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ABSTRACT: In this paper an H” -control technique is presented and applied to the design of optimal
multirate-output controllers. The technique is based on multirate-output controllers (MROCs) having a
multirate sampling mechanism with different sampling period in each measured output of the system. It relies
mainly on the reduction , under appropriate conditions, of the original H” -disturbance attenuation problem to
an associated discrete H” -control problem for which a fictitious static state feedback controller is to be
designed, even though some state variables are not available (measurable) for feedback purposes. The proposed
H”-control technique is applied to the discrete linear open-loop system model which represents a 160 MVA
synchronous machine with automatic excitation control system , in order to design a proper optimal multirate
excitation controller for this power system.

KEYWORDS: Disturbance, digital multirate control, H ” -control, power system.

. INTRODUCTION

The H™ -optimization control problem has drawn great attention [1-6]. In particular, the H” -control
problem for discrete-time and sampled-data singlerate and multirate systems has been treated successfully [3-6].

Generally speaking, when the state vector is not available for feedback, the H™ -control problem is usually
solved in both the continuous and discrete-time cases using dynamic measurement feedback approach.

Recently, a new technique [7] is presented for the solution of the H™ -disturbance attenuation problem.

This technique is based on multirate-output controllers (MROCS) and in order to solve the sampled-data H” -
disturbance attenuation problem relies mainly on the reduction, under appropriate conditions, of the original

H* -disturbance attenuation problem, to an associated discrete H™ -control problem for which a fictitious
static state feedback controller is to be designed, even though some state variables are not available for
feedback.

In the present work the ultimately investigated discrete linear open-loop power system model was obtained
through a systematic procedure using a linearized continuous, with impulse disturbances, 9""-order MIMO open-
loop model representing a practical power system (which consists of a 160 MVA synchronous machine
supplying power to an infinite grid through a proper connection network [8,9]. The digital controller, which will
lead to the associated designed discrete closed-loop power system model displaying enhanced dynamic stability
characteristics, is accomplished by applying properly the presented MROCSs technique.

1. OVERVIEW OF H*-CONTROL TECHNIQUE USING MROC:s [6,7]
Consider the controllable and observable continuous linear state-space system model of the general form

X(t) =Ax(t)+Bu(t)+Dq(t) , X(0)=0 (1a)
Yom (1) =Cx(t) + Jyu(t) , y . (1) = Ex(t) + J,u(t) (1b)
where: X(t)eR", u(t)eR™, q(t)eL’, y,. (1) eR™, y_(t) e R™are the state, input, external

disturbance, measured output and controlled output vectors, respectively. In Eqn. 1 all matrices have real
elements and appropriate dimensions. Now follows a useful definition.
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Definition. For an observable matrix pair (A, C), with C" = [ClT C; C;] and ¢; with i=1, ...,p;, the
ith row of the matrix C, a collection of P, integers {nl, n,,---,N pi} is called an observability index vector of

the pair (A, C), if the following relationships simultaneously hold

ini:n,rank[clT e (AT e T (AT)"“l_lcT]:n
i=1

P P

Next the multirate sampling mechanism, depicted in Fig. 1, is applied to Equation 1.

a(kT,) y.(KT,)
(KT,) - —
u 0
ulk+0T,] — PLANT |y, (1)
> 7 w A(kT )
YK,
L, ¢ MULTIRATE
SAMPLING
L |

Y

Figure 1. Control of linear systems using MROCs

Assuming that all samplers start simultaneously at t = 0, a sampler and a zero-order hold with period T, is
connected to each plant input u, (t), i=1,2,...,m, such that

u=u(KT,), t e [KT,, (kK +1)T,) @)
while the ith disturbance @; (t) ,i=1....,d, and the ith controlled output Y, (t),i=1,...,p,, are detected at time
KT ,. such that for t € [KT,, (K +1)T,)

a®=a (KT, ), ¥ (KT,) =Ex (KT, )+, (KT, ) ®)
The ith measured output Y, ; (1), i=1,..., p,, is detected at every T, period, such that for

p=0,., N, -1

Yoni (KT +0T,) = ¢ x(KT +puT,) +(J,), u(KT,) 4)

where (J,), is the ith row of the matrix J,. Here N; € Z" are the output multiplicities of the sampling and

T, € R are the output sampling periods having rational ratio, i.e. T, = Ty /N, withi=1,...,p,.

