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ABSTRACT: The Maastrichtian to Ypresian dated sediments of the Tahar Cut [1, 2], Western Outer Rif 

(Northwest Morocco), are studied here for paleoenvironmental and paleoclimatic reasons. The results of 

quantitative and qualitative analyses of dinoflagellate cysts and other palynomorphs of continental origin 

(spores and pollen) allowed the reconstruction, in ascending order, of twelve different marine depositional 

environments: (1) outer neritic without productivity and thus without continental influence at the base of the 

section (Th1-Th3: Upper Maastrichtian); (2) inner neritic  without productivity (Th4: Upper Maastrichtian:); 

(3) shallow outer neritic with low productivity (Th5-Th7: Upper Maastrichtian); (4) inner neritic in a phase of 

marine regression and widespread cold climatic conditions at the end of the Maastrichtian (Th7a-Th7b': Upper 

Maastrichtian); (5) outer neritic of very low productivity marking thus a slight marine transgression (Th7c : 

Danian); (6) inner neritic, reflecting a relative decrease in sea level (Th7d: Danian); (7) outer neritic with very 

low biological productivity for interval G, reflecting a rise in sea level compared to the previous interval (Th7e-

Th7f: Selandian-Thanetian); (8) indeterminate paleoenvironment due to the scarcity of palynomorphs in this 

interval (Th8: Selandian-Thanetian); (9) marine oceanic without productivity which would result in a marine 

transgression (Th8a: Selandian-Thanetian); (10) neritic external (Th9: Selandian- Thanetian); (11) neritic 

internal without productivity for the K interval with a drop in sea level, under relatively warm climatic 

conditions (Th9a: Ypresian); (12) outer neritic, which would result in a marine transgression (Th10-Th11: 

Ypresian). These variations in paleoenvironments coincide with global climate changes at the Cretaceous-

Paleocene (K-Pg) and Paleocene-Eocene (P-E) boundaries. 
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I. INTRODUCTION 
The Cretaceous-Paleogene (K-Pg) boundary is marked by iridium anomalies and mass extinctions of 

several species, the most famous of which are dinosaurs, belemnites and ammonites. This biological crisis of the 

K-Pg boundary, which continues to fuel the scientific debate, is the result of several catastrophic events such as 

eustatism, volcanic activity, and meteorite impacts, especially in Mexico [2-6]. However, for palynomorphs, 

there are no mass extinctions at this boundary but rather notable changes in relative abundances of taxa, most 

notably the global peak of Manumiela sealandica, indicating cold global climate conditions [2,5,7-9].  

In contrast to the K-Pg interval, the P-E (Paleocene-Eocene) transition coincides with the Paleocene-

Eocene Global Thermal Maximum (PETM), the most significant period of high heat in the Paleogene [10;11]. 

The PETM was consistent with large negative carbon isotope excursions (CIEs) recorded in oceanic and 

continental layers worldwide [12,15]. One of the most important events for dinoflagellate cysts during the 
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PETM was the global acme of the genus Apectodinium, indicative of warm global climate conditions [16-20]. 

In our dinocyst studies, Manumiella seelandica and Apectodinium peaks corroborate well the global climate 

changes that prevailed during the K-Pg and P-E transitions, respectively. 

The palynostratigraphic study of the Tahar section (located in Arba Ayacha, Larache Province) has 

contributed to the dating of the Western External Rif Range of northern Morocco, which was previously 

assigned to Senonian to Lower Eocene ages [21,22]. Thus, [1].and [2] were able to determine Cretaceous-

Paleogene and Paleocene-Eocene boundaries for the first time in the Tahar section on the basis of dinoflagellate 

cysts. 

Changes in the relative abundance of palynomorph species or species groups are commonly used to 

interpret sedimentary environments, particularly sea level changes. The present study was conducted on the 

same samples as the study by [1].and [2] in order to characterize the depositional environments and climatic 

changes that prevailed during sediment deposition.  

