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ABSTRACT: We consider a rigid spherical particle fixed in a viscous incompressible fluid, driven by a flow at 

low Reynolds number in parallel to a plane and rough wall.  The model used is that of Stokes equations quasi-

stationary; respectively associated with the condition of the adhesion surface of the sphere and the surface of 

the rough wall [1, 2]. With using the Lorentz reciprocity theorem, we calculated the lift force, perpendicular to 

the flow, due to the roughness. We have verified that this calculation is valid in the critical area of lubrication. 

The calculation of this force has been performed for different values of, the between particle and wall, the 

period of the roughness, and its amplitude. 
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I. INTRODUCTION  
 The hydrodynamic interactions between particles and walls are important in flows with small scale 

(microhydrodynamics), involved in various applications, such as separation techniques of field- flow 

fractionation (FFF) [3], the movement of cells in biological fluids, the detachment of the grains of sand under 

the effect of wind, etc. We consider here a Newtonian, incompressible fluid such that the Reynolds number 

relative to a particle is small.  

 The problem of a sphere, maintained fixed in a shear flow at vicinity of a wall plane was examined by 

Goldman and al [4] as well as by Goren and 0’Neill [5]. This problem was solved later by Tözeren and Sakalak 

[6] using the technique of bispherical coordinates. The details of this solution can also be found in the thesis of 

Chaoui [7] and in Chaoui and Feuillebois [2] in which the last two have developed a technique for precise 

calculation of the coefficients of the bispherical coordinates solution, which gave the coordinates method 

bispherical better precision.  

 The problem of the flow of a viscous fluid on a rough surface has been addressed in a number of 

articles. Indeed B. Cichocki and P. Szymczak [8] have managed to determine the boundary conditions for this 

problem by using a rough and periodic area. Furthermore, N Lecoq and R Anthore [9] were established the drag 

force on a sphere moving under the action of gravity to a plane rough wall. They considered that the roughness, 

are periodic waves whose wavelength is very small compared with the radius of the sphere. Moreover, N.Lecoq 

[10] treated the problem of the vertical displacement of the particle sedimentation to rough wall, he took 

different type of roughness and observed that when the surface presents valleys there is a decrease in the friction 

factor. On the contrary if the surface presents bumps there is a increase of friction factor. 

 In this paper, we used an analytical treatment to calculate the lift force due to the roughness, then we 

calculated numerically this force, with a high precision for any distance between the sphere and the wall.  For 

this, we use a formulation in spherical coordinates which had been developed for asymmetric problems [11, 12, 

13]. In addition, our calculations are based on very precise results about the Stokes flow, that allows exploring 

the area of lubrication. 

 In the first part, we present a succinct theoretical approach that allows to get the roughness’s force. In 

the second part, we explicit integral giving the roughness’s force, using bispherical coordinates. And finally, we 

present the results and conclusion. 
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II. ANALYTICAL CALCULATION OF THE LIFT FORCE ROUGHNESS 
The lift force experienced by the sphere under the influence of the roughness of the wall is defined by: 

𝑭𝑧   𝑓→𝑠
(1)

=   𝜍 𝒗 1   .  𝒏𝑠  𝑑𝑠
 

𝑆
                                              (1) 

Our goal is to calculate the contribution of roughness in the forces applied in the sphere. The Lorentz reciprocity 

theorem [14, 15] allows to calculate the efforts without having to calculate the constraint tensor in all the fluid's 

field but only on the edges. This theorem express that if a fluid bounded by a border 𝜕𝑫 there are two different 

flows (𝒗′, 𝜍 ′′) and (𝒗′′, 𝜍 ′) then These flows are  related by the following relationship: 

 

 𝒗′. 𝜍 ′′. 𝑑𝑺
 

𝜕𝐷
=  𝒗′′. 𝜍 ′. 𝑑𝑺

 

𝜕𝐷
                                                               (2) 

 

with 𝑑𝑺  is the vector surface element on the edge 𝜕𝑫. 

