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Abstract
We let f(z) be a monic complex polynomial of degree n whose roots z;,i = 1,...,n satisfy [zq] < -+ < |2,].
We define the spectral radius of f(z) by R := |z,| and we let r := |z1]. In this self contained article we will present

upper and lower bounds on I? and 7.

The upper bounds coincide with two induced matrix norms of f(2)’s companion matrix, say C. Le., the norm-

one bound. say /?; := ||C||1: Cauchy’s bound, say I, which is a trivial upper bound on K, and, the norm-infinity
bound also called Montel’s bound Ry := ||C||... The importance of Cauchy’s bound is in its proof technique that
implies the sharper bound 7 < Ro. We will extend Cauchy’s proof technique to produce new proofs that sharpen
the other two bounds [, and ;.
Noting that these bounds are unnaturally restricted by Ry, R, Ry = 1. we will show how to overcome this
restriction by considering the polynomial f(z;3) := 8" f(z/8) whose roots are §z;,i = 1,...,n and its spectral
radius is K. We denote the upper bounds of f(z;3) by R:(f) and Rar(3). respectively. Hence, R < R, () :=
ﬁl{ﬂ)/ﬁ and R < Ry (B) = ﬁﬂ.{[ﬂ}/ﬁ. We call R,(f) and Ry (53) the 5-method upper bounds on K which for
8 =1 are at least 1/f3, thus removing the restriction that K, By > 1. We provide an example for which R < 1,
R]_(IS]_}-. R_.\.;[.BQ} <1, .431 #* 32 and (31, 32 > 1.

Next, we will focus on real monic polynomials and show how to improve the bounds Ri, R, and Fps. The
idea is to multiply f(z) = 2™ + an—12""' +--- + a1z + ao by a series of monic real polynomials, say gm(z) =
2 by 2™l e g, m =1,2, ..., M. We let x,, 1= [:rg.xl..,a‘.m_L]T._ thus R, € {R., Rc, Rur}
associated with h(2) := g,n(2)f(z) depends explicitly on x,,, i.e., R, = R,(X,,). The improved bounds will be
obtained by minimizing R, (X,,) with respect to x,,, which turns out to be a set of linear programming (LP) problems.
The justification to minimize R, (X,,) is because the feasible solution x,, = 0 for which h(z) = 2™ f(z) preserves
R. We thus arrive at a series of LP problems of increasin‘g complexity that yield a series of non-increasing bounds
on R, € {Re, Ry}, say Ry, = RY > R > > RM. For R we could show that Rg” > R(LQ) > > Rﬁ""”
and Ry < REIJ or vice versa. We will present three examples (i) demonstrating the improvements obtained by the
LP-method; (ii) an explicit solution of the LP problem for m = 1; and, (iii) an example for which the LP-method
does not improve R; for m < 3. We will also show how to further improve the LP-method by combining it with
the S-method. Notice that R, ([zo]) pertains to the LP-method, where xy = [x] and R, (/3) without the brackets
pertains to the S-method.

A special case of the LP-method is the beautiful Kakeya Theorem, ie., if g1(2) =2 —land 1 = a,_1 =
- > ay > ag = 0 then Rf-.lt,) = Rpy([—1]) = 1 is a global minimum of Rjyr(x;). We will also show that if

1> a, 1> -2 a1 = ap and ag < 0 then Ry ([—1]) = 1+ 2|ag|. Next, if gi(2) = 2 + 1 we obtain another
Kakeya-type Theorem, where REJI’] = R ([1]) = 1 is another global minimum of Ry (x;). We will show that this
case is associated with f(z) := (—1)" f(—2) whose zeros {—zi,..., —2,} preserve the spectral radius R of f(z).
We will also discuss stability issues associated with Kakeya’s Theorem when it is applicable for N -dimensional
(N-D, N>1) discrete shift-invariant linear systems. For N = 1, Jury’s cited book on the z-transform states that
ifl >ap, 1 >--->a; >ay > 0then R < 1 and consequently f(2) is stable. For N > 2 we could sharpen
Rudin’s Theorem and consequently combine it with Kakeya’s Theorem when the latter applies. Finally, we present
lower bounds, say R. on R by using Vieta’s formulas which imply that if £ > 1 then the 1-D linear time-invariant
discrete system corresponding to f(z) is not stable. Simulations reveal that if R increases the condition R > 1 is
more often satisfied. The study associated with Vieta’s formulas led us to a disturbing phenomena that occurred
when we computed the coefficients of a high degree stable polynomial f(2) from its given roots. Specifically, we
obtained that many of f(2)’s trailing coefficients where in the interval [-eps, eps], where eps=2.22-107'¢ is Matlab’s
constant. In addition, motivated by simulation results we arrived at two conjectures.
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[. INTRODUCTION

We let f(2) :== 2" +a,_ 12" ' +...4+ a1z +ag, ap # 0 be a monic complex polynomial whose roots z1, zs, ..., zp,
satisfy r := |z1| < 29 < .- < |z,| =: R. Hence, the roots of f(z) reside in the annulus {z € C: r < |z| < R},
where R is called the spectral radius of f(z). To be more explicit we will sometimes write ¢, Ry instead of r, R,
respectively. Notice that 7y = R;l‘ where

