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ABSTRACT: In the process of detecting anomalies in high-dimensional data such as images, unsupervised 

learning faces significant challenges and has become a research focus within the fields of machine learning and 

data mining. By modeling the distribution of standard samples, those that deviate from this distribution are 

identified as anomalies. Generative Adversarial Networks (GANs) have been proven to effectively model the 

complex high-dimensional distribution of normal samples, making them a suitable technique for addressing this 

issue. Based on this, we propose an unsupervised multi-view anomaly detection method, MVAD-GAN, which 

can utilize datasets containing anomalous samples and train deep neural networks without the need for labels, 

thus effectively identifying anomalies in the data. The method combines a multi-input GAN and an Attribute-

Class Encoder (ACEncoder), with the former capturing features and their relationships from different views, 

and the latter being capable of training even in unsupervised environments facing data quality issues. 

Additionally, we introduce an anomaly scoring strategy based on the ACEncoder network to determine whether 

a sample is abnormal and assign anomaly categories by scoring samples. The experimental results on two 

large-scale image datasets, MNIST and Fashion-MNIST, validate the effectiveness of the MVAD-GAN method, 

demonstrating its potential in the field of high-dimensional data anomaly detection. 

KEYWORDS: Deep Neural Network; Unsupervised Learning; Generative Adversarial Networks; Anomaly 

Detection; Multi-view 
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I. INTRODUCTION 
In today's data-driven era, anomaly detection, as a crucial technology, has been widely applied in 

multiple fields, including but not limited to cybersecurity, medical diagnosis[1], financial monitoring[2] and 

industrial manufacturing[3]. Anomaly detection refers to the identification of data points that significantly differ 

from the majority of data, often indicating some form of anomalous or erroneous behavior. These anomalies 

may represent potential network intrusions, early signs of diseases, defective products on the production line, or 

financial fraud activities. Therefore, accurate anomaly detection is essential for preventing losses and taking 

timely measures. 

Traditional anomaly detection methodologies can be broadly categorized into approaches based on 

statistics[4], density[5], clustering[6], graph theory[7], or Support Vector Machines (SVM)[8][9]. While these 

techniques can yield favorable outcomes in specific contexts, they often rely on manually set thresholds or 

presuppositions, which may prove inadequate in handling high-dimensional data or complex data distributions. 

With the continuous escalation in data volume and complexity, the limitations of traditional methods in terms of 

accuracy and efficiency have become increasingly apparent. Moreover, the scarcity of labeled data in many 

scenarios exacerbates the difficulty of model training, constraining the applicability of supervised learning 

approaches. In recent years, the rapid advancement of deep learning technologies[10][11] has offered novel 

perspectives for addressing these challenges. Especially noteworthy are the unsupervised deep learning 

approaches[12][13][14], which are capable of learning the normal distribution of data in the absence of labeled 

data, thereby identifying anomalies that deviate from this distribution. 

In the current information era, multi-view data has become increasingly common. Multi-view data 

provides rich and complementary information for the same instance from different perspectives, collectively 

offering a comprehensive understanding of the instance. For example, in intelligent transportation systems, the 

same traffic scenario might be captured by three different data sources: ground cameras, drone perspectives, and 

vehicle-mounted sensors. Faced with such multi-view data, relying solely on single-view anomaly detection 
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methods is no longer sufficient. This presents two challenges: on one hand, the data distribution within each 

independent view is extremely complex; on the other hand, there often exists inconsistency in features across 

different views. As introduced in [15], there could be three types of anomalies in multi-view data as shown in 

Diagram1: (i) class-anomaly:  refers to that the pattern of an instance in some or even all views is inconsistent, 

(ii) attribute-anomaly: refers to the pattern of an instance that significantly deviates from the center of any 

cluster in every view, and (iii) class-attribute-anomaly: represents a mixture of class and attribute anomalies, 

showing inconsistent pattern of an instance in some views, while in other views they deviate significantly from 

the cluster center. Therefore, in recent years, anomaly detection techniques[15][16][17][18] for multi-view data 

have attracted widespread interest among researchers. However, these methods often face several challenges: (1) 

