 

the mathematical programming problem is to optimize F(X) subject to X   D. When stochastic conditions 

exist, values for the objective and constraints can be determined by simulation. Any solution comparison 

between two different solutions X1 and X2 requires the evaluation of some statistic of F modelled with X1 

compared to the same statistic modelled with X2 ([26], [31]). These statistics are calculated by simulation, in 

which each X provides the decision variable settings employed in the simulation. While simulation provides a 

means for comparing results, it does not provide the mechanism for determining optimal solutions to problems. 

Hence, simulation cannot be used independently for stochastic optimization. 

Since all measures of system performance in SO are stochastic, every potential solution, X, must be 

calculated through simulation. Because simulation is computationally intensive, an optimization algorithm is 

employed to guide the search for solutions through the problem’s feasible domain in as few simulation runs as 

possible ([28], [31]). As stochastic system problems frequently contain numerous potential solutions, the quality 

of the final solution could be highly variable unless an extensive search has been performed throughout the 

entire feasible region. A stochastic SO approach contains two alternating computational phases; (i) an 

“evolutionary” module directed by some optimization (frequently a metaheuristic) method and (ii) a simulation 

module ([32]). Because of the stochastic components, all performance measures are necessarily statistics 

calculated from the responses generated in the simulation module. The quality of each solution is found by 

having its performance criterion, F, evaluated in the simulation module. After simulating each candidate 

solution, their respective objective values are returned to the evolutionary module to be utilized in the creation 

of ensuing candidate solutions. Thus, the evolutionary module aims to advance the system toward improved 

solutions in subsequent generations and ensures that the solution search does not become trapped in some local 

optima. After generating new candidate solutions in the evolutionary module, the new solution set is returned to 

the simulation module for comparative evaluation. This alternating, two-phase search process terminates when 

an appropriately stable system state (i.e. an optimal solution) has been attained. The optimal solution produced 

by the procedure is the single best solution found throughout the course of the entire search process ([32]). 

Population-based algorithms are conducive to SO searches because the complete set of candidate 

solutions maintained in their populations permit searches to be undertaken throughout multiple sections of the 

feasible region, concurrently. For population-based optimization methods, the evolutionary phase evaluates the 

entire current population of solutions during each generation of the search and evolves from a current population 

to a subsequent one. A primary characteristic of population-based procedures is that better solutions in a current 

population possess a greater likelihood for survival and progression into the subsequent population. 

It has been shown that SO can be used as a very computationally intensive, stochastic MGA technique 

([31], [33]). However, because of the very long computational runs, several approaches to accelerate the search 

times and solution quality of SO have been examined subsequently [30]. The next section provides an MGA 

algorithm that incorporates stochastic uncertainty using SO to much more efficiently generate sets of maximally 

different solution alternatives. 

 

IV. POPULATION-BASED DUAL-CRITERION MGA COMPUTATIONAL ALGORITHM 
 In this section, a data structure is employed that enables a dual-criterion MGA solution approach via 

any population-based algorithm [34], [35], [36]. Suppose that it is desired to produce P alternatives that each 

possess n decision variables and that the population algorithm is to possess K solutions in total. That is, each 

solution contains one possible set of P maximally different alternatives. Let Yk, k = 1,…, K, represent the k
th

 

solution which consists of one complete set of P different alternatives. Specifically, if Xkp corresponds to the p
th

 

alternative, p = 1,…, P, of solution k, k = 1,…, K, then Yk can be represented as 

 Yk = [Xk1, Xk2,…, XkP] .  (4) 

If Xkjq, q = 1,…, n, is the q
th

 variable in the j
th

 alternative of solution k, then 

 Xkj = (Xkj1, Xkj2,…, Xkjn) .  (5) 

Consequently, the entire population, Y, consisting of K different sets of P alternatives can be expressed in 

vectorized form as, 

 Y’ = [Y1, Y2,…, YK] .  (6) 