In practice, one of the two flows interests physically to us, and the other is called reciprocal flow, it is chosen 

according to the problem studied. We are interested in the lateral disturbance due to the roughness of the range 

𝑂(𝜀). 

The reciprocal flow that calculates the disturbance flow is generated by the movement of sedimentation of a 

sphere whose radius a and whose constant speed 𝑼𝑧 = 𝑈𝑧 𝒊𝑧 , in a fluid at rest.  

 

By applying the reciprocity theorem of Lorentz, the analytical expression of the lift force experienced by the 

sphere due to the roughness of the wall can be written: 

 

𝐹𝑧   
(1)

=
𝑎

𝑈𝑧
 𝓡 𝑥, 𝑦 

  𝜕𝒗 0 

𝜕𝑧
. 𝜍 𝒖𝑠   . 𝒊𝑧𝑑𝑠 

 

𝑝
                                             (3) 

CHOICE OF THE ROUGHNESS FUNCTION 𝓡 𝑥, 𝑦  

The roughness profile is chosen according to the studied case. In this case we consider a profile of periodic 

roughness, whose period L and whose stiffness (𝑎 𝜀). And we take fluctuations of this profile, small, for 

avoiding   generate dead zone (recirculation zones of the fluid). 

 

     In cylindrical coordinates 

𝓡 𝑥, 𝑦 = 𝓡 𝜌, 𝜑 = 𝓡(𝜌) 𝑐𝑜𝑠 𝜑                                                    (4) 

 

Let 𝓡n ρ  be the Fourier series corresponding to the roughness function 𝓡 ρ . 

        

𝓡𝑛 𝜌 = 𝑐0 +  (𝑐𝑛 𝑐𝑜𝑠 𝑛𝜔𝜌 + 𝑠𝑛 𝑠𝑖𝑛 𝑛𝜔𝜌)

+∞

𝑛=0

                                           (5) 

where 

𝑐0 =
1

2
                                                                             (6) 

𝑐𝑛 =
1

 2𝜋𝑛  ²

2

𝛿 𝛿−1 
  1 − 𝑐𝑜𝑠 2𝜋𝑛𝛿                                                      (7) 
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  𝑠𝑛 = −
1

 2𝜋𝑛  ²

2

𝛿 𝛿−1 
𝑠𝑖𝑛 2𝜋𝑛𝛿                                                        (8) 

     For having slender profiles of the roughness, the value of δ should be small such as  1/2 <  𝛿 < 1, 𝛿 ~3/4 . 

That will allow to avoid the disturbances having large amplitude. Finally in order to have the adhesion to the 

wall, satisfied, it must avoid angular peaks. For this reason 𝓡n  series must be calculated with a reduced number 

of terms   (n is in the order of 3). With the angular peaks, we may have an adhesion to the wall, but against we 

may perhaps have recirculation. 

 

III. NUMERICAL METHOD OF RESOLUTION OF THE LIFT FORCE DUE TO 

ROUGHNESS 
After a first integration on φ in the interval of revolution  0,2π , we get, in cylindrical coordinates: 

𝐹𝑧
(1)

= −
𝜋𝜇𝑓𝑎

𝑈𝑧
 𝓡(𝜌)

𝜕ℎ𝑝
(𝑘)

𝜕𝑧

+∞

0
∙
𝜕𝑢𝜌

𝑠

𝜕𝑧
𝜌𝑑𝜌                                                (9) 

     The quantity ℎ𝜌
(𝑘)

 is independent of  𝜑  in speed expression 𝑣𝜌
𝑘   

      where 

𝑣𝜌
𝑘 =

1

2
(𝜌𝑄1

𝐾 + 𝑐 𝑈0
𝑘 + 𝑈2

𝑘 ) 𝑐𝑜𝑠 𝜑                                                  (10) 

 and 

𝑢𝜌
𝑠 = 𝜌

𝑄0
𝑠

2
+ 𝑈1

𝑠                                                                  (11) 

With 𝑈0
𝑘 , 𝑄1

𝐾 , 𝑈2
𝑘  the spherical harmonics in the shear case and 𝑈1

𝑠, 𝑄0
𝑠  the spherical harmonics in the 

sedimentation case. 

