Quest Journals Journal of Research in Mechanical Engineering Volume 9 ~ Issue 1 (2023) pp: 01-02 ISSN(Online):2321-8185 www.questjournals.org

Research Paper

Stretching of an Elastic Membrane

Sheik Abdul Kadar

Received 26 Dec., 2022; Revised 04 Jan., 2023; Accepted 06 Jan., 2023 © *The author(s) 2023. Published with open access at www.questjournals.org*

An elastic membrane in the x_1x_2 -plane with boundary circle $x_1^2 + x_2^2 = 1$ is stretched so that a point *P*:(x_1,x_2) goes over into the point *Q*:(y_1,y_2) given by

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = Ax = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
; in components, $y_1 = 5x_1 + 3x_2$; $y_2 = 3x_1 + 5x_2$

Find the **principal directions**, that is, the directions of the position vector \mathbf{x} of *P* for which the direction of the position vector \mathbf{y} of *Q* is the same or exactly opposite. What shape does the boundary circle take under this deformation?

Solution. We are looking for vectors **x** such that $y=\lambda x$. Since y=Ax, this gives $Ax=\lambda x$, the equation of an eigenvalue problem. In components, $Ax=\lambda x$ is

 $5x_1 + 3x_2 = \lambda x_1 \mid (5 - \lambda)x_1 + 3x_2 = 0; \quad 3x_1 + 5x_2 = \lambda x_2 \mid 3x_1 + (5 - \lambda)x_2 = 0$

The characteristic equation is

$$\begin{bmatrix} (5-\lambda) & 3\\ 3 & (5-\lambda) \end{bmatrix} = (5-\lambda)^2 - 9 = 0$$

Its solutions $\operatorname{are}\lambda_1 = 8 \operatorname{and}\lambda_2 = 2$ These are the eigenvalues of our problem. For $\lambda = \lambda_1 = 8$ our system becomes

 $-3x_1 + 3x_2 = 0; 3x_1 - 3x_2 = 0 \mid x_1 = x_2 = 1$

For $\lambda_2 = 2$, our system becomes

 $3x_1 + 3x_2 = 0$; $3x_1 + 3x_2 = 0 | x_1 = 1$; $x_2 = -1$

We thus obtain as eigenvectors of **A**, for instance, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$ corresponding to λ_1 and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}^T$ corresponding to λ_2 (or a nonzero scalar multiple of these). These vectors make 45° and 135° angles with the positive x_1 direction. They give the principal directions, the answer to our problem. The eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 2, respectively; see Fig.

Accordingly, if we choose the principal directions as directions of a new Cartesian u_1u_2 coordinate system, say, with the positive u_1 -semi-axis in the first quadrant and the positive u_2 semi-axis in the second quadrant of the x_1x_2 -system, and if we set u_1 =r.cos ϕ , u_2 =r.sin ϕ then a boundary point of the unstretched circular membrane has coordinatescos ϕ , sin ϕ Hence, after the stretch we have

$Z_1 = 8\cos\phi; Z_2 = 2\sin\phi$

Since, $\cos^2\phi + \sin^2\phi = 1$ this shows that the deformed boundary is an ellipse

$$\frac{Z_1^2}{8^2} + \frac{Z_2^2}{2^2} = 1$$

