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ABSTRACT: This paper focuses on modeling of analogous physical systems and their applications in 

industrial operations and control. Methods adopted include use of differential equations, Laplace transform and 
transfer functions. A review of the developing trends in control of industrial operations and engineering 

applications towards novel control systems development was also made. Materials used were collected 

primarily from textbooks, journal articles from Research Gate, Google search engine, Google Scholar, IEE 

EXplore, CrossRef, and Science Direct databases. The study reveals that the importance of modeling control 

systems in industrial operations cannot be overstressed. Models discussed are analogs which are useful for the 

study, analysis and design of non-electrical systems like mechanical systems from analogous electrical systems. 

Hopefully, presentations made in the paper will assist engineering students and some other persons who are 

interested in the design and development of electromechanical systems in understanding how the various 

electrical and mechanical analogs relate and are formulated and utilized in research and development efforts. 
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Nomenclature 
Symbol Meaning Symbol Meaning 

IT Information technology = Equal to 

SCADA Supervisory control and data acquisition F Force 

DCS Distributed control systems M Mass 

PLC Programmable logic controllers ɸ Magnetic flux of current 

HMI Human-machine interfaces q Amount of charge on conductor 

CNC Computer numerical control ʃ Integral of 

LTI Linear time invariant ∑ Sum of  

LF Transfer function x Linear displacement in x direction 

LT Laplace Transform y Linear displacement in y direction 

i Current t Time 

in nth current x(t) Input of an LTI system 
V Voltage y(t) Output of an LTI system 

Vn nth voltage X(s) Laplace Transform of an LTI input 

e Energy Y(s) Laplace Transform of an LTI Output 

v Velocity ω angular velocity 

θ angular displacement of a shaft  J Moment of inertia 

T Torque Fig. Figure 

N Number of branches, nodes, elements, etc 

depending on the system under reference 

Eqn. Equation 

    

I. INTRODUCTION 
Every profit oriented establishment aims at reducing waste, including downtime, and increasing 

production targets. Achievement of this aim depends to a large extent on the management’s policies and how the 

systems on ground are coordinated and maintained. Control of industrial operations is a strategy employed in an 

industry for effective and efficient manufacturing, assembling, warehousing, raw materials processing and 

distribution lines. A manufacturing outfit wishing to be sustainable and viable in business must have its 
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production line, control/coordination of materials, equipment, and human resources defined and operated in a 

manner that allows for production and operating efficiencies. In a work flow shop, two key aspects of the 

production control are routing and scheduling. Routing is a deliberate action of setting out of a work flow and 
the machines involved in the sequence they should go in a production line so as to reduce downtime and 

increase production targets. A good routing aims at reducing wastes, including unnecessary costs incurred in a 

production system. On the other, scheduling is the allotment and controlling of the time required for each step 

taken in production process to be completed. 

Meanwhile, the part of a system primarily concerned with maintenance of the performance 

specifications is referred to as the controller (or control). Most industrial machines are mechanical by design but 

are electrically operated. Such machines include robots, powered by electric motors or other actuators 

manipulated by means of electrical circuitry. The latter is used to turn them off or on at the appropriate time, 

control their speed of operation, and to achieve other specifications. There are a lot of controls going on in our 

homes and cars as well. 

 

1.1 Components of Control Systems in Industrial Operations 

The basic components of a control system are made up of an input (objective/target), the control element and the 

output (feedback/result). Two main branches of control systems known to exist are Open-loop (non-feedback 

system) and Closed-loop (feedback system), represented in Figs. 1 and 2 respectively. 

 

 

 

 

 

As can be clearly seen, the open-loop system does not have means of monitoring or comparing outcome with an 

expected result; whereas the closed-loop system depicted in Fig. 2 incorporates an automatic mechanism for 

ensuring that the actual outcome is close to the expected result. 
 