 The following population-based MGA method produces a pre-determined number of close-to-optimal, 

but maximally different alternatives, by modifying the value of the bound T in the maximal difference model 

and using any population-based method to solve the corresponding, maximal difference problem. The dual-

criterion MGA algorithm that follows constructs a pre-determined number of maximally different, near-optimal 

alternatives, by modifying the bound value T in the maximal difference model and using any population-based 

technique to solve the corresponding maximal difference problem. Each solution in the population comprises 
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one set of p different alternatives. By exploiting the co-evolutionary aspects of the algorithm, the algorithm 

evolves each solution toward sets of dissimilar local optima within the solution domain. In this processing, each 

solution alternative mutually experiences the search steps of the algorithm. Solution survival depends upon both 

how well the solutions perform with respect to the modelled objective(s) and by how far apart they are from 

every other alternative in the decision space. 

A straightforward process for generating alternatives solves the maximum difference model iteratively 

by incrementally updating the target T whenever a new alternative needs to be produced and then re-solving the 

resulting model [34]. This iterative approach parallels the seminal Hop, Skip, and Jump (HSJ) MGA algorithm 

[8] in which the alternatives are created one-by-one through an incremental adjustment of the target constraint. 

While this approach is straightforward, it entails a repetitive execution of the optimization algorithm [7], [12], 

[13]. To improve upon the stepwise HSJ approach, a concurrent MGA technique was subsequently designed 

based upon co-evolution ([13], [15], [17]). In a co-evolutionary approach, pre-specified stratified subpopulation 

ranges within an algorithm’s overall population are established that collectively evolve the search toward the 

specified number of maximally different alternatives. Each desired solution alternative is represented by each 

respective subpopulation and each subpopulation undergoes the common processing operations of the 

procedure. The survival of solutions in each subpopulation depends simultaneously upon how well the solutions 

perform with respect to the modelled objective(s) and by how far away they are from all of the other 

alternatives. Consequently, the evolution of solutions in each subpopulation toward local optima is directly 

influenced by those solutions contained in all of the other subpopulations, which forces the concurrent co-

evolution of each subpopulation towards good but maximally distant regions within the decision space 

according to the maximal difference model [7]. Co-evolution is also much more efficient than a sequential HSJ-

style approach in that it exploits the inherent population-based searches to concurrently generate the entire set of 

maximally different solutions using only a single population [12], [17]. 

While concurrent approaches can exploit population-based algorithms, co-evolution can only occur 

within each of the stratified subpopulations. Consequently, the maximal differences between solutions in 

different subpopulations can only be based upon aggregate subpopulation measures. Conversely, in the 

following simultaneous MGA algorithm, each solution in the population contains exactly one entire set of 

alternatives and the maximal difference is calculated only for that particular solution (i.e. the specific alternative 

set contained within that solution in the population). Hence, by the evolutionary nature of the population-based 

search procedure, in the subsequent approach, the maximal difference is simultaneously calculated for the 

specific set of alternatives considered within each specific solution – and the need for concurrent subpopulation 

aggregation measures is avoided. 

Using the data structure terminology, the steps for the dual-criterion MGA algorithm are as follows 

([14], [19], [20], [21], [22], [23], [34], [35], [36]). It should be readily apparent that the stratification approach 

employed by this method can be easily modified for any population-based algorithm. 

Initialization Step. Solve the original optimization problem to find its optimal solution, X*. Based upon 

the objective value F(X*), establish P target values. P represents the desired number of maximally different 

alternatives to be generated within prescribed target deviations from the X*. Note: The value for P has to have 

been set a priori by the decision-maker. 

Without loss of generality, it is possible to forego this step and to use the algorithm to find X* as part 

of its solution processing in the subsequent steps. However, this significantly increases the number of iterations 

of the computational procedure and the initial stages of the processing become devoted to finding X* while the 

other elements of each population solution are retained as essentially “computational overhead”. 

Step 1. Create an initial population of size K where each solution contains P equally-sized partitions. 