 

II. GENERALITIES ON THE GEOLOGY OF THE RIF CHAIN  
Located in northern Morocco, the Rif Range (Fig. 1) forms an arc-shaped mountain edifice open to the 

Mediterranean Sea that has its history spanning from the Triassic to the Late Miocene [23-25]. The Rif (Figure 

1) constitutes the western termination of an alpine chain derived from the Tethys. It is part of a Betic-Rifo-

Tellian structural ensemble around the western Mediterranean and connects to the Apennines through Sicily 

[26]. The Rif is subdivided into three main areas: the Internal Areas, the Flysch Nappes and the External Areas. 

(Figure. 1 and 2). The Tahar section being located in the external domain, we will study it in more detail. 

Representing the Tethyan margin of the African plate, the Outer Rif is very large and variable. It is 

covered, in places, by secondary and tertiary allochthonous terrain called the Rif nappes [21,27-28]. It is 

subdivided into three major parts, from north to south: the Intrarif, Mesorif, and Pre-Rif.  
 

Figure 1: Structural map of the Rif Mountains (modified by [29] after [30]. 

 
2.1 The Intrarif 

It is composed of three units: 

– The Ketama unit, which outcrops only in the central Rif  [31], is a parautochthonous and epi-

metamorphic unit with schisto-quarzite material of Liassic to Lower Cretaceous age [31-33]. 

– The unit of Tangier, little deformed, it is considered to be the cover of the unit of Ketama, with a 

stratigraphic series that goes from the Albo-Aptian to the lower Miocene. 
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It is, however, overrepresented by Upper Cretaceous clayey marls [25,32]. 

– The Loukkos unit is a zone of tectonic scales that outcrops in the western Rif. It has a facies 

dominated by calcareous marls of Albo-Aptian to Eocene age [33,34]. 

 

2.2. The Meso-rif 
It is formed by terrains of age ranging from the Lias to the Upper Cretaceous, surmounted by the 

transgressive Lower Miocene. The Meso-rif is characterized by Callovo-Oxfordian sandy-clay deposits [35] and 

by Middle Miocene calcarenites [36]. 

 

2.3. The Pre-rif 

The Pre-rif is the southernmost part of the Rif Range with a facies dominated by marly clays. It is 

subdivided into the inner Pre-Rif and the outer Pre-Rif  [23,35]. 

– The inner Pre-rif is formed by scales probably rooted under the Meso-rif. It contains Lias and 

Doggerian carbonates forming the "sof" also called "Mrayt sandstone" [37] and Kimmeridgian and Tithonian 

platform carbonates. 

– The outer Pre-rif is mostly represented as a chaotically structured gravity nappe (pre-rific nappe) 

[36,38]. This nappe has a facies of sandy marl of upper Miocene age where elements of variable size are packed 

[34] resulting from the destruction of the nappe fronts that move outwards. 

 

 
 

Figure 2: Simplified section of the Rif [39] 

 

III. Materials and Methods 
3.1 Materials 

The Tahar section that is the subject of this study is located in the Western External Rif, in the Arba 

Ayacha region (Figure 3). Its geographical coordinates are 35° 22' 28'' N and 5° 53' 12'' W. According to 

previous studies [21,22,40], this section comprises whitish marls of Eocene age overlying grey to blackish marls 

of Upper Cretaceous age. 

The material used in this study consists of 22 samples from the Tahar cut.  

Control samples of this section are kept at the Department of Earth Sciences of the Scientific Institute 

in Rabat for possible future studies 

 

3.2 Methods 

The preparation of palynological slides in the laboratory is done in three steps as described by [1,41]: 

(1) sampling and physical treatment, (2) chemical attacks (HCl 10%, HF 40%) to dissolve the mineral matter  
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Figure 3: Geographic (A) and geological (B) location maps of the Tahar section (Arba Ayacha, 

Western External Rif, Northern Morocco); B, adapted from the 1/500,000 geological map of the Rif [21]. 

and preserve the organic matter contained in the sediments, (3) mounting the collected organic matter between 

slide and coverslip for microscopic study. 
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The determination of the paleoenvironment in this study is based on the relative proportions of 

dinokysts (marine organisms) to spores and pollen grains (continental organisms) in the palynological 

assemblage [42]. Thus, the S/D ratio indicates the continental influence on the depositional environment. It is 

also calculated with the formula of Versteegh [43] ratio sporomorphs (spores and pollens) / dinokysts (dinokysts 

and acritarchs) (S/D), 

(S/D = nS/(nD + nS) with n= number. 