 

 

 

 

 

 

 

 

1.2 The Role of Control Systems in Industrial Operations 

The term “industrial control system (ICS)” is used in a general form encompassing several types of 
control systems such as SCADA systems, DCS and PLC often found in the industrial sectors and critical 

infrastructures. An ICS may contain numerous control loops, HMI, remote diagnostics, and maintenance tools 

built using an array of network protocols. A system can be configured to operate in an open-loop mode 

controlled by means of established settings, and in manual mode controlled completely by humans [1]. 

In closed-loop control systems, the output has an effect on the input in such a way as to maintain the desired 

objective. The present day ICS evolved from insertion of IT capabilities into existing physical systems to 

replace or supplement physical control mechanisms. Introduction of IT capabilities into physical systems goes 

with emergent behavior that has some safety, security, privacy, and environmental implications. Consequently, 

this calls for research on development of engineering models and analysis to address these concerns. 

From the foregoing, therefore, for a production process to be successfully carried out, there must be an 

operation and control system to guide the operation. This is achieved by means of control loops, designed to 

keep the process variable at the desired set point(s). Fig. 3 represents a typical ICS which contains numerous 
control loops with human interfaces. The remote diagnostics and maintenance tools of the system are built using 

an array of network protocols on layered network architectures. A sensor is a device that produces a 

measurement of some physical property and then sends this information as controlled variables to the controller. 

The controller interprets the signals and generates corresponding manipulated variables, based on a control 

algorithm and target set points, which it transmits to the actuators. Actuators such as control valves, breakers, 

switches, and motors are used to directly manipulate the controlled process based on commands from the 

controller [3]. 

Moreso, worthy of mention is simulation of a process or system in industrial control design which 

allows for complex what-if scenarios involved in the system to be viewed and better analyzed. Two known 

components of an industrial control systems are namely, process control – for process modeling, and system 

Input Controller Engine Output 

Figure 1: A simple open-loop system 

Input Controller Engine Output 

Figure 2: A simple closed-loop system 

Feedback 
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control which allows for system modeling. Process modeling is the mathematical representation of a process by 

application of material properties and physical laws governing geometry, dynamics, heat and fluid flow, and so 

on, in order to predict its behavior [2]. The paper also presents system modeling as a system typically composed 
of a number of networks that connect its different nodes and the networks, interconnected through gateways. 

This postulates that models and simulation features should form part of a larger toolset that supports the design 

of control systems for both domestic use and for industrial operations. 

 

 
Figure 3: A typical of an industrial control system [3] 

 

Operators and engineers use human interfaces to monitor and configure set-points, control algorithms, 

and to adjust and set up parameters in the controller. The human interface also displays process status 

information and historical information. Diagnostics and maintenance utilities are installed to protect a system or 

help the system recover from abnormal operations or failures.  

 

II. DEVELOPING TRENDS IN INDUSTRIAL CONTROL – a Brief Review 
Types of industrial control systems include adaptive control, observer-based control, model-predictive 

control, time-delay control and long-time process control systems. Various researchers have worked hard to 

develop these areas to their present stages. 

An extensive review of adaptive machining control (AMC), touting its evolution as a response to 

subjective judgment by part programmers was made by Koren [4]. The paper discussed basic classes of adaptive 

control: adaptive control with optimization (ACO), adaptive control with constraints (ACC), and geometric 

adaptive control (GAC), as well as self-tuning control approaches; reporting that a key drawback at the early 

stage of the system’s development was lack of reliable sensing for germane phenomena such as tool wear or 

friction, or prohibitive cost for force and torque sensing. Landers, Ulsoy, and Ma [5] surveyed model-based 

machining control approaches using force information. The paper contrasted four control approaches - 

linearization, log transform, nonlinear, and robust - in terms of stability and robustness.. It concluded that such 
model-based approaches are insensitive to un-modeled dynamics, and that the choice of control is dictated by 

economics. Landers and Ulsoy [5], carried out early implementation of model-based machining control for force 

as Elbestawi had for accuracy in turning [6]. 