The partition size corresponds to the number of decision variables in the original optimization problem. Xkp 

represents the p
th

 alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, using the simulation module with 

respect to the modelled objective. Alternatives meeting their target constraint and all other problem constraints 

are designated as feasible, while all other alternatives are designated as infeasible. A solution can only be 

designated as feasible if all of the alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the 

population. The best solution is the feasible solution containing the most distant set of alternatives in the 

decision space (the distance measures are defined in Step 5).  

Note: Because the best solution to date is always retained in the population throughout each iteration, at 

least one solution will always be feasible. A feasible solution for the first step can always consists of P 

repetitions of X*. 

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some 

measure of solution convergence) are met. Otherwise, proceed to Step 5. 
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Step 5. For each solution Yk, k = 1,…, K, calculate D
1
k and D

2
k, which are the dual-criterion Max-Min 

and Max-Sum distance measures determined, respectively, between all of the alternatives contained within the 

solution. 

As an illustrative example for calculating the dual-criterion distance measures, compute 

 D
1
k = 

1  ( Xka, Xkb) = 
, ,

Min
a b q

 | Xkaq – Xkbq | ,  a = 1,…,P, b = 1,…,P, q = 1,…,n,  (7) 

and 

 D
2
k  = 

2 ( Xka, Xkb) = 
1a toP 1b toP 1...q n ( Xkaq – Xkbq )

2
,   (8) 

D
1
k denotes the minimum absolute distance and D

2
k represents the overall quadratic deviation between all of the 

alternatives contained within solution k. Alternatively, the distance functions could be calculated by some other 

appropriately defined function. 

 Step 6. This step orders the specific solutions by those solutions which contain the set of alternatives 

which are most distant from each other. The goal of maximal difference is to force alternatives to be as far apart 

as possible in the decision space from the alternatives of each of the partitions within each solution. 

 Let Dk = G(D
1

k, D
2

k) represent the dual-criterion objective for solution k. Rank the solutions according 

to the distance measure Dk objective – appropriately adjusted to incorporate any constraint violation penalties 

for infeasible solutions. 

Step 7. Apply applicable algorithmic “change operations” to each solution within the population and return to 

Step 2. 

 

V. CASE STUDY OF WATER RESOURCES MANAGEMENT 
 As indicated throughout the previous sections, WRM decision-makers faced with situations containing 

numerous uncertainties often prefer to select from a set of “near best” alternatives that differ significantly from 

each other in terms of the system structures characterized by their decision variables. The efficacy of the 

population-based, dual-criterion MGA procedure will be illustrated using a WRM case taken from [24] and [25]. 

While this section briefly summarizes the case, more explicit details, data, and descriptions can be found in [24], 

[25], [37], [38], [39], [40]. 

Previous research ([24], [25]) examined a WRM problem for allocating water in a dry season from an 

unregulated reservoir to three categories of users: (i) a municipality, (ii) an industrial concern, and (iii) an 

agricultural sector. The industrial concern and agricultural sector were undergoing significant expansion and 

needed to know the quantities of water they could reasonably expect. If insufficient water was available, these 

entities would be forced to curtail their capital expansion plans. If the promised water was delivered, it would 

contribute positive net benefits to the local economy per unit of water allocated. However, if the water was not 

delivered, the results would reduce the net benefits to the users. 

The major problems under these circumstances involved (i) how to effectively allocate water to the 

three user groups in order to achieve maximum net benefits under the uncertain conditions and (ii) how to 

incorporate the water policies in terms of allowable amounts within this planning problem with the least risk of 

system disruption. Included within these decisions is a determination of which one of the multiple possible 

pathways that the water would flow through in reaching the users. It is further possible to subdivide the various 

water streams with each resulting substream sent to a different user. Since cost differences from operating the 

facilities at different capacity levels produce economies of scale, decisions have to be made to determine how 

much water should be sent along each flow pathway to each user type. Therefore, any single policy option can 

be composed of a combination of many decisions regarding which facilities received water and what quantities 

of water would be sent to each user type. All of these decisions were compounded by overriding system 

uncertainties regarding the seasonal water flows and their likelihoods. 