Thus, we will qualify as a continental paleoenvironment, any environment whose sedimentary deposit 

contains a palynological assemblage consisting solely of spores, pollen grains and organic matter (wood debris). 

On the other hand, if the palynological assemblage contains dinokysts and chitinous internal tests of 

microforaminifera in much higher proportions than the spores and pollen grains, with the presence of 

amorphous organic matter, we will say that this Paleoenvironment is marine. 

When the proportions of dinokysts (marine organisms), spores and pollen grains (continental 

organisms) are more or less equal, we speak of deposition in a lacustrine or estuarine environment. However, 

the slight dominance of one species in proportion shows a continental or marine influence. 

The depositional environment can also be determined based on the relative proportions of certain 

intraspecific groups of dinokysts that have a distribution preference along a neritic to oceanic transect. 

The ratio of autotrophic to heterotrophic dinocysts or peridinioides/gonyaulacoides (P/G) ratio (P/G = 

nP/(nP + nG) sensu Versteegh [43] provides information on the productivity of the sea surface. 

The ratio between the number of dinocysts characterizing the internal neritic environments (IN) and the 

number of dinocysts characterizing the external neritic environments (ON) or IN/ON ratio is calculated 

according to the formula: IN/ON = nIN/(nIN + nON) [43,44]. It provides information on the paleo-depth. 

Other curves have been developed based on certain dinokyst groups that characterize a particular 

depositional environment, including: 

- Areoligera Group: It includes dorsoventrally compressed gonyaulacoides skolochorates taxa, such as 

Areoligera spp. and Glaphyrocysta spp. It characterizes inland and coastal neritic depositional environments 

[4,6,44-47,]. 

- The Spiniferites Group consists of proximochorate and cosmopolitan gonyaulacoid cysts including 

Spiniferites spp. and Achomosphaera spp. It characterizes an outer neritic environment; [5,6,44-46,48-54,74,75]. 

- The Senegalinium Group includes cornucavate peridinioid cysts, such as Cerodinium spp., 

Palaeocystodinium spp., Spinidinium spp., Senegalinium spp., Isabelidinium spp. and Deflandrea spp. that are 

heterotrophic cysts marking a neritic to oceanic depositional environment. This group is associated with nutrient 

and high productivity levels [44-46,55,56]. 

- The Fibrocysta Group consists of fibrous, proximate, chorate gonyaulacoid cysts such as Fibrocysta 

spp., Kenleyia spp., Cordosphaeridium spp., Operculodinium spp., Carpatella spp, Damassadinium 

californicum, and Cribroperidinium spp. This group generally characterizes an inner neritic depositional 

environment [6,44,47,51,57-59]. 

- The Lejeunecysta Group is composed of cornucavate proto-peridinoid cysts with proximate acavate 

and characterizes areas of high productivity [6,44,50,53,60-62]. 

- Impagidinium spp. is instead composed of proximochorate gonyaulacoid cysts that are typical of 

oceanic marine environments [6,44,45,53,54,58,63-66]. 

- Palaeohystrichophora spp. consists of the peridinian cysts Palaeohystrichophora infusorioides and 

Palaeohystrichophora palaeoinfusa. It characterizes an external neritic environment [6,52]. 

- Odontochitina spp. consists of the Odontochitina costata, Odontochitina operculata, Odontochitina 

porifera, and Odontochitina tabulata cysts. It characterizes an external neritic environment [6,52,66]. 

 

IV. RESULTS AND DISCUSSIONS 
Quantitative palynological analysis of the Tahar section sediments revealed significant variations in the 

relative abundance of dinoflagellate cyst groups, sporomorphs, and in IN/ON, P/G and S/D ratios (Figure 4). 