  Through the use of bispherical coordinates the integral in unbounded field is reduced to an integral over a finite 

field and determining this integral Maple language, the expression of the lift force in the database becomes: 

 

𝐹𝑝 = 𝜀 𝐹𝑧
(1)

                                                                       (12) 

 

𝐹𝑧
(1)

=
−𝑡𝑎𝑛 ℎ( 𝛼)

24
(𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 + 𝐹5 + 𝐹6)                                                (13) 

 

𝐹1 =  𝓡(𝜇)
1

−1

 
𝑠𝑖𝑛3(𝜂)

1 − 𝜇
  𝐶𝑛  𝛾𝑛  𝑃𝑛

′  𝜇  𝐵𝑚  𝛾𝑚  𝑃𝑚  𝜇 

+∞

𝑚=0

𝑑𝜇                                  (14)

+∞

𝑛=1

 

𝐹2 = 2  𝓡(𝜇)
1

−1

 𝑠𝑖𝑛3(𝜂)  𝐶𝑛  𝛾𝑛  𝑃𝑛
′  𝜇  𝐷𝑚  𝛾𝑚  𝑃𝑚

′  𝜇 

+∞

𝑚=1

𝑑𝜇 

+∞

𝑛=1

                              (15) 

𝐹3 =  𝓡(𝜇)
1

−1

 𝑠𝑖𝑛(𝜂)  𝐸𝑛  𝛾𝑛  𝑃𝑛 𝜇  𝐵𝑚  𝛾𝑚  𝑃𝑚  𝜇 

+∞

𝑚=0

𝑑𝜇 

+∞

𝑛=0

                                  (16) 

𝐹4 = 2  𝓡(𝜇)
1

−1

  1 − 𝜇 𝑠𝑖𝑛(𝜂)  𝐸𝑛  𝛾𝑛  𝑃𝑛 (𝜇)  𝐷𝑚  𝛾𝑚  𝑃𝑚
′ (𝜇) 

+∞

𝑚=1

𝑑𝜇

+∞

𝑛=0

                       (17) 
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𝐹5 =  𝓡(𝜇)
1

−1

 𝑠𝑖𝑛3(𝜂)  𝐺𝑛  𝛾𝑛  𝑃𝑛
′′ 𝜇  𝐵𝑚  𝛾𝑚  𝑃𝑚  𝜇 

+∞

𝑚=0

𝑑𝜇                                 (18) 

+∞

𝑛=2

 

𝐹6 = 2  𝓡(𝜇)
1

−1

  1 − 𝜇 𝑠𝑖𝑛3(𝜂)  𝐺𝑛  𝛾𝑛  𝑃𝑛
′′ 𝜇  𝐷𝑚  𝛾𝑚  𝑃𝑚

′  𝜇 

+∞

𝑚=1

𝑑𝜇                         

+∞

𝑛=2

(19) 

 

with 𝜇 = 𝑐𝑜𝑠(𝜂), 𝛾𝑛 = 𝑛 + 1/2 , 𝑃𝑛 (𝜇) is the Legendre polynomial whose degree n, and 𝑃𝑛
′ (𝜇) its derivative,  

𝐶𝑛 , 𝐸𝑛 , 𝐺𝑛  the coefficients of spherical harmonics in the shear case, and 𝐵𝑚 , 𝐷𝑚  the coefficients of spherical 

harmonics in the sedimentation case. 

IV. RESULTS  
We have got new results based on the results done by M. Chaoui [1,7]. We calculated the lift force 

roughness when certain parameters are varied (the gap sphere-rough wall (gap), the period (L), the amplitude of 

the roughness (ε), the factor (𝛿), and the translation factor (T)).  Although, we get more precise results, even for 

a very small particle- rough wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig. 1: The lift force based on the roughness amplitude, for different values of the gap sphere-wall. 