Observer-based adaptive control strategy has been applied in disturbance force rejection machining 

with sustainability objective [7]; while constraint-based adaption was used for geometric optimization of corner 

cutting in molds. This has driven new research in more accurate chip thickness models. 

External disturbances in addition to modeling error and parameter variations contribute the most to the 

inaccuracy observed in motion system such as servomotors of the machine tools. Huang et al. [9] used the 

Disturbance Observer (DOB) approach proposed by Ohnishi [10] to estimate and compensate for the 

uncertainties in velocity and current loop of a CNC servomotor, and further included an adaptive tuning of 

motor inertia and viscous damping coefficient. By using this method over conventional PI controller, the 

accuracy of circular trajectory and reduced roundness error could improve by 84% [11]. DOB was used in the 
speed control loop for compensating speed fluctuations in constant velocity motion and a static friction model 

was obtained (ignoring the dynamic effects of friction on motion accuracy) based on position-dependent 

perturbation [12]. DOB as an effective control scheme has also been used for dual-drive systems in gantry NC 

machines to improve the synchronization error of double drive motors [13]. Adaptive Disturbance 

Compensation (ADC) control with LuGre dynamic friction model against PI controller was tested for speed 

control of servo-systems in circular motion [14]. Having the essential features of adaptive controllers, the ADC 

method is capable of mitigating uncertainties and disturbance by adjusting the observer gains. Sliding Mode 
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Control (SMC) is another control approach utilized for compensating disturbances and parameter variations in 

various systems [15], [16], and [17]. Adaptive SMC was successfully applied in Sencer and Shamoto [18] for 

mitigating the harmonic torque ripples in servo-drives. In the works done by Xi et al. [19] and Li et al. [20], 
dual SMC was successfully used for contouring error estimation of 5-axis CNC machine.  

As a class of model-based approach, model-predictive process control emerged in the second half of 

the 20th century in continuous process industries such as pharmaceuticals and petroleum in order to minimize 

quality variability as cost was reduced. The approach is widely used today in the chemical industry, and has 

begun finding application in other manufacturing sectors [21]. The basic approach is shown in Fig. 4. 

 

 
Figure 4: Model Predictive Control [21] 

 

Model Predictive Control (MPC) for contour error mitigation enables the users to estimate the error in 
finite time interval, i.e. the prediction horizon, and tune the control input accordingly. Yang et al. [22] used a 

MPC scheme for contour error compensation in a 2-axis drive system and compared it to the conventional error-

mitigation strategy of Zhang et al. [23]. Significant improvement was achieved specifically in the sharp corners 

[22],[23]. A linear time varying MPC was utilized in Lam et al. [24] to show a trade-off between accuracy and 

time. However the controller was only capable of operating up to 4ms (far from real-time industrial controller 

speed). In Stephens et al. [25], the authors discussed the computational cost of using MPC in high rate servo-

systems and introduced a trajectory horizon (in addition to the prediction horizon) into the MPC scheme to 

lower the computational burden and reached satisfactory performance (with 100 µs sampling period) compared 

to traditional MPC. A MPC scheme with adaptive feed rate control for tracking diamond and freeform contours 

in high feed rate motions were also adapted in Tang and Landers [26]. Conway et al. [27] introduced a 

polynomial root finding algorithm for extracting tool path/contour error measurement in Cross-Coupled 

Controllers (CCC). This serves as an approximate contour error measurements replacement strategy for the 
control input of one axis influenced by the error in other axis.  Stemmler et al. [28] applied MPC in decoupling 

machining process from the system control and predicted the unknown states through Kalman estimation, 

accounting for computational time delays.  

 Difficulty in applying the online estimation technique to strike a balance between a more accurate 

computational expensive model and the departure from an ideal control state, due to introduction of time delay 

and use of linearized model, led to the development of the Smith predictor model. This model was targeted at 

hybridizing predictive and feedback controls in order to deal with time-delay in the system. The basic 

architecture is given as in Fig. 5. The model provides an inner loop to address time delay introduced by model 

calculations by way of using a generalized system model in predicting the behavior the actual feedback signals 

to the controller. The Smith predictor has been variously implemented, including in vision-based positioning 

processes, where the servo is driven to bring a part targeted into a camera frame of reference, necessitating 
computationally-expensive image processing [29].  