These variations, which probably reflect changes in paleoenvironments and paleoclimates, revealed twelve (12) 

intervals, from A to L, that follow each other from the bottom to the top of the Tahar section: 

 

4.1. A Interval (Th1-Th3) 

A Interval (Th1-Th3) contains Upper Maastrichtian sediments. It is marked by a diversified 

palynological material (up to 46 species at TH2), abundant and dominated by species of the Spiniferites group 

(Spiniferites spp. and Achomosphaera spp.) with a relative frequency of 33% at Th1 and 40% at Th2, generating 

low IN/ON ratios of the order of 0.1. The Areoligera and Fibrocysta groups are present with low frequencies of 

about 11% at Th1 and 6% at Th2 respectively. We note the presence of the Senegalinium group in low 

proportion in this interval (12% at Th2) implying a low P/G ratio (0.02). 
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The preponderance of the Spiniferites group (40%) marking an outer neritic depositional 

environment[4,6,44-47,52,74,75] over the Areoligera and Fibrocysta groups characterizing inner neritic 

environments, as well as the low IN/ON (0.1) and P/G (0.02) ratios, allow us to suggest, for the A interval, an 

outer neritic marine environment without productivity, given the low proportions of the Lejeunecysta and 

Senegalinium groups 

The absence of continental sporomorphs (0%) confirms the suggestion of an outer neritic environment 

without productivity and thus without continental influence for the A interval. 

 

4.2. Interval B (Th4) 

This interval corresponds to the Th4 sample of Maastrichtian age. Deposits in this interval show an 

increase in the relative frequency of the Fibrocysta and Areoligera groups, indicative of inner neritic 

environments [4,6,44,47,51,57-59], from 15% (at Th3) to 33% (at Th4) and from 0% (at Th3) to 7% (at Th4) 

respectively. The Spiniferites group, which characterizes the outer neritic environments, shows a slight increase 

in its relative frequency but does not exceed that of the Fibrocysta and Areoligera groups, which results in an 

average IN/ON=0.51 ratio. Because of the absence of peridinoid dinoflagellates and sporomorphs in the B 

interval, the P/G and S/D ratios are zero (0). 

The preponderance of the Fibrocysta and Areoligera groups over the Spiniferites group and its mean 

IN/ON ratio coupled with the low P/G and S/D ratios indicate a non-productive inner neritic depositional 

environment in interval B (Th4), which could be explained by a slight drop in sea level from the previous 

interval (interval A). 

 

4.3. C interval (Th5-Th7) 

The C interval starts from sample Th5 to Th7 (Upper Maastrichtian). It is dominated by the Spiniferites 

group (up to 40% at Th5) which characterizes the outer neritic environments, followed by the Fibrocysta and 

Areoligera groups with relative frequencies of 19% (Th6) and 12% (Th5) respectively which implies low 

IN/ON ratios (0.2 at Th6). There is also an increase in the proportions of the Senegalinium group from Th6 

(18%) to Th7 (27%), resulting in a slight increase in the P/G ratio in this interval (0.2 to 0.3). The absence of 

continental sporomorphs in this interval implies a zero S/D ratio, thus a distance from the shore. 

The slight preponderance of the Spiniferites group over the Fibrocysta and Areoligera groups, coupled 

with low IN/ON, P/G and S/D ratios suggest a shallow outer neritic environment with low productivity for the C 

interval. This would be reflected in a slight rise in sea level. 

 

4.4. D interval (Th7a-Th7b') 

Interval D, from Th7a to Th7b' (Upper Maastrichtian) is dominated by marker species of inner neritic 

environments with the acme of Manumiella seelandica at Th7b' (84%) and the abundance of the Fibrocysta 

group (up to 52% at Th7a and 16% at Th7b) which results in a high IN/ON ratio (0.9 at Th7b'). In this interval, 

there is a strong increase in the P/G ratio from 0.01 (at Th7a) to 0.9 (at Th7b'), which reflects an increased 

productivity at Th7b'. There is also a considerable decrease in species diversity from 54 species in the previous 

C interval (Th6) to 16 species at Th7b. This change, very important in the biodiversity and in the relative 

abundance of dinoflagellate taxa, could be explained by the major crisis of the end of the Cretaceous. 

The acme of M. seelandica is considered indicative of low salinity or even brackish conditions [7,8], 

but also of shallow depths and cold climatic conditions [5,8,67,68]. 