 

Figure 1 presents the variation of the lift force based on the amplitude of the roughness, for different 

gap sphere rough wall (gap) values, with the period of the roughness L=1. We observe that the force increases 

when the amplitude of the roughness increases. And when the sphere gap-rough wall increases the force 

decreases. 

 

 

 

        

 

 

 

 

 

 

 

 

 

  

 

               Fig.2: The lift force based on the gap sphere-wall. 
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 Figure 2 presents the variation of the lift force based on the gap sphere rough wall (gap), with the value 

of the amplitude of the roughness ε=1, and with the period of the roughness L=1. We observe that the lift force 

reach zero when the gap sphere rough wall increases, so we can say that at the infinity, the disturbances due to 

the rough wall is canceled out and we only observe the undisturbed shear flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: the lift force based on the roughness period, for different values of the gap sphere-wall. 

 

 Figure 3 presents the variation of the lift force based on the period of the roughness, for different 

values of the gap sphere-rough wall, with the amplitude of the roughness ε=0.5. We observe that the lift force 

increases when the gap sphere rough wall decreases. Furthermore we remark that the force takes a constant 

value in the area of small values of L, When L=2 (the value of the period equal to the diameter of the sphere) the 

lift force presents a minimum. Increasing the value of L, the force increases and reaching a maximum value 

(L=4.5), after it decreases slowly. We remark that the lift force depends on the structure of the wall roughness 

and to the particle size. The influence of the structure of the roughness on the lift force will be explained in 

Figures (4,5,6,7). 

 

        Fig.4: The function of the roughness 𝓡(𝝆) based on bispherical coordinates 𝝆 for different values of 

factor δ. 

 

 Figure 4 presents the variation of the function of the roughness based on bispherical coordinates 𝜌, for 

different values of the factor δ. We find that if we change the value of the factor δ, the local structure of the 

roughness changes. 
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Fig.5: the lift force based on values of factor δ, for different values of the roughness amplitude                                
 

Figure 5 presents the variation of the lift force based on values of the factor δ, for two amplitude values 

of the roughness (𝜀= 0.72 and 𝜀= 0.73), we observe that the force increases when the amplitude of the 

roughness increases. Furthermore, we note that when the values of the factor δ increases the force increases until 

a maximum value of the factor (δ = 0.8), after it decreases. So, it is clear that the local shape of the roughness 

affects the lift force. 

 

Figure 6 presents the variation of the function of the roughness 𝓡(𝜌) based on bispherical coordinates 

𝜌 for different values of the translation factor T, this figure illustrates the position of a particle when the 

translation is on the rough surface. 

 

 
Fig.6: The function of the roughness 𝓡(𝛒) based on bispherical coordinates 𝝆 for different  

Translation factor T values T(T=0, T=0.5, T=1, T=2). 
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           Fig.7: the lift force based on translation factor T for different roughness period values. 

 

  To explain the results obtained in Figure 3, we plot in Figure 7 the variation of the lift force based on 

translation factor T for different roughness period values with gap=0.5 and ε=0.5, when we make a translation 

on a rough surface, we remark that the curve of the lift force is periodic for all values of L and is related to the 

position of the particle with respect to the rough wall. It is clear that the local shape of the roughness affects the 

lift force, these results are similar to those obtained in [10]. 

 

V. CONCLUSION 
 We have established a numerical technique allows to get very important results for the roughness force. 

These precise results, achieved in bispherical coordinates, are valid until the lubrication area and they are similar 

to those obtained in [10]. 

 We concluded that the lift force increases with the amplitude of the roughness but the gap rough wall 

decreases with increasing the lift force. 

 We can also conclude that when the period of the roughness increases, the force reach zero, in this case 

the rough wall behaves like a smooth wall. In conclusion the local shape of the rough surface, has a great 

influence on the lift force. 
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