The sampled values of the plant measured outputs obtained over [KT,, (K +1)T,) are stored in the N”-
dimensional column vector given by

?(kTo) = |:ym,l(kT0) 0 Yo (kTo + (Nl _1)T1)
Ymp, (kTO)  Ymp, [kTO + (Nm _1)Tp1 ]]T ®)

Py
(where N = Z N, ), that is used in the MROC of the form
i=1

U[(k"'l)To]: Luu(kTo)_ Ly’?(kTO) (6)
where L, e R™™", L, e R™N

The H” -disturbance attenuation problem treated in this paper, is as follows: Find a MROC of the form (2),
which when applied to system (1), asymptotically stabilizes the closed-loop system and simultaneously achieves
the following design requirement
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ITy. @) <v @)
foragiven y € R", where HTqyc (Z)ﬂw is the H”-norm of the proper stable discrete transfer function Tqu (Z)
from sampled-data external disturbances q (kTO) el i to sampled-data controlled outputs Y (kTO) , defined
by

lye(KTo), _

_ io )| _
HTqyc (Z)HOO - q(iTl:EIz ”q kT )” - ees[(l)'l? ]Gmax[ (eJ ) - Szl'l_li)cmax[-rqyC (Z)]

where, (')'max|_ qyc J is the maximum singular value of Tqyc (Z) and where use was made of the standard

definition of the ¢, -norm of a discrete signal S(KT,)

Is(kT, ), = ZS (KTo )s(KT, )

Our attention will now be focused on the solution of the above H™ -control problem. To this end, the
following assumptions on system (1) are made:

Assumptions:
a) The matrix triplets (A, B, C) and (A, D, E) are stabilizable and detectable.

kA D d A B D d
b) ran c o, =n+d, ran cC o =n+m+

o JJ[E J,]=[0 I

mxn mxm ]

pom  Vpyxd

d) There is a sampling period T, such that the open-loop discrete-time system model in general form
becomes

X[(k +1)T, ] = @x(KT, )+ Bu(kT, )+ Dq(KT, )

(8)
Ye (kTo ) = EX(kTo ) +J zu(kTo)

TO
where ® = exp(AT, ). (B.D)= [exp(A%)B,D)d

is stabilizable and observable and does not have invariant zeros on the unit circle.

From the above it fellows that the procedure for H* -disturbance attenuation using MROCs essentially consists
in finding for the control law a fictitious state matrix F, which equivalently solves the problem and then, either

determining the MROC pair (Ly, Lu) or choosing a desired L, and determining the L . As it has been
shown in [3], matrix F takes the form

F=(1+B"PB) 'B"PO ©)
where P is an appropriate solution of the following Riccati equation
P=E'E+®"P®-®"PB(1+B7PB) BP® +PD,(1+DTPD, JOTP , D, =y'D ()

It is to be noted that y € R™, such that HTqyc (Z)H >y where “Tqyc (Z)HOo is the H*-norm of the proper stable

discrete transfer function T, (), from sampled-data external disturbances Q(KT,) e /3 to sampled-data
controlled output Y, (KT,) .

Once matrix F is obtained the MROC matrices Ly and L, (in the case where L, is free), can be
computed according to the following mathematical expressions

L, =[F 0, ,JH+A(l,. .-[H ®A)

(11)
L,={F 0, JA+A(l . —[H e, JH)e,
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where I:I[H ®q]: I and A e R™ isan arbitrary specified matrix. In the case where L, =L, ,, we

have
L=[F L, 0.JA+=0, .-[H ©, /)
where IZI[H 0, ('*)q]zl and = e R™ is arbitrary.
The resulting closed-loop system matrix (Acl,d ) takes the following general form

Aca =Aoa —BaaF (12)
where cl = closed-loop, ol = open-loop and d = discrete.

I11. DESIGN AND SIMULATIONS OF OPEN- AND CLOSED-LOOP
MODELS OF THE POWER SYSTEM

The system under investigation is shown in block diagram form in Figure 2, and consists of a three-
phase 160 MVA synchronous machine with automatic excitation control system supplying power through a
step-up transformer and a high-voltage transmission line to an infinite grid. The numerical values of the
parameters, which define the total system as well as its operating point, come from [9] and are given in
Appendix A.
Based on the state variables Fig. 2 and the values of the parameters and the operating point (see Appendix A),
the system of Fig. 2 may be described in state-space form, in the form of 1, where

x:[E'qa) S Vv, Vv, Vv, v, V, v, Eg '
T
u:[AERef ATm} , q=u

T
ynl::DS Vt] ! yc =X
E= I1OxlO’ ‘]1 = 02x2’ ‘]2 = 010x2

|K |
|
6q@=y1
ks el P
HEyTaos (rad.)

gﬂ
N
N

1+TRS

Figure 2. Block diagram representation of regulated synchronous
Machine supplying power to an infinite grid.