They tend to focus on anomaly detection in pairwise views, making it difficult to extend to multiple views; (2) 

They rely on limited labeled data, which restricts their effectiveness in practical applications; (3) And when 

attempting to address these issues through subspace clustering techniques, they encounter the problem of 

subspaces not being independent, which may decrease detection performance. Therefore, although multi-view 

anomaly detection is theoretically attractive, achieving efficient and accurate anomaly detection in practice still 

faces significant challenges. 

 

 
Diagram 1 

 

In this context, we propose an unsupervised multi-view anomaly detection method named MVAD-

GAN (Multi-View Anomaly Detection with ClusterGAN[33]). Additionally, our method also considers the need 

for novelty detection[19][20]—identifying new patterns in test data that did not appear in the training data. 

Since novelty detection and anomaly detection share a similar theoretical foundation, MVAD-GAN is also 

suitable for tasks of novelty detection. MVAD-GAN is committed to effectively integrating and analyzing large-

scale image data from multiple-views, allowing deep learning networks to be trained without any label 

information, thereby achieving precise identification of anomalies and novelty in multi-view data. Specifically, 

during the model training phase, our method introduces a multi-input Generative Adversarial Network (GAN), 

with both the generator and discriminator designed to process and analyze inputs from multiple-views. This 

enables the capture of unique features within each view and their interrelations, enhancing the model's ability to 

identify anomalies. Furthermore, to improve the efficiency and effectiveness of unsupervised learning, we have 

integrated an Attribute-Class Encoder (ACEncoder). This encoder can be trained in conjunction with the GAN, 

and its design allows the model to be trained even when data quality is compromised (e.g., by noise), achieving 

true unsupervised learning. Through optimizing ACEncoder, we can extract meaningful representations in both 

the attribute and category domains of each sample, which is crucial for a deep understanding of data structure 

and content. In the anomaly detection phase, we utilize the hidden space representations of samples in the 

attribute and category domains obtained from the ACEncoder module and propose an anomaly scoring 

mechanism based on these representations. This mechanism determines whether a sample is an anomaly and to 

which category of anomaly it belongs by calculating its anomaly score. After experimental validation on 

MNIST and Fashion-MNIST, two widely used large-scale image datasets, MVAD-GAN has demonstrated its 

efficiency and accuracy in detecting anomalies in multi-view samples. 

 

II. RELATED WORK  

 2.1 Traditional Anomaly Detection Methods 

Early anomaly detection methods primarily focused on global outliers within a single view, i.e., data 

points that significantly differ from the majority of samples. With the rise of multi-view learning, research 

shifted towards integrating information from multiple views for anomaly detection, prompting the development 

of multi-view anomaly detection methods. A cluster-based approach (Horizontal Outlier Detection, HOAD)[15] 

was among the first to attempt multi-view anomaly detection. This method constructs a similarity matrix across 

sets and utilizes spectral embedding techniques to extract feature representations.  Following HOAD, AP 

(Affinity Propagation)[21], MLRA (Multi-view Low-Rank)[22], and CL (Collective Learning)[23] were 

subsequently proposed to address Class-anomaly detection. To simultaneously identify attribute outliers and 

class outliers, L2 and L1 regularization techniques have been applied to low-rank subspace learning[22] and the 

K-Means clustering algorithm[24]. Nonetheless, these methods depend on class label information, which is 
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often missing in real-world datasets, limiting the applicability of the aforementioned anomaly detection 

approaches. Moreover, a common drawback of these methods is that they are only suitable for identifying 

outliers in a dual-view context, leading to significant complications when dealing with three or more views. 