The WRM case considers how to effectively allocate the water to the three user groups in order to 

derive maximum net benefits under the elements of uncertainty and how to incorporate water policies in terms 

of allowable amounts within this planning problem with the least risk for causing system disruption. Since the 

uncertainties could be expressed collectively as interval estimates, probability distributions and uncertainty 

membership functions, the approach of [25] was used to show how to improve upon the earlier efforts of [24] by 

providing a solution for the WRM problem with a net benefit of $2.02 million. 

In the region studied, the municipal, industrial, and agricultural water demands have been increasing 

due to population and economic growth. Because of this, it is necessary to ensure that the different water users 

know where they stand by providing information that is needed to make decisions for various activities and 

investments. For example, farmers who know there is only a small chance of receiving sufficient water in a dry 

season are not likely to make major investment in irrigation infrastructure. Similarly, industries are not likely to 

promote developments of projects that are water intensive knowing that they will have to limit their water 

consumption. If the promised water cannot be delivered due to insufficiency, the users will have to either obtain 



Water Resource Management Using Population-Based, Dual-Criterion Simulation… 

*Corresponding Author: Julian Scott Yeomans
                                                                                     

42 | Page 

water from more expensive alternate sources or curtail their development plans. For example, municipal 

residents may have to curtail watering of lawns, industries may have to reduce production levels or increase 

water recycling rates, and farmers may not be able to conduct irrigation as planned. These impacts will result in 

increased costs or decreased benefits in relation to the regional development. It is thus desired that the available 

water be effectively allocated to minimize any associated penalties. Thus, the problem can be formulated as 

maximizing the expected value of the net system benefits. Based upon the local water management policies, a 

quantity of water can be pre-defined for each user. If this quantity is delivered, it will result in net benefits; 

however, if not delivered, the system will then be subject to penalties. 

The WRM authority is responsible for allocating water to each of the municipality, the industrial 

concerns, and the agricultural sector. As the quantity of stream flows from the reservoir are uncertain, the 

problem is formulated as a stochastic programming problem. This stochastic programming model can account 

for the uncertainties in water availability. However, uncertainties may also exist in other parameters such as 

benefits, costs and water-allocation targets. In the formulation, penalties are imposed when policies that have 

been expressed as targets are violated. Also, within the model, any uncertain parameter A is represented by A
 

and its corresponding values are generated via probability distributions. To reflect all of these uncertainties, the 

following stochastic programming model was constructed by [25]: 

   
1 1 1

 
m m n

i i j i ij

i i j

Max f B W p C S    

  

       (9) 

    
1

m

i ij j

i

W S q  



     j     (10) 

   
maxij i iS W W       i     (11) 

   0ijS      ,i j      (12) 

 In this formulation f 
 represents the net system benefit ($/m

3
) and iB

 represents the net benefit to 

user i per m
3
 of water allocated ($). iW 

 is the fixed allocation amount (m
3
) for water that is promised to user i, 

while maxiW 
 is the maximum allowable amount (m

3
) that can be allocated to user i. The loss to user i per m

3
 of 

water not delivered is given by iC 
, where Ci > Bi ($).

ijS 
corresponds to the shortage of water, which is the 

amount (m
3
) by which Wi is not met when the seasonal flow is qj. jq

 is the amount (m
3
) of seasonal flow with 

pj probability of occurrence under j flow level, where pj provides the probability (%) of occurrence of flow level 

j. The variable i, i = 1, 2, 3, designates the water user, where i = 1 for municipal, 2 for industrial, and 3 for 

agricultural. The value of j, j = 1, 2, 3, is used to delineate the flow level, where j = 1 represents low flows, 2 

represents medium flows, and 3 represents high flows. Finally, m is the total number of water users and n is the 

total number of flow levels. 