The computed discrete linear open-loop power system model, based on the associated linearized
continuous open-loop system model described in Appendix 2 of [9], is given below in terms of its matrices with
sampling period T = 0.4 sec.
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0.6808  -5.4034 -0.0745 -0.0841 -0.3513 -0.3905 -0.2572 0.3942 0.0018 0.0506
-0.0100 0.2719 -0.0096 0.0006  0.0018 0.0020  0.0011 -0.0020 0.0 -0.0004
-0.8058 929580 0.2750 0.0224  0.0579  0.0624 0.0299 -0.0619 -0.0006 -0.0185
0.3770 -5.8500 -0.0524 -0.0362 -0.1360 -0.1534 -0.0926 0.1506 0.0008  0.0225
A -0.1734 1.0489 0.0107 -0.0245 0.3595 -0.2874 -0.3251 0.3800 0.0003 -0.0122
ol/d -0.0141 -0.6437 -0.0147 0.0014 0.0048 0.0184  0.0031 —0.0053 0.0 —0.0009
-0.0078 -2.0973 -0.0132 0.0030 0.0120 -0.1990 0.0215 -0.0134 -0.0001 -0.0016
-0.0067 -2.0913 -0.0122 0.0029  0.0119 -0.1676 -0.9482 0.9475 -0.0001 -0.0016
—12.3587 122.1028 1.4904 3.2910 -14.4844 6.4718 -29.3545 24.1441 -0.0635 -0.5357
| -5.2071 30.8392 0.3013 -1.0662 -9.7173 -9.3513 -9.5697 11.6895 0.0170 0.6346 |

T
B _ | 03995 -0.0020 -0.0624 0.1524 0.3887 -0.0053 -0.0136 -0.0134 25.4486 11.9382
olrd -0.0480 0.0273 2.0098 -0.0856 0.0421 0.0431 0.0428 0.0399 4.0183 1.2487 |

0 0 1 0 00O0OOTG O
Col/d =
0.4777 0 -0.0433 0 0 0 O 0 O O

Based on Fig. 1 the H” -control using MROCs (given in this paper), the computed discrete linear open-
loop model of the power system under study, the discrete closed-loop power system models were designed
considering the cases with y =4.5 and the compted values of BN, K, Lu and F feedback gain matrices were
computed as

T
N = 1.4306 0.1834 0.0142 0.0003 -18.5449 -4.6020 -0.9837 -0.1579 -0.0115
1.5897 1.1686 0.5590 0.1441 7.5561  1.3453 0.1755 0.0060 —0.0031

K =10°% 3.2267 -9.2928 9.2945 -3.2283 0.0301 0.6151 -0.3089 -0.2690 -0.0676
2.5053 -7.2136 7.2129 -2.5048 0.0234 0.4772 -0.2414 -0.1890 -0.0719

_ | -0.4313 -0.2491 0.0509 0.0350 -0.7510 -0.2304 -1.0420 1.0037 -0.0008 0.0146
—0.5301 33.3453 0.0284 0.2996 0.3983 1.4627 -0.5769 0.0544 -0.0055 -0.1109

_ | 0.61150959 -0.00000044
Y| —0.09626196 0.00000038

The numerical values of the matrices referring to the discrete closed-loop power system models of the
above two cases are not included here due to space limitations.

The magnitude of the eigenvalues of the discrete original open-loop and designed closed-loop power
system models are shown in Table 1. By comparing the eigenvalues of the designed closed-loop power system
models to those of the original open-loop power system model the resulting enhancement in dynamic system
stability is judged as being remarkable.

Table 1. Magnitude of eigenvalues of discrete original open-loop and
Designed closed-loop power system models.

Original open-loop power
system model |k| 0.9087 0.9087 0.6985 0.6985 0.9608 0.4263 0.0211 0.0076
0.0005 0.0005

Designed with
closed-loop v=4.5
power system
model

A 0.7881 0.6999 0.9608 0.4082 0.2500 0.2500 0.0464 0.0068
0.0003 0.0
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The responses of the output variables (v; and 3) of the original open-loop and designed closed-loop power
system models for zero initial conditions and unit step input disturbance are shown in Figs. 3,4,5 respectively.