Subsequently, another approach called LDSR[15] based on low-rank subspace learning was proposed, 

suggesting that the goal of multi-view anomaly detection is not only to identify instances deviating from normal 

patterns (i.e., Attribute-anomalies and Class-Attribute-anomalies) but also to recognize instances with 

inconsistent behaviors across multiple-views (i.e., Class-anomalies). Although this method can overcome the 

pairwise limitation by separating the common representation from the residual representation, it still has a 

drawback: the algorithm essentially employs multi-view subspace clustering techniques across all views and 

calculates the deviations between views without generating a complete space.  After that, there are some new 

research topics for multi-view anomaly detection[25], including method called Multi-view Bayesian Outlier 

Detector[26], and a Self-Representation method with Local Similarity Preserving[27].   

 

 2.2 Abnormality DetectionMethods Based on Deep Learning 

GANs were initially introduced in the form of AnoGAN[1]. They utilized the L2-norm and the loss 

calculation between test images and their closest reconstructed images as an anomaly score. Building on this 

concept, Deecke et al. proposed ADGAN[28], which slightly improved the results. Unlike AnoGAN, ADGAN 

initiates a search for the closest matches in the latent space by initializing multiple closest matches. Schlegl et al. 

introduced f-AnoGAN[29], which enhances their AnoGAN method by substituting the deep convolutional GAN 

(DCGAN) with the Wasserstein GAN (WGAN-GP) and also introduced an encoder that can be trained 

separately for mapping images to the latent space. Recently, CGAEs[30] introduced a multi-view autoencoder 

model for detecting Attribute-anomalies and Class-anomalies. Three deep learning methods capable of detecting 

all three types of anomalies simultaneously include FMOD (Fast Multi-view Outlier Detection)[27], MODDIS 

(Multi-view Outlier Detection in Deep Intact Space)[31], and NCMOD (Neighborhood Consensus networks 

based Multi-view Outlier Detection)[32]. 

 

III. METHODOLOGY                                                                                                            
We trained our MVAD-GAN model on training samples containing anomalous instances, resulting in 

the generation of a generator  , a discriminator  , and an encoder   that maps samples to a latent space 

representation. The training framework is illustrated in Diagram 2. 

 

 
Diagram 2 

 

The input is divided into two parts: the first part is the attribute latent vector   , where this latent 

vector initializes the sample's attribute information, and the second part is the class latent vector   , where this 

latent vector initializes the sample's class information. Generator   represents the generator in the GAN, 

Encoder   is the ACEncoder, and Discriminator   is the discriminator in the GAN. During the G+E training 

phase, the generated image    by the generator serves as the input to the encoder. Encoder strives to make the 

output similar to the input   ,   . In the G+D training phase, similar to the GAN training process, the generated 

image    is presented to the discriminator  , aiming to deceive it into treating    as a real image, while the 

discriminator endeavors to correctly identify    as a fake image. Meanwhile,    represents real images in this 

context. 

In more detail, the training phase comprises two steps: (1) jointly training the generator and the encoder. 

During this period, the parameters of the generator and encoder are optimized, while the parameters of the 

discriminator remain fixed. Subsequently, (2) we jointly train the generator and discriminator. In this phase, the 

parameters of the generator and discriminator are optimized, while the encoder's parameters remain fixed. 
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During the inference phase, the process involves three steps: (1) inputting a test sample, where the 

encoder maps the image to the latent space. (2) Inputting a normal image, and the encoder maps it from the 

image space to the latent space. Then, (3) by assessing the deviation in latent space between multiple views, the 

distances between latent spaces of normal samples should be very close, while the distance of latent space for 

anomalous samples should be comparatively distant from that of other samples. The degree of deviation for each 

sample is utilized for anomaly scoring. 

 

3.1 Training Phase: Collaborative Training of the Generator and Encoder 

Taking inspiration from ClusterGAN, we reverse the order of the encoder and decoder in the standard 

AutoEncoder (AE), constructing a Z-I-Z (Latent space-Image space-Latent space) structure. During this phase, 

the parameters of the discriminator are fixed. Our aim is to utilize the generator to generate fictitious samples in 

the image space from the latent space. Simultaneously, the encoder is trained to map these virtual samples back 

to the latent space. Therefore, for the training of the encoder, real image data is not required. 