The low representativeness of the Spiniferites group (4%) at Th7b' and Impagidinium spp. (0.5%) in the 

D interval, coupled with peaks of Manumiella seelandica (84%) at Th7b' and the Fibrocysta group (52%) at 

Th7a suggest an inner neritic environment at Th7b' during a phase of marine regression and widespread cold 

climatic conditions at the end of the Maastrichtian. 

 

4.5. E interval (Th7c) 

Interval E consists of the Danian Th7c sample. It is characterized by a slight dominance of the 

Spiniferites group (>3%) which characterizes the outer neritic environments over the Fibrocysta (2%) and 

Areoligera (less than 1%) groups which characterize the inner neritic environments. 

The proportion of the Senegalinium group (12%) is low and results in a low P/G ratio (0.1), thus no 

productivity [44-46,55,56]. The absence of sporomorphs also leads to a zero S/D ratio. 

The slight preponderance of the Spiniferites group (>3%) over the Fibrocysta (2%) and Areoligera 

(less than 1%) groups associated with very low P/G (0.1) and S/D (0) ratios suggest an outer neritic environment 

of very low productivity marking a slight marine transgression. 
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4.6. F interval (Th7d) 

Dated from the Danian, the F interval is dominated by the Fibrocysta group (31%) which characterizes 

inner neritic environments, followed by the Spiniferites group (20%) characterizing outer neritic environments 

and the Senegalinium group (15%) associated with productivity [44-46,55,56]. The weak presence of peridinoid 

dinokysts (Senegalinium group) in this interval leads to a low P/G ratio (0.1), thus no productivity. 

The preponderance of the Fibrocysta group (31%) over the Spiniferites group (20%) favoring a high 

IN/ON=0.6 ratio, as well as the low P/G ratio (0.1) suggest an inner neritic environment, reflecting a relative 

decrease in sea level 

 

4.7. G interval (Th7e-Th7f) 

The G interval, which includes Th7e and Th7F samples, is dated to the Sélandien-Thanétien. It is 

characterized by a dominance of the Spiniferites group (33%) at Th7e over the Fibrocysta (2%) and Areoligera 

(<1%) groups with a low IN/ON ratio (0.3) at Th7f. Low P/G (0.06) and S/D (0.05) ratios imply lack of 

productivity and a depositional environment far from shore. 

The preponderance of the Spiniferites group (33%) over the Fibrocysta (2%) and Areoligera (less than 

1%) groups associated with very low IN/ON (0.3), P/G (0.06) and S/D (0.05) ratios suggest an outer neritic 

environment with very low biological productivity for the G interval, reflecting a rise in sea level compared to 

the previous interval. 

 

4.8. H Interval (Th8) 

The H interval (Sélandien-Thanétien) is marked by an extreme rarity of dinoflagellate and continental 

sporomorph cysts (non-saccate spores and pollen). Only 14 bissacates and 1 specimen of Spiniferella cornuta 

were observed in this sample, whereas it is known that bissacates can be deposited very far from their formation 

environment. This results in zero S/D, P/G and IN/ON ratios, making it difficult to determine the 

paleoenvironment in this interval. In addition, the brownish or golden color of the marls in this interval may 

indicate that the palynological material could be more or less oxidized. 

 

4.9. I Interval (Th8a) 

Interval I, framing sample Th8a (Selandian-Thanetian) is dominated by Impagidinium spp. (24%) 

which characterizes oceanic marine environments [44,53,54,58,66], followed by the Fibrocysta (17%), 

Areoligera (13%), and Spiniferites groups (14%). The absence of continental sporomorphs in this interval 

results in a zero S/D ratio and thus no continental influence. The P/G ratio remains low (0.01). 

The slight preponderance of Impagidinium spp. (24%) over the Fibrocysta (17%), Areoligera (13%) 

and Spiniferites (14%) groups, combined with the low P/G and S/D ratios suggests for interval I, a marine 

oceanic environment without productivity that would result in a marine transgression. 

 

4.10. J interval (Th9) 

This interval frames the Th9 sample of Sélandien-Thanétien age. Deposits in this interval are marked 

by the disappearance of Impagidinium spp. (0%) in favor of the Spiniferites group (6%), which characterizes 

outer neritic environments, and the Senegalinium group (7%), associated with nutrient and high productivity 

levels. The Fibrocysta (4%) and Areoligera (<1%) groups, indicators of inner neritic environments, are 

represented in low proportions, resulting in a low IN/ON ratio (0.4). The low P/G (0.09) and S/D (0) ratios 

imply that there is no productivity and very little continental influence in the J interval. 