 
Figure 5: Smith predictor model [21] 
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Variables or states on which to control by model vary by process, but nominally include states which 

are not directly observable but which may carry a large influence on the process output. For machining, process 

variables such as true position, force, friction, and wear are employed, as well as output quality states such as 
dimensional consistency, surface condition, and residual stress profile, each somewhat difficult to assess in real 

time at the machining center. Such control approaches have been implemented recently directly to 

manufacturing processes, particularly machining. Researchers at Nanjing have proposed new approaches to 

5axis machine tool error compensation [30]. Shin et al. [31] at NIST are using virtual machining models to 

generate data needed for open-architecture platforms and protocols such as the emerging MTConnect. 

Meanwhile, despite several control approaches being proposed over the years in 

disturbance/uncertainty mitigation and improving contour accuracy, one major drawback is the fact that current 

industrial CNC machines do not allow for overriding their control algorithms in order to keep the stability in all 

cutting conditions [22]. The MTConnect open protocol serves as a universal language of obtaining information 

from the machine and is only a read-only protocol in the market. Therefore, pre-compensation of contour error 

and making modification beforehand in servo-axis motion is an alternative solution to work-around the 
accessibility to the machine control unit.  A pre-compensating contour error strategy was introduced, taking into 

account the residual vibration of machine structure and axis limited bandwidth, in high speed motion of a 2-axis 

machine which was later implemented on a 5-axis CNC machine for high acceleration/jerk cutting [23]. A great 

deal of research work led by Yusuf Altintas at the University of British Columbia focused on implementing pre-

compensation contour error for improving dimensional tolerances in machine tools [23], [33], and [34]. 

Machine health monitoring and prognosis can be viewed as a long-time feedback loop where model 

information is generated and evaluated. To that end, Wang et al. [35] uses probabilistic model-based approach 

for machinery condition evaluation. Zhu, DeVor and Kapoor [36] were some of the first to use a model-based 

approach to fault diagnosis in ball-end milling, a difficult model to implement due to complexity [36]. Part and 

fixture flexibility and friction are simultaneously evaluated and fed to a control scheme in Zhang et al, [2]. 

These approaches have been applied in other areas of manufacturing as well. As machining processes evolve, 

new implementations require new control measures. Model-based stability prediction and control of a 
machining robot was investigated by Mousavi et al, [37]. Cen et al. [38] worked on wireless force sensing and 

its use in control for robotic machining. Lu et al, [39] incorporated model based observers for tension control in 

steel strip manufacturing, while Itoh et al, [40] applied model-based control of rotational speed in a form rolling 

machine to eliminate transient vibration. Rabani et al, [41] executed an Iterative Learning Control (ILC) for 

estimating and prescribing the depth of a waterjet cutting process. Further still, surface roughness control in this 

type of process was predicted by Mohamad et al, [42]. Davis et al. [43] described observer-based adaptive 

control of friction stir welding; even human behavior is included in such approaches. An interval control 

approach for machine-assisted feedback to a manual welding operation was discussed by Huang et al, [9]. 

An aligned benefit to the predictive control approach in manufacturing is the ability to estimate the 

process and output states in real time. This information can be incorporated to machine or process health 

assessment programs, and is also of key importance to creating the process “digital shadow” or “digital twin” 
for incorporation to digital manufacturing approaches on the shop floor. Researchers at Nagoya are applying this 

identification approach to identify and share cutting process parameters for flexible parts [44]. This builds on 

similar work by Karpat et al [45], who used machining output to estimate constitutive material parameters. 

Using this per-piece knowledge estimate, system-level control can be improved by passing not only the physical 

part from process to process, but concurrently estimates about its material, condition, and behavior in the 

process in order to adapt and optimize in real time. Therefore, state estimation is an essential benefit of 

predictive and observer-based control approaches. 