During training, we partition the input vector into two parts. The first part is the    attribute vector, 

which we want to be similar to the reconstructed         . To achieve this, a mean squared error is applied as 

a constraint. The second part is the class vector   , which we want to be similar to the reconstructed         . 
Given that    is a one-hot type of discrete vector, we use a cross-entropy loss to impose constraints. 

Consequently, the loss function for the collaborative training of the generator and encoder is defined as follows: 

       ‖    (     )‖
 
    (    (     ))      

where    is the attribute vector,    is the class vector,   represents the cross-entropy loss, and    and    are 

two hyperparameters. These hyperparameters are used to adjust the weights of the losses in the attribute domain 

and class domain for the encoder and generator.  

 

3.2 Training Phase: Collaborative Training of the Generator and Discriminator 

The purpose of this process is to enhance the performance of the generator   and discriminator  . 

During training, the loss function of the encoder   is frozen. Therefore, the loss function for the collaborative 

training of the generator and discriminator is: 

              (    )      

where  (    ) represents the loss for the generated images through the discriminator  , and      represents 

the loss for the real images   through discriminator  . Through the adversarial process, it becomes possible for 

the generator   to generate images that increasingly resemble real images, while the discriminator   becomes 

increasingly adept at accurately distinguishing between real and generated images. 

Combining the two components, our overall objective function is: 

   
     

   
  

         (    )    ‖    (     )‖
 
    (    (     ))

     
where       and    represent the parameters of the generator, encoder, and discriminator, respectively. 

 
3.3 Inference Phase: Anomaly Detection 

The trained encoder   has acquired the ability to represent the latent space. The next task is to perform 

anomaly detection by measuring the outlier score for each sample. In MVAD-GAN, we designed an anomaly 

score based on the model structure, comprising two components: attribute anomaly and class anomaly. The 

following will provide an introduction to these components. 

The objective of attribute anomaly is to assess whether a sample is significantly distant from other 

samples within a single view. Here, the attribute outlier score is calculated using the distance to the k-th nearest 

neighbor. For the i-th sample, the attribute anomaly score in the v-th view is the distance to the k-th nearest 

neighbor when mapped from the v-th view to the set of other samples: 

  
                  |         

where     is the set of attribute latent spaces for all samples included in the v-th view, and           |    

returns the distance to the k-th nearest neighbor of      in    . By considering all V views for sample i, the 

attribute outlier score for the i-th sample is as follows. 

  
     ∑  

    

 

   

     

The objective of the class outlier score is to measure the extent of differences in the neighborhood 

structure of a sample across different views. Given that a sample has V representations in the latent space, the 

class anomaly score for a sample can be assessed by measuring the mutual distances between its representations 
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in different views of the latent space. Due to the structure of MVAD-GAN, we can determine whether the i-th 

sample is an anomalous sample by comparing its class labels across various views: 

  
           |          

where      is the class latent vector for each view of the i-th sample,      is the class latent vector for all views 

of this sample, and    |    is a decision function. If there are differences in class labels across views for this 

sample, indicating it is a class anomaly,    |    returns a large value as its class anomaly score. If the class labels 

are identical across all views, suggesting it is not a class anomaly,    |    returns 0. 

During the training phase, the framework aims to learn sample representations by minimizing the 

distance between features mapped from different views. Such steps help bring the representations of normal 

samples closer in the latent space. However, if noticeable differences persist despite efforts to minimize 

distances during training, it may suggest an irreconcilable contradiction between different views. This 

opposition could indicate an anomaly, where the sample possesses an anomalous class attribute. Therefore, the 

overall anomaly score for the i-th sample is: 

                     

The larger the anomaly score for a sample, the more likely it is to be an anomalous point. 