0.14 - T T T T
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01k T —T .
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= 006 -
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0.02 |
0 J: — /7 — b.d i
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2 | [ | | |
] 5 10 13 2 25 k11 33
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0.14 r T T T T
0.13 | .
=L e —
0.08 i

Mlpu)
=
I
<
H

———
0.0 | A
0.2 | 4
0 J: 1 71— b.d i
——— ! E_#
-0 L 1 L 1 L
0 5 10 13 20 25 i i3
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Figure 3. Responses of 8 and v; of the discrete open loop (a), (c) and close loop (b), (d) system to step
input changes: (a), (b): AV, =0.05, AT,,= 0.0 and (c), (d): AV, =0.10, AT,=0.0.
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Figure 4. Responses of 6 and v, of the discrete open loop (a), (¢) and close loop (b), (d) system to step input
changes: (a), (b): AV, =0.0, AT,= 0.05 and (c), (d): AV, =0.0, AT= 0.10.
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Figure 5. Responses of 8 and v, of the discrete open loop (a), (c) and close loop (b), (d) system to step input
changes: (a), (b): AV, =0.05, AT,= 0.05 and (c), (d): AV, =0.10, AT,,= 0.10.

From Figs. 3,4,5 it is clear that the dynamic stability characteristics of the designed discrete closed-
loop system-models are far more superior than the corresponding ones of the original open-loop model, which
attests in favour of the proposed H” -control technique.

It is to be noted that the solution results of the discrete system models , i.e. eigenvalues, eigenvectors,
responses of system variables etc., for zero initial conditions were obtained using a special software program,
which is based on the theory of & 2 and runs on MATLAB program environment.

In Fig. 6, the maximum singular value of Tqyc(z) is depicted, as a function of the frequency . Clearly, the

design requirementHTqy (Z)wH <1, is satisfied. Moreover, as it can be easily checked the poles of the closed
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loop system, lie inside the unit circle. Therefore, the requirement for the stability of the closed-loop system is
also satisfied.
Not that, the H”-norm of the open-loop system transfer function between disturbances and controlled outputs

has the value C(ja)I—A)_lBH — 79.5687 .
o0

3
1 D 3 T T T

mz L ................................. I }x[cgm_ﬁ}-lp]:
10° ~ / /\

i}
10
=ve(82T2)]
10"}
lD-{---\. " " -|.|||||-- & " " ||--|.|..:I " " |.|||||J- " i |-|.|.||-\.
10 10 10 10 10

Figure 6. The maximum singular value of Tqyc (2) over o, for the unsaturated machine and for y=4.5

V. CONCLUSIONS
An efficient H” -control technique based on MROCs has been presented in concise form for the

purpose of attenuating in an effective manner system disturbances which otherwise degrade the performance of
a synchronous generator. The method was applied successfully to a discrete open-loop power system model
(which was computed from an original continuous linearized open-loop one) resulting in the design of an
associated discrete closed-loop power system model. The results of the simulations performed on the discrete
open- and closed-loop power system models demonstrated clearly the significant enhancement of the dynamic
stability characteristics achieved by the designed closed-loop model. Thus this H” -control technique was proved
to be a reliable tool for the design of implementable MROCs.
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APPENDIX A
Numerical values of system parameters and operating point

Synchronous machine: 3-phase, 160 MVA, pf=0.094, xd=1.7, xq=1.6, x;j =0.245p.u,; r('jo =5.9, H=54s; R

=314 rad. s-1.

Type-1 exciter: KA=50, KE=-0.17, SE = 0.95, KF = 0.04, KR = 1, Ko =1; TA = 0,05, tE = 0,95, tF = 1, 1R =
0.05, 10 =10 p.u., 11 =13 = 0.440, 12 = 14 =0,092 s.

External system: Re = 0.02, Xe = 0.40 p.u., (on 160 MVA base).

Operating point: Po=1, Qo=0.5, EFD0=2.5128, Eqo=0.9986, vto=1, Tmo=1 p.u.; 0=1.1966 rad.; K1=1.1330,
K2=1.3295, K3=0.3072, K4=1.8235, K5=-0.0433, K6=0.4777.

APPENDIX B
Numerical values of matrices A, B and C of the original 10th-order system
(05517 0 -0.3001 0 0 0 0 0  0.695 |
-0.0410 0 -0.0350 0 0 0 0 0 0
0 314.1593 0 0 0 0 0 0 0 0
9.5540 0 -0.8660 -20 0 0 0 0 0 0
A= 0 0 0 0 -1 0 0 0 0.0421 -0.0328
-0.1962 10.8696 -0.1672 0 0 -10.8696 0 0 0 0
-0.9386 51.9849 -0.7999 0 0 411153 -10.8696 O 0 0
-0.9386 51.9849 -0.7999 0 0 411143 -1086% -0.1 O 0
0 0 0 -1000 -1000 0 0 1000 -20 0
i 0 0 0 0 0 0 0 0 1.0526 —0.8211_
B:[o 0 000 O 0 0 1000 OT
0 00926 0 0 O 04428 21179 21179 0 O

o o 1 000O0OT OO
104777 0 -00433 0 0 0 0 0 0 O
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