 

III. MODELING OF PHYSICAL CONTROL SYSTEMS 
The method adopted in this paper is using electrical and mechanical analogs to model physical systems. 

Physical systems are idealized systems in which physical objects are connected in a way that allows them to 

perform defined objectives. It is hard to represent any physical system in its real form, hence the need to make 

assumptions when analyzing and/or synthesizing systems. 

It is a common practice when determining the performance and transfer function of a control system to 

draw the block diagram and write mathematical equations of the basic laws governing the system as models 

representing the system. Such mathematical models include differential equation model and transfer function 

model.  

 

3.1 Considerations Made 

Some of the considerations/assumptions usually made when modeling for physical systems [46] include: 

I. For Force-Current analogy 

 Masses in parallel combination in a mechanical system have similar force. 
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 Elements in parallel combination in an electrical network have the same voltage across them. 

 Each separate mass of a mechanical system corresponds to a separate node in the analogous electrical 

network. 
 The number of masses present in a given mechanical system is equivalent to the number of nodes in its 

similar electrical network. 

 For a given number of components in between two separate masses in a mechanical system, the same 

number is also connected in between two separate nodes in the electrical network. 

II. For Force-Voltage analogy 

 Each mass in a mechanical system corresponds to a separate node, and represents a separate closed 

loop in the equivalent electrical network. 

 The number of masses in the mechanical system is equivalent to the number of meshes in the electrical 

system. 

 An element existing between two masses in the mechanical system represents common elements 

between two meshes of the electrical system. 

 

3.2 Differential Equation Model 

Analogous electrical and mechanical systems will have differential equations of the same form [47]. Two main 

methods of obtaining electrical and mechanical analogous systems and some of the basic laws governing the 

systems, with their analogous relationships are summarized in Table 1. 

 
Table 1: Analogous quantities and their relationships 

Electrical 

Mechanical Analog I Mechanical Analog II 

Force-Current Force-Voltage 

Quantity Equation Quantity Equation Quantity Equation 

Voltage, V 

= i.R 

Velocity, v 
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Force, F 

= v.B 

= L
  

  
 = 

 

 

  

  
 = M 

  

  
 = M.a 
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       = 

 

 
       

= K      
= K.x 

   
    

   

(Not used explicitly) 

   
    

   

(Not used explicitly) 

   
      

   

Current, i 
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Force, F 

= K        
= K.x 

Velocity, v 
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 = M 
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(Not used explicitly) 

Resistance, 

R 
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Lubricity 

(inverse friction) 
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Coefficient, B = 
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,C 
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3.2 Transfer Function Model 

This is an s-domain mathematical model of control systems. An LTI system having x(t) and y(t) as its input and 

output respectively and its corresponding Laplace transforms as X(s) and Y(s) will have the TF obtained from 
the relation, 

TF = 
    

    
        (1) 

Eqn. (1) is depicted in Fig. 6, with a block having transfer function of an input X(s) and an output Y(s) inside of 

it. 

 

 
 

 

 

 

 

 

IV. AREAS OF APPLICATION OF ANALOGOUS CONTROL SYSTEMS MODELS IN 

INDUSTRIAL OPERATIONS 
4.1 Modeling of Mechanical Systems 

Two existing types of mechanical systems are linear translational mechanical systems and rotational mechanical 

systems. Various quantities used in mechanical systems are contained in Table 1. In linear mechanical systems, 

the basic variables include F, v, x, M, B and K, considering Fig. 7. For a Force-Voltage analogy, consider Figs. 7 

and 8. In rotational mechanical type of systems, variables used include T, ω, θ; J and B (coefficient of rotational 

friction). Fig. 10 refers. 

Fig. 7 is an ideal linear system with negligible friction and elasticity. F is applied. 