F(z):=z"f(z"1)/ap. (1)

In this article we will assume that f(z) is the characteristic polynomial of a discrete time-invariant linear system
and call f(z) stable if f(z) # 0,|z| > 1 iff R < 1. The purpose of this article is: (i) To review known upper bounds
on R, ie., the induced matrix norm-one bound R; and norm-infinity bound Rj; also called Montel’s bound. (ii)
To present new proofs based on Cauchy’s proof technique that sharpen them. (iii) To remove the restriction that
these bounds should be at least one and show how to apply them to 1-D stability problems. (iv) To improve these
bounds for real polynomials by using linear programming. (v) To review Kakeya’s Theorem, extend it, and when
it is applicable to show how to apply it to test stability of N-D (/N > 2) shift-invariant discrete linear systems by
using a sharpened version of Rudin’s Theorem. (vi) To obtain a lower bound on R by using Vieta’s formulas and
apply it to obtain a sufficient condition for instability of 1-D discrete systems.

The organization of this article is as follows. In Section Il we study upper bounds on polynomial spectral radius. In
Subsection I1T-A we review the upper bounds on R that coincide with two induced matrix norms of f(z)’s companion
matrix. Le., the norm-one bound Ry and the norm-infinity bound Rjs which is also called Montel's bound, see [1,
p. 365]. Cauchy’s bound, Rc > Ry is a trivial bound on Rj. In Section II-B we present Cauchy’s proof for R < R¢.
We then extend Cauchy’s proof technique to produce new proofs to (i) if |ap| < 1 +max{|a;|,i =1,...,n—1} then
R < Ry, otherwise R < Ry; and, (ii) if E;:[)l la;| << 1 then R < Ry = 1, otherwise R < Rjy;. In Subsection I1-C

we will show how to remove the unnatural restriction that Ry, Ry > 1 and provide an example for which R < 1

and both S-method bounds corresponding to Ry and [y are less than one, though for distinct values of .

In Section IIT we will focus on real monic polynomials and will show how to improve the bounds R1, R, and
Ryr. The idea is to multiply f(z) = 2" + an_12""1 +--- 4+ a1z + ap by a series of monic real polynomials,
say gm(z) = 2™ + Tt 2™ L iz 4 zo,m = 1,2, ..., M. We let X, := [x0,21, ...,Im_1)}T then for
m=1,2,..,.M Ry, € {R1, R, Ry;} depends explicitly on X, i.e., Ry = Ry(Xm). The improved bounds will be
obtained by minimizing R, (X;,) with respect to X;, which turns out to be a linear programming (LP) problem.
We thus arrive at a series of LP problems of increasing complexity that yield a series of non-increasing bounds on
R, € {Rc, Ry}, say Ry = RELI) > REE) > .. > R&ju). For R; we could show that Rglj > R&QJ > . > HSM)
and By < RP or vice versa. In what follows we will call it the LP-method. We will present three examples (i)
demonstrating the improvements obtained by the LP-method: (ii) an explicit solution for the LP problem when
m = 1, similarly to [4]; and, (iii) an example for which the LP-method does not improve Ry for m = 3. Finally,
we will point out how to combine the S-method with the LP-method.

In Section IV we present a special case of the LP-method, i.e.. the beautiful Kakeya Theorem. If gy(z) = z — 1
and 1 > ap_1 = --- > aq = ap = 0 then Rilf} = Ry([-1]) =1 is a global minimum of Ras(x1). We will show
thatif 1 > a,_1 > --- > ay = ag and ag < 0 then Ryr([—1]) = 1+2|ag|. Next, if g;(z) = 2+ 1 we obtain another
Kakeya type Theorem, where RE.L? = Rus([1]) = 1 is another global minimum of Rpz(x1). In retrospect, it turned
out that this case is associated with f(z) := (—1)"f(—z) whose zeros {—zy,..., —2, } preserve the spectral radius
R of f(z). In Subsection IV-A we present stability issues associated with Kakeya’s Theorem for N-dimensional
(N-D, N>1) discrete linear systems. For N = 1 we have: if 1 > a1 > -+ > a1 > ap > 0 then R < 1 and
consequently f(z) is stable, see [2, p. 116]. For N > 2 we could sharpen Rudin’s Theorem thus enabling us to
combine it with Kakeya’s Theorem when the latter applies. For a proof of Rudin’s Theorem see [5], where we
generalized Rudin’s Theorem that has a single 1-D condition and Strintzis’s Theorem that has N 1-D conditions

to have any number of up to N 1-D conditions. Notice that Kakeya’s Theorem when applicable can be combined
only with Rudin’s Theorem.

In Section V we will present lower bounds, say R. on R by using Vieta’s formulas from which we will obtain
a sufficient condition for instability. Le., if ® > 1 then f(z) is not stable. Simulations reveal that if R increases
then the proposed sufficient condition is more often satisfied. The study of Vieta’s formulas led us to a disturbing
phenomena. Le.. if we choose all the roots of a stable polynomial f(z) of high degree to lie in [0.1,0.9], then, say

k. of f(z)’s computed trailing coefficients lie in [-eps,eps], where eps:=2.22-10-16 is Matlab’s constant. Therefore,
f(z) = 2" f(2) and f(z) acquired k roots that are close to zero which should not have been there in the first place.
Furthermore, simulation results associated with B¢ of f(z) and By of F(z) := 2" f(z~1)/ag for which Rp = 1/7;
led us to the formulation of two conjectures.