The preponderance of the Spiniferites Group (6%) over the Fibrocysta (4%) and Areoligera (<1%) 

groups and the low IN/ON (0.4), P/G (0.09), and S/D (0) ratios indicate, for the B interval, an outer neritic 

depositional environment. 

 

4.11. K interval (Th9a) 

Dated Ypresian, the K interval is dominated by the Fibrocysta group (43%) which characterizes inner 

neritic environments [6,44,47,51,57-59], followed by Apectodinium spp. (17%) which is related to warm 

conditions [51,64,73], and the Spiniferites group (16%) which characterizes external neritic environments. The 

high proportion of the Fibrocysta group (43%) results in a high IN/ON ratio (0.7). The low P/G (0.007) and zero 

S/D (0) ratios imply that there is no productivity and that the continental influence is very weak. Note that the 

highest concentration of calcium carbonate CaCO3 (33%) was observed in the Tahar section in the K interval. 

The global peak of the genus Apectodinium was recorded between the end of the Thanetian and the 

base of the Ypresian (NP9b-baseNP10 calcareous nannoplankton zones), in the interval of the Paleocene-  
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Figure 4: Tahar section: calcimetry curve; Sporomorph to Dinoflagellate ratio curve; Peridinoid to 

Gonyaulacoid ratio curve (productivity); relative abundances of morphologically and ecologically related 

dinoflagellate cysts; species diversity per sample; relative sea level change curve (IN/ON) and palynological 

intervals 
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Eocene Thermal Maximum (PETM) [16-20,64,69-72]. In the Tahar section, the oldest Apectodinium 

acme is moderate (16%). This acme is represented primarily by A. quinquelatum in the K interval, but is 

associated with Eocene dinokyst species there. Thus, the oldest Apectodinium acme (Upper Thanetian) is missed 

(sediments not sampled) in the Tahar section [6]. 

The preponderance of the Fibrocysta group (43%) over the Spiniferites group (16%) with its corrolary 

of high IN/ON ratio (0.7), as well as the low P/G (0.007) and S/D (0) ratios suggest an inner neritic environment 

without productivity for the K interval with a drop in sea level, under relatively warm climatic conditions. 

 

4.12. Interval L (Th10-Th11) 

This interval is Ypresian in age and marked by a scarcity of dinokysts. The Spiniferites group is 

represented up to 41% in sample Th11 with only 5 specimens, while sample Th10 is completely azoic. This 

implies zero IN/ON, P/G and S/D ratios for this interval. This scarcity of palynomorphs could be due to 

unsuitable fossilization conditions. 

The presence of the Spiniferites group (41%) in this interval allows us to attribute an outer neritic 

depositional environment, which would reflect a marine transgression. 

 

V. CONCLUSION 
Qualitative and quantitative analysis of the palynological content of the Tahar section, shows important 

changes in the relative abundance of morphologically and ecologically related dinokyst groups, reflecting 

variations in the paleoenvironment and Paleoclimate. 

This analysis indicates that the Upper Cretaceous deposits of the Tahar section in Morocco were 

deposited in a marine environment of external neritic type, under a transgressive regime accompanied by a 

cooling period at the end of the Maastrichtian. This interpretation is based on the preponderance of the 

Spiniferites group that characterizes an outer neritic environment over the Fibrocysta and Areoligera groups 

characterizing inner neritic environments, hence the high IN/ON ratios and the abundance of the species 

Manumiella seelandica at the end of the Maastrichtian. The acme of M. seelandica is considered indicative of 

low salinity or even brackish conditions, but also of shallow depths and cold climatic conditions. 

The transition from Maastrichtian to Danian is marked here by a slight preponderance of the 

Spiniferites group over the Fibrocysta and Areoligera groups resulting in a slight marine transgression. 

The Paleogene is marked by a generalized transgression from the Danian to the Sélandien, then a 

regression at the end of the Thanetian followed by a transgression in the Ypresian. 
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