 

 

 

 
 

 

 Fig. 7, it can seen that by Newton’s second law, the opposing force in each of the three mechanical elements 

 

 

 

 

 

 

Joining Eqns. 2 to 4 in accordance with Newton’s second law of motion, the force balance equation for this 

system is 
 

 

Or 

Substituting Eqn. 6 for Eqn. 5 and taking the Laplace transform, the transfer function is obtained as, 

 

 

 

Eqn. 7 is the mathematical model of the given mechanical control system. 

Consider also the electrical circuit whose input voltage is V, shown in Fig. 8. The system consists of a resistor, 

an inductor and a capacitor which are connected in series. 

 
 

 

 

 

 

 

 

 

 

(3) F2 = B dx 

dt 
(4) F3 = kx 

(6) F = M d2x 

dt2 
+ B dx 

dt 
+ kx 

(2) F1 = M d2x 

dt2 
 

(5) F = F2 F3 F1 + + 

(7) F = 
Bs K M s

2
 + + 

1 

 

 

Figure 6: Transfer function model of a linear time invariant system 

Figure 7: A linear translational mechanical system 
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Figure 8: An electrical system 
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The mesh circuit equation for the system is written thus 

 

 
 

Compare the coefficients in Eqns. 6 and 8 and see the analogy in the two systems. 

Applying Laplace transform on both sides of Eqn. 8 and simplifying the expression 

 (
 

  
) Vi (s) = s2 Vo (s)     

  

 
     Vo (s)   (

 

  
) Vo (s)      (9). 

      = {s2     
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}Vo(s)     (10)  

        
     

     
  = 

 

  
 

 
     

 
 
      

 
  

       (11) 

 

Eqn. 11 is a transfer function of the second order electrical system whose transfer function model is as shown in 

Fig. 9 as a block having the transfer function inside it with an input       and an output      . 
 

 

 

 

 

 

 

 
By the same line of foregoing discussions, for Torque-Voltage analogy, consider a rotational mechanical type of 

system which has θ as the angular displacement (see Fig. 10). The torque (which is analogous to force) balance 

equation can be written as, 

    

 

Or 

 

 

 

Assuming all the initial conditions are considered zero, the LT of each part of Eqn. 13 can be taken and the TF 

generated. 

 
 

 

 

 

 

4.2  Modeling of Electrical Systems 

Consider an electrical system which has all its elements: current source, a resistance, a capacitance and 

an inductor, connected in parallel as shown in Fig. 11. By means of this circuit diagram, it is possible to discuss 

Current-Force analogy of electromechanical systems. 

  

 
 

 

 

 

 

From the circuit diagram, we know that 

 

 

 And the circuit’s nodal equation is 
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dt 
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(13) T = J d
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Figure 10: Rotational mechanical system 

J 

T 
B 

ɵ 

 Figure 11: Representation of an electrical system [48] 

(14) V = E(t) = 
dψ 

dt 

 Figure 9: Transfer function model of second a order electrical system 
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With the help of KVL equation, the expression for voltage can be written in terms of charge, resistance, 

capacitor and inductor. Hence, substituting Eqn. 14 into Eqn. 15 and simplifying 

 
 

 

 

V. CONCLUSION 

Modeling of analogous systems of electromechanical devices and machines in industrial operations and 

control was studied and analyzed in this paper. The study revealed that the importance of modeling control 

systems in industrial operations cannot be overstressed. The models are useful for the study, analysis and design 

of non-electrical systems like mechanical systems from analogous electrical systems. Analysis of a control 

system means finding the output when the input and the mathematical model are known; while design of a 

control system implies finding the mathematical model when the input and the output are known. 

      The paper also show that and how the mathematical equations of translational mechanical system can 
be compared with the mesh equations of electrical system in Force-Voltage analogy, but compared with the 

electrical system nodal equations in Force-Current analogy. However, in rotational mechanical system, its 

mathematical equations are compared with mesh equations of the electrical system in Torque-Voltage analogy, 

but compared with the nodal mesh equations of the electrical system in Torque-Current analogy. 
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