Finally, in Section VI we give the conclusion.
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II. BOUNDS ON POLYNOMIAL SPECTRAL RADIUS
In Subsection II-A we review the companion matrix norm bounds. Then, in Subsection II-B we present tighter

bounds thereof and new proofs based on Cauchy’s proof technique. Finally, in Subsection II-C we will show how
to remove the unnatural restriction that Ry, Ky > 1 and give examples for which By < 1 and Ry < 1.

A. Bounds on polynomial spectral radius via the companion matrix

Here, we will obtain upper bounds on 2 by using f(2)’s companion matrix and either the induced matrix norm-
one or the induced matrix norm-infinity. For the sake of completeness we will arrive at f(2)’s companion matrix,
say C, and then we will show that its characteristic polynomial is f(2). Assuming that £ € {2, 20....,2,} we can
arrive at the companion matrix as follows. Since,

ﬁfn:—&n_lfﬂ_] — e — A —ay (2)
we can write
Cv = 3v, 3)
where
[0 1 0 0 0 ]
0 0 1 0 0
c=|: = o], “
0 0 0 0 1
|—ap —a1 —ay —ag - —lp_q
Vi=[1,52,... 5T, (3)

and T denotes transposition.
Here, ¥ denotes the eigenvector of C corresponding to the eigenvalue Z. In the general case, when the roots of

f(2) are not necessarily distinct, by expanding the first column of det(z{ — C) and applying induction on n we
will prove that f(z) = det(2I — C). For any matrix norm we have [1, p. 345]

R <|C]|. (6)
The induced matrix norm is defined by [|C|| := maxy |y =1 [|CV]|, therefore, if % is an eigenvalue of C and v
is the corresponding unit eigenvector then | C|| = ||[C¥|| = |Z]||¥]| = |Z]. or B < ||C|. If we apply the induced

matrix norm-one we obtain [1, p. 345]

n
R<[Cll = max. 3 1CG ) )

= max{|ag|, 1 + |ai|. 1+ |ag, ..., 1 + |an_1]}
< max{l + |ag|, 1 + |a1]. 1 + |ag|,....1 + |an—1]}.

We let
Ry = max{|apg|,1 + |ay|.1 + |as|, ..., 1 + |lap_1]} (8)
denote the norm-one bound and
Re :=max{1 + |ag|, 1 + |ai|.1 + |aal, ... 1 + |a, 1|} 9)
denote Cauchy’s bound.

If we apply the induced matrix norm-infinity we obtain

n
R < ||Clla = max > |C(i,5)]| (10)
i—=1

i=l...n

n—1

max{l, Z la:i]}.
i=0

We let
n—1

Ry 1= 11'1a.x{1_.z |a:|} (11)
—0
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denote Montel's bound, see [1, p. 365].
Remark 2.1: Notice that
() If ag = max{1 + |aq[, 1 + |aa],..., 1 + |ap—1|}, then Ry = |ag| and Re =1+ |ag).
(i) If f(2) = 2‘kf(2')3\ Montel's bound Rar gives the same result for both f(z) and f[z‘).
(iii) Both f(2) = 2*f(2).k > 1 and f(2) have the same spectral radius. However, for f(2) we obtain Ry = Rc,
whereas for f(2) when |ag| = max{1 + |aj|, 1+ |as|,....1 + |a,_{|} we obtain Rc = Ry + 1.
(iv) Though Montel’s bound seems to be weaker than 1 by applying it to a polynomial whose coefficients are
non-negative and non-increasing we obtain the tight Kakeya bound, Ry = 1.

B. New proofs and sharper bounds based on Cauchy’s Theorem

In Subsection II-A we proved that R < Ro. Here, we will first prove the sharper version of Cauchy’s bound,
Le. I < Re, see [3, p. 375] who calls it Cauchy’s Theorem. Next, based on Cauchy’s proof technique we will
present new proofs and sharper bounds for 17} and H,;.

Theorem 2.2: R < Rc. where

Re :=max{1 + |ag|. 1 + |aq|, 1 + |as...., 1 + |an_1]}. (12)

Proof 3, p. 375].
From the definition of f(z) we obtain

2" = f(2) — (@n-12""1+--- + a1z + ao). (13)
We let
pr=max{|n|, i =0,1,...,n — 1}, (14
then
1" < [F@+ (2" + -+ ]2l + 1) (15)
)]+ pE =

EEER

We let a € C satisfy |a| = p+ 1 = Eq. Then,

_r
o] —1 = 1. (16)
Hence,
o™ < [f(a)] + o — 1, a7
or
[f(a)] 2 1= f(a) #0,a = Re. (18)
Hence, R < . A
Theorem 2.3: We let
p1=max{|a;|,i =1,2,...,m— 1} (19)
and Ky be as in (8). Then, |ap| < p1 + 1 implies B < Ri, otherwise I < I?y.
Proof.
Using (13) we obtain
2" < F@)| + pr(l2" 7t 4+ + [21) + |aol (20)
@+ ol T gy
= |z P1lz =1 0l
We let o € C satisfy |a| = Ry = max{|ag|, py + 1}. Then,
1
< 1. 2
-1 " ey
Hence,
la[" < |f(a)] + |af” — |af + |aq, 22)
or
[f(a)] = |l — |ag|. (23)
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We have
() If |a] = Ry = p1 + 1 = |ag| then |f(a)| = |a| — |ag| = 0. hence K < ;.
(ii) Otherwise, if |a > Ry = |ag| = p; + 1 then |f(a)| = || — |ag| = 0, hence R < Rj.
|
Finally, we could also sharpen Montel’s bound, we have
Theorem 2.4: We let