 

IV. EXPERIMENTAL RESULT                                                                                                
4.1 Experimental Setup 

Dataset. We conducted experiments using two public datasets: MNIST and FashionMNIST. MNIST contains 

70,000 images of handwritten digits from 0 to 9, while FashionMNIST encompasses images of 10 types of 

clothing items. To standardize dimensions and enhance comparability across datasets, we mapped the pixel 

values of these datasets from the range [0,255] to [0,1] and normalized the data using MinMaxScaler. 

Constructing multi-view data. We utilize GLCM and LBP to extract features, creating three views including 

the original features. Specifically, GLCM is used to analyze the co-occurrence matrix of pixels in grayscale 

images and compute its feature values to reflect the texture characteristics of the images, involving parameters 

such as direction, step distance, and matrix order. The LBP algorithm compares the grayscale value of the center 

pixel with those of its surrounding pixels to generate an LBP value that reflects local texture information. 

Generating Anomaly Data. To generate three types of anomalies, we first randomly create an outlier index list. 

Then, using this list, we replace the normal data in the dataset. Class anomalies are created by swapping features 

of a particular view in pairs of samples from different categories, while keeping the features of other views 

unchanged. Attribute anomalies are created by converting the features of all views in a sample into Gaussian 

noise. Class-attribute anomalies combine these two approaches: first swapping the features of a particular view 

in pairs of samples from different categories, then converting those features into Gaussian noise. 

Baseline and Evaluation Metrics. To validate the effectiveness of the MVAD-GAN method, we compared it 

with three multi-view outlier detection methods: the Affinity Propagation anomaly detection method AP, Multi-

View Low-Rank Analysis MLRA, and Latent Discriminative Subspace Representation LDSR. Experiments 

were conducted on 10 sets of outlier sample indexes generated repeatedly, with each experiment repeated 10 

times and the results averaged to reduce the impact of fluctuations in data construction. We used the Area Under 

the ROC Curve (AUC) as the evaluation metric and explored several sets of outlier ratios under different 

anomaly categories to analyze MVAD-GAN's performance across various types of anomalies. 

 

4.2 Detection Effectiveness 

 First, we examined scenarios where all three types of anomaly rates were 5%, followed by an analysis 

of scenarios with only 5% class anomalies. All results were obtained after the model underwent 200 training 

epochs. At the same outlier ratio, we assessed the AUC values for both datasets in dual-view and triple-view 

setups, with the best results highlighted in bold and '#' indicating that the algorithm does not support that 

scenario. The total anomaly data ratio was 15%, including class-anomaly, attribute-anomaly, and class-attribute 

anomaly, each accounting for 5%. Each experiment was repeated 10 times, and the results were averaged.  

Table 1 shows that MVAD-GAN outperformed all baseline methods in handling large-scale datasets. 

Particularly in the triple-view dataset, the model demonstrated significant advantages, overcoming problems 

encountered by previous methods in dealing with multi-view data, such as the high computational resource 

consumption of pairwise comparisons and the limitation of the MLRA method in not supporting multi-view 

anomaly detection. 
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Table 1: All three abnormal ratios are 5% 

Dataset View AP MLRA LDSR OUR 

MNIST 
2 0.67 0.65 0.89 0.90 

3 0.49 # 0.35 0.85 

Fashion 

MNIST 

2 0.64 0.8 0.83 0.85 

3 0.52 # 0.56 0.83 

 

Table 2: Contains 5% of all class-anomalies 

Dataset View AP MLRA LDSR OUR 

MNIST 
2 0.86 0.58 0.91 0.88 

3 0.51 # 0.76 0.88 

Fashion 

MNIST 

2 0.87 0.71 0.94 0.85 

3 0.53 # 0.80 0.84 

 

Due to the characteristics of our proposed MVAD-GAN model, the type of anomaly can be directly 

determined by labels, rather than calculating the distance between neighbors in the hidden space as most 

methods do. Therefore, we designed this experiment for all class-anomalies, and the experimental results are 

shown in Table 2. The results indicate that MVAD-GAN performs similarly to the previously proposed method 

in two views, and our method still demonstrates significant advantages in three views. Our proposed MVAD-

GAN model outperforms the baseline method in three views. 