 WRM planners faced with difficult and controversial choices generally prefer to select from a set of 

near-optimal alternatives that differ significantly from each other in terms of their system structures. In order to 

create these alternative planning options for the WRM system, it would be possible to place extra target 

constraints into the original model which would force the generation of solutions that were different from their 

respective, initial optimal solutions. Suppose for example that five additional planning alternative options were 

created through the inclusion of a technical constraint on the objective function that decreased the total system 

benefits of the original model from 2% up to 10% in increments of 2%. By adding these incremental target 

constraints to the original SO model and sequentially resolving the problem 5 times, it would be possible to 

create a specific number of alternative policies for WRM planning. 

However, to improve upon the process of running five separate additional instances of the computationally 

intensive SO algorithm to generate these solutions, the population-based, dual-criterion MGA procedure 

described in the previous section was run only once, thereby producing the 5 additional alternatives shown in 

Table 1. The table shows the overall system benefits for the 5 maximally different options generated. Given the 

performance bounds established for the objective in each problem instance, the decision-makers can feel 

reassured by the stated performance for each of these options while also being aware that the perspectives 

provided by the set of dissimilar decision variable structures are as different from each other as is feasibly 

possible. Hence, if there are stakeholders with incompatible standpoints holding diametrically opposing 

viewpoints, the policy-makers can perform an assessment of these different options without being myopically 

constrained by a single overriding perspective based solely upon the objective value. 
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Maximally Different Solutions WRM System Benefits 

($ Millions) 

Best Solution Overall 2.02 

Best Solution Within 2% 1.98 

Best Solution Within 4% 1.96 

Best Solution Within 6% 1.92 

Best Solution Within 8% 1.88 

Best Solution Within 10% 1.81 

Table 1  System Benefits ($ Millions) for 6 Maximally Different Alternatives 

 

 The computational example highlights several important aspects with respect to the MGA technique: 

(i) Population-based algorithms can be effectively employed as the underlying optimization search procedure for 

SO routines; (ii) Population-based solution searches can simultaneously generate more good alternatives than 

planners would be able to create using other MGA approaches; (iii) By the design of the MGA algorithm, the 

alternatives generated are good for planning purposes since all of their structures are guaranteed to be as 

mutually and maximally different from each other as possible (i.e. these differences are not just simply different 

from the overall optimal solution as in an HSJ-style approach to MGA); (iv) The approach is very 

computationally efficient since it need only be run once to generate its entire set of multiple, good solution 

alternatives (i.e. to generate n maximally different solution alternatives, the MGA algorithm would need to be 

run exactly the same number of times that the FA would need to be run for function optimization purposes alone 

– namely once – irrespective of the value of n); and, (v) The best overall solutions produced by the MGA 

procedure will be identical to the best overall solutions that would be produced for function optimization 

purposes alone. 

 

VI. CONCLUSIONS 
WRM decision-making problems contain multifaceted performance requirements which inevitably 

include complicated, incongruent performance objectives and unquantifiable modelling features. These 

problems often possess incompatible design specifications which are difficult – if not impossible – to capture 

when the supporting decision models are formulated. Consequently, there are unmodelled problem components, 

generally not apparent during model construction, that can significantly influence the acceptability of any 

model’s solutions. These competing and ambiguous components force WRM decision-makers to incorporate 

many conflicting requirements into their decision process prior to settling upon a final solution. 

This paper has applied a population-based, dual-criterion MGA procedure to WRM. This 

computationally efficient MGA approach establishes how population-based algorithms can simultaneously 

construct entire sets of close-to-optimal, maximally different alternatives by exploiting the evolutionary 

characteristics of population-based solution algorithms. In this MGA role, the dual-criterion objective can 

efficiently generate the requisite set of dissimilar alternatives, with each generated solution providing an entirely 

different perspective to the problem. The max-sum objective criteria ensures that the distances between the 

alternatives created by this approach are good in general, while the max-min criteria ensures that the distances 

between the alternatives are good in the worst case. The absolute function has been considered, since its value 

provides a meaningful, physical interpretation to its measure of distance. Since population-based procedures can 

be applied to a wide range of problem types, the practicality of this dual-criterion MGA approach can be 

extended to wide array of “real world” environmental applications. Such extensions will be explored in future 

computational studies. 
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