Ry := max{1,|ag| + |a1| + -+ - + |an-1]}. (24)
If Zf;a' |a;| < 1 then R < Ry; = 1, consequently f(2) is stable.
If || > Ry = 573" a;| = 1 then R < Ry
Proof.
Using (13) we obtain

21" < £(2)] + lanal 2" + - + |aa]|2] + |aol. (25
We let o € C satisfy |o| = Ry. Then, |a| > 1 and |a|',i = 0,1,....,n — 1 is non-decreasing.
Hence,
n—1
o™ < |f(@)] + la™ ") |ail, (26)
i=0
or

n—1
[f(@)] = | (Icrl -3 Iaarl) : @n
i=0

If EI:UI |ai| < 1 then for |o| = By =1 = Z;:nl |ai| we obtain |f(a)| = 0. Hence, f(a) # 0,|e] = 1, or
R < 1, consequently f(z) is stable.

If E::J la;| = 1 then for |a| = Ry = E:;:ol |a;| we obtain |f(a)| = 0. Hence, f(a) # 0,|a] = Ry, or
R<Ry. 1

C. Removing the restriction that induced matrix norm bounds are at least one
Using (8) and (11) it can be readily seen that /7y > 1 and Ry; = 1 which is an unnatural restriction. We will
show how to overcome this problem and give examples that improve these bounds. We let
f(z:8) ==B"f(B7"2) (28)
=2"4 Blay_ 2™ oo 4 B a2 + B
=B (B2 — ).

hwenoe the roots of f(2:3) are 3z;,i = 1,....n and its spectral radius is 3. Notice that f(z) = f(z:1). We let
R1(3) and Ry (F) denote the norm-one and Montel's bounds for f{z:3), respectively. Hence:
(i) Using the norm-one bound (%) we obtain

R < R(B) = R (8)/8 (29)
— max {|ao|f" L, 871 + |as| B2, 87 + Jaol B3, BT+ |an—1] ]} -
(ii) Using Montel's bound (11) we obtain

n—1
R < Ru(8) := Ru(8)/B := max{~", ) 8" Hail}. (30)
=l

Example 2.5: We let f(2) = (2 — 0.5)(2 — 0.4)(2 + 0.3) = 2® — 0.62% — 0.072 + 0.06 be a stable polynomial.

Using (8) we obtain that /7y = 1.6. Hence, we can not conclude whether or not f(z) is stable.
However, by minimizing /?;(/3) we obtain 5 and [7;(3.79) = 0.8639. hence f(2) is stable.

Using (11) we obtain that By; = 1. By Theorem 2.4, since 1 > 0.6 4+ 0.07 + 0.06 we obtain that f(z) is
stable. Notice that I7y;(3.79) = 1.7271 > Ky = 1. However, by minimizing fi,;(3) we obtain that 5 = 1.27 and
R (1.27) = 0.787 < Ry(3.79) = 0.8639.
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[II. IMPROVED BOUNDS ON REAL POLYNOMIAL SPECTRAL RADIUS VIA LINEAR PROGRAMMING

In this Section we focus on real polynomials f(z). It is well known that any complex monic polynomial f(z)
of degree n can be converted to a real polynomial d(z) of degree 2n that preserves the spectral radius of f(z).
Hence, we can apply the proposed method to d(z). We have d(2) == f(2)f(2), where f(2) = 2" + @, 12" ' +
..+ @12 + @p. an := 1, and @ denotes the complex conjugate of aj. Since the roots of f(z) are the conjugate of
the roots of f(z), the quadratic factors of d(2) = IIT"_; (2 — 2;)(2 — %) must be real and, therefore, d(2) must also
be a real polynomial.

In what follows we will improve the above upper bounds 1, K¢, and Ras on iy by using linear programming.
The idea is to multiply the real monic polynomial f(2) = 2™ + an-12""1 ...+ a1z +ao. an := 1 by a series of
real monic polynomials g, (2) = 2p2™ + Zpp_12™ 1+ L+ 32 4 20, 2 = 1,m = 1,..., M whose coefficients
will be determined by solving M linear programming (LP) problems. For u € {C, M} we let RY .= R, and for
m = 1 we let Rﬁm) denote the optimal solution associated with g (2).m = 1,..., M. We will show that the series
of solutions R_E[m),m = 0 thus obtained yields a series of non-increasing upper bounds on f(2)’s spectral radius.
As for B1 we will show that only the series of solutions R{lm}', m > 1 yields a series of non-increasing upper
bounds on f(z)’s spectral radius. We will present examples demonstrating the improvements obtained by using the
proposed LP-method.

Next, we will present the LP based improved upper bounds.