 

 

Figure 1: Model Performance with Changes in Training Epochs: AUC Values 

 
4.3 Parameter Influence Analysis 

The impact of training epochs. We trained GAN on the MNIST in 5% Class-anomaly scenarios. In the 

experiment, the model was trained for up to 800 epochs to fully observe the changes in model performance with 

training progress. From the experimental results in Figure 1, it can be observed that the performance of the 

model changes significantly with the increase of training epochs. During the first 700 epochs of training, the 

model performance showed a stable improvement trend with the increase of training epochs. This indicates that 

at this stage, the model gradually learns more features from the data and its performance continues to improve. 

However, starting from the 700th epoch, the performance of the model has decreased, which may be due to 

overfitting caused by over training. After 700 epochs, although the training continues, overfitting of the model 

to the training set may lead to a decrease in its generalization ability, resulting in a decrease in performance on 

the test set. 

The impact of hyperparameters. During the model training process, we configured hyperparameters that can 

influence the weights of the attribute domain and class domain losses. The larger the weight, the faster the 

network updates during gradient descent. We designed multiple ratios, and the following experiments 

investigate the influence of these two parameters on the overall model performance. 
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Figure 2: Effect of Changing Hyperparameters    and    on Performance in the MNIST Dataset 

 

As shown in Figure 2, on the MNIST dataset, when    and    take similar values, the results are 

relatively high. The possible reason is that the    and    in our model are sensitive to the dataset's structure. 

When there is a significant difference in their proportions, it introduces substantial perturbations to the model 

training, leading to potential inconsistency in training on the two latent spaces. When their values are either too 

small or too large, this introduces dimensional differences in the overall model loss, causing discrepancies in the 

update rates of the ACEncoder module compared to the generator and discriminator. This results in a decline in 

the overall model performance. 

 

 
Figure 3: Effect of Changing Hyperparameters    and    on Performance in the Fashion-MNIST Dataset 

 

As shown in Figure 3, on the Fashion-MNIST dataset, the results are relatively high when    and    

take similar values. The reason is similar to the model's behavior on the MNIST dataset. However, due to the 

complexity of the Fashion-MNIST dataset, experimental results demonstrate that when the weight of    is 

relatively small, the results increase as the weight of    rises. This suggests that class anomalies are more 

challenging to converge during the overall model optimization process compared to attribute anomalies. This 

observation aligns with the fact that the Fashion-MNIST dataset is more challenging than the MNIST dataset in 

classification tasks. 

 

V. CONCLUSION 
We present MVAD-GAN, an unsupervised multi-view anomaly detection method that utilizes 

Generative Adversarial Networks (GAN) and Class-Attribute Encoder (ACEncoder). Our approach involves 

training with a large-scale dataset comprising mixed anomaly data, leveraging the capabilities of GAN and 

ACEncoder for efficient model training. By mapping images to the hidden space through ACEncoder, we 

achieve rapid inference and precise anomaly detection, with the added capability of accurately categorizing 

anomalies. Through joint training of the generator and ACEncoder, we establish similarity between the attribute 

domain hidden space and the class domain hidden space. This enhances the efficiency of hierarchical analysis in 

the hidden space, fortifying the model's robustness to anomalies within the training data. By assessing distances 

and labels in the hidden space, we effectively determine the anomaly category of a given sample. MVAD-GAN 

outperforms traditional methods by significantly accelerating the inference process, making it well-suited for 

large-scale datasets, and demonstrating commendable accuracy in anomaly categorization. Future endeavors 
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will prioritize the analysis of hidden space structures, the investigation of different encoder losses' impact on 

them, and an exploration of optimal weight selection. Future work will focus on analyzing the structure of 

hidden spaces, studying the impact of different encoder losses on them, and delving into the issue of weight 

selection. 
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