We let

h(z) := f(2)gm(z) 3D
= If'-"ﬂ+1"r¢2'n-’_rn + hn+m—lzﬂ+m_1 + .. + hiz + ho,

where hy,.m = 1. and we suppress the dependence of h(z) on m. Then,
hy = Z a;xj,i € {0,1,...,n}, 7€ {0,1,...,m}. (32)
k=i+j
Obviously, Rp = Ry.
Example 3.1: We let f(z) = azz +agz a2 +aqz? +ag2+ap, as 1= 1 and ga(2) = 2923+ x02 24 2420, 23 1=
1. Hence, using (31), h(z) = ga(2)f(z) is given by
h{z) =28+ (asmo + agxs)2” + (aszy + agxe + ag}zf' + (aszg + agxy + agzs + a9)25+ (33)
(ayzg + asxy + asws + {;rqjlzf‘1 + (agzg + asxy + ayxs + ag)2® + (asxp + ayxy + ﬂ.nIQ)Zi-i-
(ayap + an.:.cl)zl + agTy-

Hence, h(z) can be written in matrix form as

h=Ax+h, (34)
where
[ho [ap 0 07 (0]
h]_ Iy g 0 0
ha as ap ap 0
ha a3 0z ai o an
h= A= X = |x1|;and, b= . (35)
h4 ay az s aq
€Ia
hy as a4 ag ag
hg 0 az ay asy
_h7_ 0 0 as] en

Similarly, for ga(2) = w922 + 112+ 20,79 := 1 we obtain
h(z) =27 + (azzy + ag®e)z® + (azzo + agxy + a.g)z5 + (@qxg + agey + ag)z4+ (36)
(agzp + asxy + a.l);:3 + (@orp + a1y + a.ojzg + (a1xp + apry)z + agzg.

Hence, fi(2) can be written in matrix notation as

h=Ax+bh, (37)
where
[ho ] [ag 07 (0]
I aj ap 0
ho as  ag . ap
h=|hy| ;A= |ag as|;x= [ID] ;and, b= |ag|. (38)
hy a4 az ! a2
h5 s a4 g
fl{; L 0 ag LX)
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Finally, for g;(2) = 212 + 29, 7y = 1 we obtain

hq agp 0

hl i ap

B 0 N 2] DR L _ |
h = ha A= 0 X = [:m] ;and, b = ag| " (39)

by i az

hs s 4

By Example 3.1 and using (31) we obtain for any n and m:

h=Ax+b. (40)

The following three problems can be converted to linear programming problems, see e.g. [8, pp. 134-135].
However, by using CVX [6] these problems will be solved directly without the need to explicitly convert them to
LP problems. We let & := [0, 1, ..., 1]T, |h| := abs(h), and h{i 4+ 1) = h,.

S

n+m—2
Using (8) the norm-one bound for m = 1 is given by
R™ = min | [b] + &l @1

subject to
h=Ax+b.

Using (9) Cauchy’s bound for m = 1 is given by
ROM =1+ min [ 42)

subject to
h=Ax+bhb.

Finally, by using (11) Montel's bound for m = 1 is given by

Ry = minmax{1, |[hl:} 43)

subject to
h=Ax+h.

Notice that we define REP} = R, only forw e {C,M}.
Remark 3.2: We let E := &, then the cvx code is as follows.
Form =1, R{lm) is the optimal value of:

cv¥_begin
variable x(m)
minimize (max (abs (A+xX+D)+E))
subject to

% none
cvx_end
Form = 1, Rg.“) is the optimal value of:
cvx_begin
variable x(m)
minimize (1+max (abs (A+xx+b)))
subject to
% none
cvx_end
For m. R‘(.‘TJ is the optimal value of:
cv¥_begin
variable x (m)
minimize (max (1, sum(abs (A+x+b)}}}
subject to
% none
cvx_end
Notice that h, A, x, b, and e all depend on m, where m > 1.
Theorem 3.3: We have
@RV = >RM™>...> M ue{1,0,M)}, and
(i) Ry = Ry([0) = R = RV, u e {C, M},
Proof.
(i) Assume that m = 1. We let §,,(2) correspond to the optimal solution X,;, 1= argmin,_ J,(x;,)
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and Rt(fm) = Ry(Xm), where u € {1,C, M}. Since 2§n,(2) is a feasible solution of the LP problem
miny_,, Bu(Xme1) we obtain that REI“) > R&mﬂ} = Ru(Xm41)-
(ii) For u € {C, M}, R,([0]) corresponds to gi(z) = 2, hence we obtain

0 . 1 0 _ . .
RY = Rg =1+ maxyeqo._m 1y |ai] = Re([0]) = RY and RS := Ry = max{1, 75" ||} = Rar([0]) >
R‘(.Jf). For the norm-one bound we have 1y = max{lap[, 1 + max;.;

-1} @i} and

Ri([0]) = max{0,1 + max;cq0,_m-1} |ai|} = Re. Since B < Re = Ri([0]) = R(IU we cannot claim that
R = }?EIJ. See Example 3.4 where R; > R%U and Example 3.5 where i) < }?EBJ. |

In what follows we will give three examples.

Example 3.4: We let f(2) = 2° + 21 +0.22% + 0.122 + 2.42 + 1.9. We have Ry = 1.2649.

(1) Using the norm-one bound (8) we obtain

TABLE
NORM ONE BOUND, ;.
m gm(z) R
0 R; =34
1 :— 1.7 3.23
2 =2 — 1.055z + 0.1715 3.2061
3| 2? —1.25082" + 0.83872 — 1.1871 | 2.2555

(ii) Using Cauchy’s bound (9) we obtain

TABLE II
CAUCHY'S BOUND
m gm(z) R
0 z 3.4
1 - 1.2 3.98
2 z? +0.1715z — 1.055 3.2062
3 | 2% - 1.03232% + 0.21232 — 0.8066 | 2.5326

(iii) Finally, using Montel’s bound (10) we obtain

TABLE 11l
MONTEL'S BOUND
m gmi(z) Ry
0 z 5.6
1 z— 0.7917 4.68333
2 2% —0.8174z + 0.6174 4.42261
3 | 2% —0.77622% 4 0.6255z — 0.5031 | 3.26242

Example 3.5: The column of ; need not necessarily be non-increasing as in the previous example. However,
the REMJ 's for m =1,...M are non-increasing. This can be seen by considering the following example. We let

f(z) = 2" + 0422 + 042 + 1.6, (44)

where [y = 1.1914. For m = 1, by using (8) we obtain K; = 1.6. However, the optimal g;(2) = z — 1.3 gives
RE') = 2.08 that is larger than R;. Therefore, we have to use the following correction for the norm-one bounds

R™ = min{ B™, R1},m = 1,..., M. (45)
Example 3.6: The solution proposed here for m = 1 is similar to that of [4]. For m = 1 we have
h(2) = hps12™ L+ F gz + Ry (46)
=t 4 (apzg + @p—1) +-- - + (aoxg + m)z‘g + (ayxp + ag)z + agxg.
It is well known that any optimal value of a LP problem can be attained at one of its extreme points. In this

problem the extreme points occur when the argument of an absolute value is zero. Both bounds R([za]) and
Rys([zg]) have at most n + 1 extreme points. Hence, we obtain

Ri([zo]) =max{[hol. 1 + |h1|.1 + |hol.-- 1+ [hn-1[} 47
max{|agzol|, 1 + |a12o + ag|, 1 + |aozn + a1],.... 1 + |anTo + @pn_1]}

Now, since ag # 0, it may happen that 12y # R;([0]). Therefore, we obtain
R{" =min{ Ry ([0]), Ry([~ao/a1]), -, By([~an_1/an])},
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where we define 171([—a:/0]) := oc. and for all m such that Ry < Rng we will output ;.
Similarly, for Rf.ﬁ,} we obtain

L3

Ry ([wo]) =max{1,y " |hil} (48)
i=0
max {1, lagzo| + |a1zo + an| + |asxo + a1| + -+ + |anT0 + an—1|}-

Hence,

R} = min{Ras ([0]), Rar([~a0/ai]). . Rar([~an_1/an])}. (49)

where we define Ry ([—a;/0]) := oc.
We will conclude this Section with the following two remarks.
Remark 3.7: Here, we will point out how to combine the LP-method with the S-method. Specifically,

opt R.Em) = min {Rl._ min [i min Ry (x,,, B)] } (50)
8 | B %xm
and
) rin 4 L in B (x
opt RET = mﬁln {E n}&}l Bar(x; ,S)} . (51)

where both R;(x,,, 8) and Rp;(x;3) are associated with g,,(2)f(z; 3). Hence, at each point /3 of the line search
we have to solve an LP problem. Notice that for m = 1 we can exploit the explicit solution of Example 3.6.

Remark 3.8: Here, we will discuss how to improve the spectral radius of matrices. Suppose M € C™*" and
f(z) = det(2I — M) is its characteristic polynomial . We let f(2)’s roots (also called eigenvalues) be 2. ..., 2,
where |z1| < ... < |2n| =@ Rj. The spectral radius of M is F; and we have By < |[M]|. see [1. p. 345]. The
eigenvalues of SM are the 52;'s and its spectral radius is SR . We have gR < [|#M|| = #||M]||. where /3 cancels
out. thus rendering the S-method futile. However, if we proceed with f(2) as in the previous Remark by using the
3-method, or the LP-method, or both, we can thus improve M’s spectral radius.

IV. KAKEYA'S THEOREM AND ITS EXTENSIONS

Here, we will present Kakeya’s Theorem [1, p. 366]. an extension thereof, a new Kakeya-type Theorem. and its
application to stability of N-D discrete systems.

Theorem 4.1: Suppose f(2) = 2" + a,_12" ! + ... + a1z + aq is a given polynomial with real coefficients that
are monotone, in the sense 1 > ap—1 > ap—2 > --- = a1 = ap. Then

(i) Kakeya's Theorem: if ag = 0 then R < Ry ([—1]) = 1.
(ii) Extended Kakeya’s Theorem: if ag < 0 then R < Rys([—1]) = 1 + 2|ay|.

Froof.
We let
hiz)=(2—1)f(2) (52)
=2" 4 (ag_y — 1)2" + (an2 — @n_1)2" '+ + (ag — a1)z — ap.
Appying Montel’s bound (10) to h(z) and using the monotonicity of f(z)’s coefficients we obtain

Rp([—1]) = max{1, |an—1 — 1| + |[an—2 — an—1| + -+ + |ap — a1| + | — ao|} (53)
=max{l, [~an_1 + 1] + [~an_9 + @n_1] + --- + [—ao + a1] + |ao|}
= max{1, 1 — ap + |aol|}.

In case (i) since ap = 0 we obtain Ry ([—1]) = max{1,1 —ag +ap} = 1.
In case (ii) since ag < 0 we obtain Ry ([—1]) = max{1.1 —ag—ag} = 1 + 2|ap|. W
Theorem 4.2: Suppose f(2) = 2™ 4+ an—12"" ! + .. + a2 + ag is a given polynomial with real coefficients that
are monotone, in the sense 1 > [—l)lan,l = (—l)ﬁan,g = (—1)3(1“,3 e (—1)“‘10,1 = (—1)"ap. Then
(i) For n odd: if ag < 0 then i < Ry ([1]) = 1; and, if ag > 0 then R < Ry;([1]) = 1 + 2|ag|.
(ii) For n even: if ap = 0 then R < Rar([1]) = 1; and, if ap < O then R < Rar([1]) = 1 + 2|ag|.

Proof.
We let
h(2) = (z + 1)f(2) (54)
=" L (14 an-1)2" + (@n-2 4+ an_1)2" '+ + (a0 + a1)z + ao.
For n odd:

By ([1]) = max{1, |an—1 + 1| + [an—1 + Gn—a| + - -~ + |ap + a1] + [ao[} (55)
= max{1,[an—1 + 1] + [~an—1 — an—2] + -+ + [~a1 — a2] + [a0 + a1] + |ao|}
=max{1,1 + ap + |ap|}.
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Hence, if ag < 0 then Rar([1]) = 1; and, if ap > 0 then Ry ([1]) = 1 + 2|ag).
For n even:

Ry ([1]) = max{1, |an 1 + 1| + [ap_2 + @ 1| +--- + |ap + a1| + |ag|} (56)
max{l,[an—1 + 1] + [~an—2 — @n-1] + - -~ + [01 + a2] + [—ao — a1] + |aol}
max{l,ap_1 +1+ay 9 —ap1+---+ag+ay+|ag|}

=max{1,1—ao + |ao|}.

Hence, if ag > 0 then Rpf([1]) = 1: and, if ag < 0 then Ry, ([1]) = 1 + 2|ap|. W

Remark 4.3: The above theorem to the best of our knowledge is new and its proof is nontrivial. However, the result
is trivial and was overlooked, since we can obtain Theorem 4.2 by applying Theorem 4.1 to f(z) 1= (—1)"f(—2)
and noting that the zeros of f(z‘}, —2;,8 =1, ..., n preserve the spectral radius, Le.. Rf = Ry

A. Stability of N-D linear discrete system associated with Kakeya's Theorem

Here, we present stability issues associated with Kakeya's Theorems for N-dimensional (N-D, N>1) discrete
shift-invariant linear systems.

For N =1 we have [2, p. 116]: if 1 > a,,_j = --- > a; > ap = 0 then K < 1 and consequently f(2) is stable.

For N' = 2 we will sharpen Rudin’s Theorem thus enabling us to apply Kakeya’s Theorem when it is applicable,
see [5]. For a proof of Rudin’s Theorem see [5]. where we generalized Rudin’s Theorem that has a single 1-D
condition and Strintzis’s Theorem that has V 1-D conditions to have any number of up to N 1-D conditions. We
let f(21.29...., 25 ) be the characteristic polynomial of an N-D (N = 2) dimensional linear shift-invariant discrete
system. We say that the system is stable if

_f(zler! RLET) 2‘;’\{) ?é 0, |2.1| <1, |2.Q| =1, .., |2.N| =1 (57)

Rudin’s Theorem states:
Theorem 4.4: f(z1,29,...,2n) is stable if and only if (=iff)

flz1,29,.,28) #0, |21 =1 2| =1, .., |an| =1 (58)
and
flzoz,nn2)# 02 = 1 (39)
The sharpened Rudin’s theorem states:
Theorem 4.5:
f(21.29, ..., 2)v) is stable iff
flzi,20,28) # 0,21 = Lz =1, ... an| =1 (60)
and
flz,2,.,2) #£0, |2 < 1. (61)
Proof.

Obviously, (60) implies f(z.z,...,z) # 0, |z| = 1. Therefore, it suffices to test (61). W

Now, we let ¢(2) be the monic polynomial associated with f(2,...,2) and assume that its free coefficient is ¢g # 0.
Next, we let > = 1/Z and we define the monic polynomial F(Z) := Z49(#) ¢(1/2)/¢y. Then, f(2,...,2) £ 0, |2| <
1iff F(Z)#0,|Z] > 1 iff R < 1. Hence, if F(Z) satisfies one of the two Kakeya's conditions then Ry < 1
and (61) is satisfied.

V. VIETA BASED LOWER BOUNDS ON [{ AND THEIR APPLICATION TO STABILITY

The proposed lower bounds that we will present here apply to real as well as complex polynomials.
We let 2,0 = 1,....n, |21] < --- < |2n| be the roots of f(z), then [7]
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flz) =2"+ an_12" 14+ ... +aiz+ao
=l (z — 2) (62)
=2 (=) ler2™ 4 (—1)2ea2™ 2 4 4 (1) Fer2™ R 4 (—1)"en,

where .
exi= > [l= (63)
(12,0 )EQE £=1

are the elementary symmetric functions,

Qrn = {(01,....00) € N:l<ai<as<---< ap < njp, (64)
and its cardinality is
n
|Qien| := (k) (65)
Hence, since |z;| < R Vi we obtain
n .
lek| = |an—k| < (k) R*, (66)
or
4y Uk
R =R:= max |an—k| "
LT ke{ldm) N\ e :
Remark 5.1:

Note that if 2 = 1 there exists a root 2; of f(2) such that |2;| = 1. consequently f(z) is not stable. This is a
sufficient condition for instability of f(z).

An upper bound on r = |z;| can be obtained as follows.
Assuming that ap # 0 we let

F(z)=a3'2"f(z"}) (67)
T
i=1
. — 1
— "4 ﬂzn—l + G‘_Qz.n—Q Lt a‘_kz.n—k 4ot n 12.+ - (69)
Lti] ] g ap ap
="+ (—D) B 4 (—1)2E2" L+ (1) B L (—1) B, (70)
where 2;,1 = 1,...,n are the zeros of f(z) and the E.’s are the following elementary symmetric functions of F'(z),
ie..
ke
Ej = Z Hz;l. (71)
(i1,d2,..ix)EQE £=1
We have "
0 T
Epyl=|—| < —. 72
| k| aol = (k) s (72)
Hence,
aol (n 1/k
(16"
@ k
or
ro<r 4
- 1/k
= min { ] (ﬂ)} } . (75)
ke{l..n} | [lax| \k
where a,, := 1, and we interpret division by zero as infinity.

Notice that if both 2 and 7 are attained at & = n then ¥ = K. Furthermore, for numerous simulated examples
we always obtained 7 < .

By randomly choosing N polynomials of degree n and letting
P(i.j) = #{(i.j) : i = argmin(7). j = arg max(fZ)} /N we always obtained the following pattern for P

- |

* % --- % 0 0
P=: - (76)

® 0 00 0

00 00 =

where * denotes a positive fraction.
Therefore, we conjecture that ¥ < R, or
1/k

1/k —1 /
. n\]" n
i [ O]} = s {7} an
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Example 5.2: We carried out a million trials. In each trial we generated a random polynomial of degree 5 whose
roots were uniformly distributed within {z € C: [z| < 3}. We thus obtained

0.0045 0.0014 00017 0.0024 0

0.0015  0.0006 0.0004 0 0
P = 10.005600 0.0024 0 0 0 . (78)
0.0441 0 0 0 0.0
0 0 0 0 0.9355

Example 5.3: In this example we report the following simulation results. For each n and Rmax we generated
10000 polynomials of degree n whose roots were uniformly distributed in {z € C: |z| < Rmax}.

TABLE IV
FRACTION OF UNSTABLE POLYNOMIALS DETECTED BY THE SUFFICIENT CONDITION R > 1.

n | Hmar =15 | Bmar =2 | Amaxz =25 | Rmax =3 | Rmax =15
2 0.6030 0.8346 0.9291 0.9674 0.9841
3 0.4048 0.8184 0.9358 0.9741 0.9915
4 0.4276 0.8169 0.9488 0.9863 0.9939
5 0.3864 0.8311 0.9593 0.9904 0.9970
6 0.3691 08418 0.9687 0.9936 0.9987
7 0.3516 0.8566 0.9742 0.9964 0.9991
8 0.3231 0.8657 0.9813 0.9977 0.9992
9 0.3027 0.8809 0.9863 0.9982 0.9998
10 0.2040 0.8891 0.9887 0.9996 0.9998

Notice that the rows and columns are increasing, except Rmaxr = 1.5°s column which is decreasing.
for

Example 5.4: The study in this section led us to consider the following disturbing example. We will present this
example by using Matlab’s notation. If we choose a stable polynomial whose roots are z = 0.1 : 0.01 : 0.9 and
compute a=poly(z), a=abs(a), ind=a < eps. where eps.=2.2-10_16 is Matlab’s constant. It turned out that n = 82
and by observing ind we obtain that the 23 trailing values of a where less than eps. Hence, although r = 0.1,
poly(z) contains 23 roots that are numerically zero.

VI. ConcLusION

In this self contained article we reviewed known upper bounds on K, ie., the norm-one bound R and norm-
infinity bound also called Montel’s bound [7y;. We presented new proofs based on Cauchy’s proof technique that
sharpened them. We removed the restriction that these bounds are at least one and showed how to apply them to
1-D stability problems. We improved these bounds for real polynomials by using linear programming. We reviewed
Kakeya’s Theorem, extended it, and showed how to apply it when it is applicable to test stability of N-D, N = 2,
shift-invariant discrete linear systems by sharpening Rudin’s Theorem. We obtained a lower bound E on R by using
Vieta's formulas, applied it to obtain a sufficient condition for instability of 1-D systems, and on the way arrived
at two conjectures. Future research may focus on (i) proving the proposed two conjectures: and, (ii) improving the
spectral radius of matrices by combining their characteristic equation f(2) with the S-method, or the LP-method,
or both, see Remark 3.8.
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